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A geometrical characterization of a class of0-flat affine dynamical
systems

S. Bououden, Driss Boutat, Jean-Pierre Barbot and Fréd́eric Kratz .

Abstract— This paper gives a description of a class of0-
flat dynamical systems. This class is characterized by the
involutivity of a distribution associated naturally to multi-
output affine dynamical systems and the Lie bracket of some
control vector fields fulfilling some conditions. We will also show
that these conditions are a generalization of the well-known
result on 0-flatness of codimension1 affine systems.

I. INTRODUCTION

One important problem in control theory is to invert
dynamical systems in order to compute the inputs required
to perform a given task, for example the trajectory planning
problem.
One classical solution to this problem is feedback
linearization. Necessary and sufficient conditions for static
state feedback linearizability were given in ([20], [22],[24]).
For dynamic state feedback linearization, several results can
be found in (see [2], [5], [6], [18], [19],[33], [28], [31],
[34], [37], [38]).

Another approach to solve the trajectory planning problem,
is the concept of differential flatness. This concept was first
addressed by Fliess, Lévine, Martin, and Rouchon ([11],
[13]), using the differential algebra theory.
A second approach to deal with flatness is exterior
differential systems where a control dynamical system is
regarded as a Pfaffian system on an appropriate jet space
([1], [7], [8], [25], [28], [39]), and flatness is related to
absolute equivalence introduced by E. Cartan [4]. Another
geometrical approach by means of Lie-Bäcklund equivalence
was addressed in ([12], [14], [15], [23]).
Flat systems are a generalization of Linear dynamical
systems in the sