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Abstract: Distributed R-trees overlays recently emerged as an alternative for
efficiently implementing DHT-free publish /subscribe communication primitives.
Overlays using R-tree index structures offer logarithmic delivery garanties, guar-
antee zero false negatives and considerably reduce the number of false positives.
In this paper we extend the distributed R-trees (DR-Trees) in order to meet
two key requirements in massively distributed video game applications: load
balancing and low latency. Our optimizations target both the structural or-
ganisation of the DR-Trees and the publication policies. The contribution of
the current work steams in an extensive evaluation of the novel structure along
four parameters: latency, load, scalability and the rate of false positives. In-
terestingly, the novel structure performs better than the traditional distributed
R-tree both in terms of load balancing and latency. Additionally, it does not
alter the performances related to the scalability and the rate of false positives
and negatives a node has to filter.
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Filtrage d’informations efficace pour les jeux
vidéo massivement distribués

Résumé : Les réseaux logiques basés sur des R-trees répartis ont récemment
émergé comme une alternative aux DHTs pour implémenter efficacement des
primitives de communication de type publication/abonnement. Ces réseaux
utilisent les structures d’index des R-Trees pour garantir une délivrance des
messages logarithmique, ’absence de faux négatifs tout en réduisant considéra-
blement le nombre de faux positifs. Dans ce rapport nous étendons les R-Trees
distribués (DR-Tree) pour les adapter & deux besoins clés des jeux massivement
répartis : la répartitions de charge entre les pairs et une faible latence de com-
munication. Nos optimisations modifient & la fois la structure du réseau de pairs
et les stratégies de publications. Une de nos principales contributions consiste
a évaluer de maniére précise la nouvelle structure selon quatre métriques : la
latence, la charge, I'extensibilité et le taux de faux positifs. Nous montrons que
nos optimisations permettent d’ameéliorer notablement la répartition de charge
et les latences de publication. De plus, elles n’affectent pas les bonnes propriétés
des DR-Trees en termes d’extensibilité et de taux de faux positifs et négatifs
que chaque pair doit filtrer.

Mots-clés : Publication/abonnement, R-Trees distribués, Evaluation de per-
formance, Jeux multi-joueur répartis



Efficient filtering for distributed games 3

1 Introduction

Publish/Subscribe primitives imposed themselves as novel and efficient com-
munication abstractions with a broad class of applications (e.g. stocks man-
agement or communication abstractions for large scale systems). Recently,
publish /subscribe primitives found an interesting application in massively dis-
tributed video games where the pertinent information has to be efficiently dis-
tributed to the interested parties only. In these systems the amount of in-
formation a node has to process is critical since nodes have to conserve their
computational power and bandwidth in order to fully satisfy the users expec-
tation. Therefore, communication primitives targeted to reduce noisy events
(false positives or negatives) are highly requested. Publish/Subscribe imple-
mented on top of distributed R-trees overlays, first introduced in [{], are proven
to be efficient communication primitives. They have been designed to offer zero
false negatives and reduce the number of false positives. Interestingly, they also
offer a logarithmic delivery complexity. These characteristics make them ap-
pealing for applications like P2P video games where nodes have to process only
pertinent information. However, their main drawback is their unbalanced load.
That is, nodes in charge of the top levels of the overlay have to deal with an
important load due to the high trafic they have to process (new subscriptions
and events are generally filtered using a top-down strategy). Therefore, in P2P
video games where the maintenance of the overlay is performed by the players
themselveeﬂ, these overlays need to be optimized along two other important cri-
teria: load and latency. The aim of this paper is to improve distributed R-tree
in order to offer load balancing and low latency while maintaining their original
features related to reduced number of noisy events.

Our contribution. In this paper we optimize the distributed R-Tree over-
lays in order to meet the two main requirements of massively distributed video
games. First, pertinent information has to be quickly distributed to all the in-
terested parties. Second, the residual trafic has to be minimized in order to not
penalize users with reduced bandwidth. Our optimizations are twofold. First
we target structural optimization duplicating the virtual links between nodes
in the distributed R-tree. Then we propose novel strategies for events dissem-
ination that fully exploit the new added links. The real contribution of the
paper steams in the extensive evaluation of the performances of our optimized
publish /subscribe communication primitive targeting two main criteria: latency
and load. Interestingly, the new structure performs better than the traditional
distributed R-tree both in terms of load balancing and latency. Additionally, it
does not alter the performances related to the structure scalability and the rate
of false positives and negatives a node has to filter.

2 Related Work

Publish /subscribe systems have received much attention and have been exten-
sively studied in the last few years |2, [[6]. In such systems, consumers specify
subscriptions, indicating the type of content that they are interested in, using

INote that in these systems players are mainly concerned with their bandwidth and fast
reactivity.
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4 Arantes € Sens & Valero

some predicate language. For each incoming message (event), a content-based
router matches the message contents against the set of subscriptions to iden-
tify and route the message to the set of interested consumers. Therefore, the
consumers and the producers are unaware of each other and the destination
is computed dynamically based on the message contents and the active set of
subscriptions.

Traditional content routing systems are usually based on a fixed infrastruc-
ture of reliable brokers that filter and route messages on behalf of the producers
and the consumers. This routing process is a complex and time-consuming oper-
ation, as it often requires the maintenance of large routing tables on each router
and the execution of complex filtering algorithms (e.g., [3, [T} [[5]) to match each
incoming message against every known subscription. The use of summarization
techniques (e.g., subscription aggregation [8, [10]) alleviates those issues, but at
the cost of significant control message overhead or a loss of routing accuracy.

Another approach to content routing is to design it free of broker infrastruc-
ture, and organize publishers and consumers in a peer-to-peer overlay through
which messages flow to interested parties. Several designs of DHT-based peer-
to-peer publish/subscribe systems were proposed [9, 24 [17, [13, T2, @ 23]. The
main advantage of these approaches is their scalability, although most of them
suffer from two problems: the loss of accuracy (apparition of false negatives or
false positives) and poor latency in scenarios with high churn. In this paper
we are interested in publish/subscribe communication primitives that meet the
massively distributed games requirements: reduce number of noisy events, load
balancing and low latency. Hence, for such approaches to be efficient, the over-
lay on top of which the primitive is implemented must: avoid false negatives (a
registered consumer failing to receive a message it is interested in); minimize the
occurrence of false positives (a consumer receiving a message that it is not inter-
ested in); self-adapt to the dynamic nature of the systems, with peers joining,
leaving, and failing; balance the load of the subscribers in charge of the overlay
maintenance and efficiently distribute events to the interested parties (provide a
low latency). None of the previously mentioned systems meet all these criteria.

In the massively distributed video games the most popular publish /subscribe
system is Mercury having a similar design with [23]. Mercury [6] is a peer-to-
peer DHT supporting multi-attribute range-queries and explicit load balancing
on top of which a First Person Shooter (FPS) dedicated publish/subscribe has
been built and used in Caduceus [6] and Colyseus [5]. Subscriptions are mapped
on range queries, publications on classic DHT put() operation and each attribute
to a dimension. Mercury creates one ring per dimension; each peer belongs to
several rings. It doesn’t scale with dimension number however it performs well
in systems with moderated number of dimensions. Each peer knows for each
ring its predecessor, its successor and has k long links obtained by lazy random-
walk. k may vary from one peer to another, from one node to another and from
one ring to another. On publication, an event is inserted in each ring where it is
routed according to the corresponding attribute (resp. dimension). Under the
assumption of uniform node’s ranges on each ring, Mercury route any event in

1
O(=1log?n). Due to the ring-overlay design nodes in Mercury have to process

both false positives and negatives.
Kademlia [19] is a DHT that has been used as an underlayer for a Second
Life peer-to-peer client [22]. Peers are connected as a BST according their
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160-bit IDs. For each bit of its ID, a peer keeps a list of k peers having a
different value for that bit. k& is parameterisable, it may differ from one peer to
another and from one bit to another. Those links allows O(log n) publication.
Moreover, peers heavily cache information about other peers during routing
process. As routing is done according XOR metric, it takes high benefits of
caching. But DHT API is inadequate for localisation system that express range
queries or zone of interests [21]. Walkad [2T] is an extension of Kademlia that
tends to satisfy those requirements by organizing the Kademlia keyspace in a
reverse binary trie using the Gray Code. It divides the virtual world into atomic
disjointed areas (cells) and associates a key to each of them. It makes adjacent
cells having adjacent keys, emulating spatial locality and region containment.

3 Publish/Subscribe Model

We consider a distributed dynamic system where publishers and subscribers are
organized in a broker-free overlay, i.e., a peer-to-peer structure. Hence, every
peer in the overlay may have three roles: publisher/subscriber and router. Each
peer typically registers one subscription and may or not publish events. Also,
the peers may participate in the event dissemination, i.e., the event matching
and forwarding process is completely distributed among the peers in the system.

As most other publish/subscribe systems, we assume that an event contains
a set of attributes with associated values. In this work we consider complex
filters expressed as the conjunction of multiple range predicates. Geometrically,
these complex filters define poly-space rectangles in an Euclidean space. This
representation captures well the range filters expressed in most popular pub-
lish /subscribe systems (e.g., [2, 20, B, [T4]).

An event specifies a value for each attribute and corresponds geometrically
to a point. Without restraining the generality, we illustrate our algorithms on
two-dimensional filters corresponding to rectangles in a two-dimensional space.
If one attribute is undefined, then the corresponding rectangle is unbounded in
the associated dimension. If an attribute is composed of disjoint ranges, the
subscription will be represented as multiple rectangles. In that case, we can
split the original subscription into several new subscriptions, one per rectangle,
or merge the multiple ranges of every attribute to produce a single subscription,
at the price of degraded accuracy.

In order to improve event dissemination, publish/subscribe systems can take
advantage of the property of subscription containmentE which is defined as fol-
lows: subscription S; contains another subscription S; (written S; 3 S;) iff any
event m that matches S; also matches S;. Conversely, we say that S; is con-
tained by S; and we write S; C S;. Note that the containment relationship is
transitive and defines a partial order. Geometrically, subscription containment
corresponds to the enclosure relationships between the poly-space rectangles.
When organizing the peers based on the containment relationship of their sub-
scriptions, only the peers that are interested in an event will participate in the
matching and forwarding procedure. In this way, events can be quickly dissem-
inated without incurring significant filtering cost.

2The term covering is also commonly used in the literature.

RR n°® 7008
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4 R-Trees Overlays

In this section we recall the main caracteristics of the R-Tree index structure
and its distributed version.

4.1 R-Trees index structures

R-trees were first introduced in [I8]. An R-tree is a height-balanced tree han-
dling objects whose representation can be circumscribed in a poly-space rect-
angle. Each leaf-node in the tree is an array of pointers to spatial objects. An
R-tree is characterized by the following properties:

e Every non-leaf node has a maximum of M and at least m entries where
m < M/2, except for the root.

e The minimum number of entries in the root node is two, unless it is a leaf
node. In this case, it may contain zero or one entry.

e Each entry in a non-leaf node is represented by (mbr,p), where the mbr
is the minimum bounding rectangle (MBR) that encloses the MBRs of
its child node and p is the pointer to the child node. Each entry in a leaf
node is represented by (mbr,oid), where the mbr is the MBR that spatially
encloses the object and oid is the pointer to the object.

o All the leaf nodes are at the same level.
e The height of an R-tree containing N objects is [logm,(N)] — 1.

e The worst space utilization for each node except the root is m/M.

In a classical R-tree structure, the actual objects are only stored in the leaves
of the tree and the internal nodes only maintain MBRs.

4.2 Distributed R-tree Overlay

In this section we recall the characteristics of the DR-trees index structure
introduced first in [7]. Subscribers self-organize in a balanced virtual tree overlay
based on the semantic relations between their subscriptions. Each filter is a
rectangle and can be represented using coordinates in a two dimensional space.
The overlay preserves the R-trees index structure features: bounded degree per
node and search time logarithmic in the size of the network. Moreover, the
proposed overlay copes with the dynamism of the system.

Unlike the traditional R-trees, each node in the structure is under the re-
sponsibility of a peer. The DR-tree structure is defined by the logical links
between subscribers or peers depending on the relation between their filters.
Every peer in the overlay registers for at least one subscription that is stored at
the leaves of the tree. Depending on the nature of a peer’s subscription, it may
be responsible also for internal nodes of the tree. The subscriber responsible
for an internal node of the tree filters events for all subscribers responsible for
the nodes in its subtree. In order to maintain the balanced nature of the tree,
a subscriber responsible for some node in the overlay is also responsible for one
internal node at each level of its subtree. More precisely, an internal node p is

INRIA
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recursively its own child in the subtree rooted by p. Therefore, a peer may have
to maintain more than one parent link and children set.

The organization of the subscribers has a strong influence on the routing
accuracy and the number of false positives in the system. The following property
is preserved:

Property 1 (Weak Containment Awareness). Given two filters S1 and Sy with
S1 C So, then the topmost instance of Sy is not an ancestor of the topmost
instance of So in the DR-tree.

This property guarantees that a containee filter will not be a parent of a
container filter, as it would degrade routing accuracy.

In addition, it is desirable to implement a stronger variant of the containment
awareness property:

Definition 1. Let filter S1 be called an accessor of filter Sy if the topmost
instance of S1 is an ancestor or sibling of the topmost instance of Sa in the tree.

Property 2 (Strong Containment Awareness). Given two filters S1 and S
with S1 C So, then either Sy is an accessor of Sy in the DR-tree, or there exists
Ss such that Sy T S3, So £ S3, S3 £ Sa, and Ss is an accessor of Sy in the
DR-tree.

This property would ensure that a containee filter is a descendant of its
containers. Because of the height-balancing mechanism, it might not be possible
to register a containee deep enough in the tree as child of one of its container; in
that case, it can be inserted as a sibling of the container. The second clause of
the property deals with the case of a filter having two container filters that do not
cover each other (remember that the containment relationship is a partial order).
Therefore, the containee may become a descendant of either of its container.

In order to preserve the containment awareness properties and minimize the
likeliness for false positives, the root of a subtree is the node whose current MBR
is largest, i.e., which provides most coverage over the MBR, of the new root.

5 Optimized Distributed R-Tree

In this section we detail the optimizations we propose for the classical distributed
R-trees described in Section Bl We address both the topological extensions and
propose novel publication strategies. In the following node refers a peer in the
DR-tree overlay.

5.1 Topological extensions

In order to improve communications between peers (according different criteria
such as availability, latency and load balancing) we improve the connectivity
of a DR-Tree by adding some links to the communication graphE: connections
between brother nodes and ancestors.

3The graph defined by the virtual connections between the peers in the DR-Tree overlay

RR n°® 7008
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Brothers Connections. In order to reduce the delivery time of events and
hence the latency of events distribution we add links between brother nodes.
Logically, two peers are brothers if and only if they share the same father. This
relation is symmetric, transitive and non-reflexive. Note that other overlays
such as [23] use the brother relation in order to connect similar nodes. In most
cases brother nodes form a ring or a multi-ring. In our case, for the sake of
efficiency, the brother relation is a crossbar. This structure offers the maximal
performance in terms of latency since messages within the brother set are routed
in one hope. The maintenance costs are low since the number of brothers per
node does not exceed M nodedl.

Ancestors Connections. A node is the ancestor of another node if and only
if the former is the father of the latter or the father of an ancestor of the latter.
In the classical Distributed R-trees, subscribers learn their ancestors during
their connection or the routing process. Interestingly, this information has not
been exploited so far. In the following, we consider each node has a specific field
where it stores its ancestors.

5.2 Publishing strategies

We denote that a local event is an event that has been published by the node
itself, that an upgoing event is an event that a node has received from one of its
children, and that a downgoing event is an event that a node has received from
its father. A publishing strategiy thus defines the traffic rules, i.e., the routes
that local, upgoing and downgoing events should take.

In the classical DR-trees the publication always starts from the root of the
tree. However, the containment relation between MBRs entails the filtering in
both directions. Roughly, a peer receiving an event has to forward it to its
interested children and eventually to its father. In the following we enrich the
publication policy with four novel strategies.

5.2.1 Double wave strategy

Intuitively, in this strategy, an event is send up until it reaches the root, then
it is sent down towards interested peers (Figure [). Local events are always
forwarded to the publisher’s father. Upgoing events received by a non root
peer are forwarded to it’s father. The root sends these events to its interested
children. Downgoing events are always forwarded to the interested child.

5.2.2 Enhanced double wave strategy

The enhancement consists in an earlier start of downward propagation (Fig-
ureB]). When an internal peer receives an upgoing event from one of its children,
it forwards the event both to its other interested children and to its father. In
this sense, an internal peer behaves like a “local root”, initiating the second wave
in its subtree.

4Note that in 7 M equals 20 has been proven to be a good compromise between the cost
of maintenance and the number of false positives a node receives
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Figure 1: Double wave strategy: p4 publishes an event that is of interest of
every peer
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Figure 2: Enhanced double wave strategy: p4 publishes an event that interests
every peer

5.2.3 Brothers wave strategy

This strategy uses brother links to exploit “tree-locality” of a publication (Figure
B). The idea is that events that interest a node might also interest its broth-
ers as well. Therefore, the publication strategy is the following: local events
are forwarded to publisher’s interested brothers, children, and father; upgoing
events are also forwarded to the receiver’s interested brothers and fathers (if
the receiver is not the root); downgoing events are forwarded to the interested

children.
3.
I
/73
Vs v
p ps8
Figure 3: Brothers wave strategy: p4 publishes an event that interests every
peer

2
- N6

5.2.4 Ancestors wave strategy

This strategy uses ancestors link to maximize messages diffusion parallelization.
Local events are published to interested children and every ancestors of the

publisher (FigureH); upgoing and downgoing events are forwarded to interested
children.
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Figure 4: Ancestors wave strategy: p4 publishes an event that interests every
peer

6 Performances

This section presents a set of results aimed at evaluating the performance of the
four published strategies described in the previous section.

6.1 Simulation environnement and parameters

Experiments were conducted on top of PeerSim[I], a Java-based discrete event
simulator. They last 600 cycles where a cycle is a discrete unit of time. Publica-
tion frequency was 0.5 event per cycle for each peer. Network latency between
two peers was 1 cycle with a jitter of + 0.1 cycle.

We have considered a 2D virtual area of [0,1024] x [0,1024] and a network
with 1024 peers with one subscriber per peer. Each peer (subscriber) has just
one zone of interest, whose height and width are uniformly randomly distributed
between [5,50], and one zone of publication. We denote the covering zone of a
peer the MBR of the uppermost level that it holds.

Every non-leaf node of the DR-Tree has a maximum of M=8 and a minimum
of m=4 entries, except the root which has 2 entries. For the sake of evaluation,
nodes can be grouped by level: 0 is the root level, 1 is root’s children level, and
so on. The level of the leaves is equal to the RTree height which is equal to 4 in
our experiments.

Subscription distribution: = Most of the massively distributed video games
present hotspot zones, i.e. “popular” regions in which a group of peers have
similar interests. Thus, based on population distributed of existing games, we
have considered in our experiments four hotspot distribution configurations for
the 1024 peer subscriptions of the system:

¢ Cold (no hotspot): subscriptions are uniformly randomly distributed.

e Warm (not very “popular” hotspots): the number of hotspots is 1024/8 =
128.

e Hot (“popular” hotspots): the number of hotspots is /1024 =

¢ Burning (very “popular” hotspots): the number of hotspots is equal to
log(1024) = 10 hotspots.

The Cold and Warm hotspot distributions respectively model the popula-
tion distribution of deserted zones of DVE and interested zones of FPS games.
The Hot distribution represents the population distribution of dense zones of

INRIA
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DVE like towns in MMO-RPG ( World Of Warcraft, Dofus or popular islands of
Second Life) while the Burning one maps the population distribution of massive
battlefields in MMO-RPG or wide events (concert, meeting).

Publication pattern: Peers (players) subscribe to the geographic area where
they are and publish events related to their positions/movements/actions. How-
ever, in video games, players are usually interested in a small part of the game
map (zone) and they only interact with entities that are in that zone. Such
a behavior thus implies that the publication zone of a peer corresponds to its
zone of interest, i.e., a peer publishes just in its own zone of interest. To our
experiments, we have then considered that publications are uniformly randomly
distributed in publishers’ subscription zones.

Metrics: As previously explained, our goal in proposing new publishing strate-
gies is to provide both low publication latency and good load balancing without
increasing noisy events such as false positives (DR-Tree does not present false
negatives) or limiting scalability of the system. Hence, the metrics we have used
to evaluate the four strategies are:

e Latency: the average time (in cycles) elapsed between the moment an
event is published and its delivery to all subscribers which are interested
in it;

e Message load: this metric concerns both the fan in, the average number
of received messages per peer and fan out, the average number of sent
messages per peer;

e False positive: the average number of false positives per level of the
DR-Tree.

e Scalability: this metric concerns the latency when the number of peers
increases.

6.2 Latency

In video games, latency is closely related to interactivity, gameplay smoothness
and game experience quality. It measures the elapsed time between the moment
an event takes place and the moment all interested players are aware of it (e.g.
the time elapsed between a bomb’s explosion and the moment every near player
is warned of it; the elapsed time between a player kills another one and the
moment every witness “sees” this action, etc. .. ).

Figure Bl shows the latency evaluation results for the four publication strate-
gies defined in Section Bl X-axis corresponds to the number of subscribers
concerned by a publication. Notice that the colder hotspots are, the lower the
number of interested subscribers is. Y-axis corresponds to the average total
publication time.

Since a peer publishes in its respective zone of interest, a publication is
delivered at least to it. Thus, except for the Double Wave strategy where every
publish event must be firstly routed to the root, whenever an event is delivered
to exactly one peer (the event publisher), the average global publication time
is equal to zero independently of the hotspots distribution. On the other hand,

RR n°® 7008
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Figure 5: Average total propagation time versus event popularity

the higher the number of peers concerned by an event, the higher the chances
that the event will have to be forwarded far from the the publisher and hence
routed through more peers. Therefore, such an event will take more time to be
delivered to all interested subscribers.

Compared to the Double Wave, Ancestors, Brothers and Enhanced double
wave latency gains are quite significant for all hotspot distributions. In particu-
lar, Ancestors strategy is around 35% better than Double wave strategy for the
Burning distribution, and around 45% better for the Cold distribution.

It is worth pointing out that the curves of Figure B could be roughly in-
terpreted as “the number of hops versus the number of reachable nodes in the
communication graph”. Thus, since the communication graph is a tree, whose
height is majored by the height of the DR-tree, the curves have a logarithmic
behavior. The inflexion point of curves corresponds to the tree’s height. Fig-
ure Bl shows also that hotspots distribution has small impact on overall latency;
in any case, each strategy’s curve stabilizes around the same value, which is an
interesting result for video games since latency is always a matter of concern
for them. Furthermore, the zone of interest of a player is very likely to change
during the game but, due to the mentioned stabilization, such a change will
probably not affect the game’s reactivity.

6.3 Message load

In the previous section we have shown that Ancestors, Brothers and Enhanced
double wave provide significant latency gains when compared to Double wave. In
the following we investigate two metrics fan in and fan out which are related to
the node load. For a given peer, both the fan in and the fan out are dependent
of the following three factors:

e peer’s zone of interest

e peer’s routing upward activity

INRIA
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e peer’s routing downward activity

Note that these factors may have very different order of magnitude according
to the publication strategy and the level of the peer in the overlay.

Fan in evaluation: Figure [l shows some results related to the fan in metric.
The X-axis corresponds to the R-Tree levels. The leftmost level is the root, the
rightmost level corresponds to the leaves, and the in-between levels correspond
to internal nodes. For the Y-axis, each bar represents the average fan in of
peers at a given level. It is worth remarking that standard variation of fan in
for peers at each level is very low.
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Figure 6: Fan in versus level

We can observe in Figure @ that all strategies (except Double Wave) are
roughly equivalent in terms of fan in, regardless of the hotspot distribution.
Since DR-tree routing avoids false negatives, a peer receives an event either if
it is interested in the event or if some of its children is. In other words, a peer
receives an event only if the latter is in its zone of interest or in its covering
zone. The closer to the root a peer is, the large its covering zone is and thus
the higher the number of upgoing events it receives which explains why the bars
of Figure [l decreases when the level increases, independently of the hotspots
distribution.

An interesting remark is that in the case of the Brothers strategy, the root
peer fan in is equal to 0 and strictly equivalent to a leaf peer for all hotspot
distributions. As its children know each other, the root peer is not involved in
routing events and thus it receives only those events in which it is interested.
On the other hand, in the Double wave strategy, internal nodes are more loaded
than with other strategies. This happens because these nodes can receive the
same event twice: during the first wave when events are only forwarded towards
the root peer and then during the second wave when events are filtered towards
leaf peers. Such a behavior also explains why the root peer is not the most
loaded one as it never receives the same event twice.
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Fan out evaluation: Figure [d presents some evaluation results of the fan
out metric. Like to the fan in figure, the X-axis represents the R-Tree levels. In
the Y-axis, each bar corresponds to the average fan out of peers at each level.
The standard variation of fan out for peers of a given level is very low.
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Figure 7: Fan out versus level

Figure[d confirms that all strategies, except Double Wave, are roughly equiv-
alent in terms of fan out for all hotspot distributions. Similarly to the fan in,
the closer to the root a peer is, the higher the number of upgoing events it has
to forward to both its father and its children which have interest in them.

Two points are worth remarking with regard to the Brothers strategy. Firstly,
the internal nodes are slightly more loaded than with other strategies. The ex-
planation for it is the “horizontal routing” of such an strategy which mostly
involves leaves and internal peers in order to reduce the cost of event’s upward
propagation. Secondly, as already mentioned in the fan in evaluation, the root
peer is not engaged in the routing of events. Hence, its fan out is equivalent to
a leaf peer for any hotspot distribution.

6.4 False positive

An event is considered as a false positive by a peer if the latter is not interested
in it, i.e., if the event is in the peer’s covering zone but not in the peer’s zone
of interest.

Figure B presents our evaluation results related to false positives. X-axis is
the levels of the DR-Tree similarly to the fan in and fan out figures. In the
Y-axis, each bar corresponds to the average percentage of false positives for
peers of each level. As this metric is highly related to the fan in, the standard
variation is also very low.

All strategies are equivalent in terms of false positive rate independently of
the hotspots distribution. For a leaf peer, the zone of interest and covering zone
are equals. Hence, it receives only events in which it is interested, i.e., no false
positive occurs. However, the closer to the root a peer is, the wider its covering
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Figure 8: False positive rate versus level

zone is and thus the higher the chances that it receives events that are in its
covering zone but not in its zone of interest which leads to higher false positive
rates.

We can also observe in the same figure that the overall false positive rate
decreases with the popularity of the hotspots since the number of zones of
interest that overlap increases as well. The more they overlap, the higher the
chances for a peer to receive events that are in its zone of interest which thus
leads to slightly lower false positive rate.

A third remark is that in the case of the Brothers strategy, root peer behaves
like a leaf peer. As explained in the description of this strategy, the root peer
only receives events in which it is interested in. Therefore, no false positive
occurs.

6.5 Scalability

We have conducted the same set of experiments as the ones shown in Figure B,
but with 10,000 peers instead of 1024. Our results are shown in Figure @
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Figure 9: Total propagation time for 10,000 peers
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The shape of the curves is quite similar to those of Figure [ (i.e., simi-
lar inflexion points and asymptotic behavior). The 10-times multiplication of
peers number results in an increase of the average latency by 25% for all strate-
gies. Such an overhead can be explained since latency is closely related to the
communication graph’s height which is majored by R-Tree’s one which grows
logarithmically with peers number. The DR-Tree we have considered in our
experiments has a degree of (m=4;M=8) which implies that the height of the
tree (and therefore the height of the communication graph) increases when the
number of peers grows from 1024 to 10,000. However, an important point to em-
phasize is that latency gains of Ancestors, Brothers and Enhanced double wave
strategies in relation to Double wave strategy do not change when the number
of peers of the network increases: the former’s latencies are around 40% lower
than the latter’s latency.

7 Conclusion

In this paper, we have proposed some extensions to distributed R-Trees which
meet the requirements of distributed video games. In multiplayer games, par-
ticipants share a single instance of the game but each participating node only
needs information relevant to his/her associated player. Publish/subscribe is
thus an interesting approach for multiplayer games for filtering information
but also for overcoming the problem of scalability caused by centralized client-
server architectures or broadcast communication. Despite scalability, publica-
tion latency, reduction of noisy events, and load balancing are also essential
concerns in distributed games in order to maintain fairness between players and
conserve computational power and bandwidth of peers. However, traditional
publish /subscribe protocols do not meet these key requirements. To this end,
we have proposed in this article some structural modifications of DR-Trees by
adding shortcut links in the overlay. Based on the results of extensive evalua-
tion experiments, our paper shows that our novel link structures outperform the
traditional DR-Tree both in latency and load balancing of peers. Furthermore,
they do not entail more false positives and the system scales well.
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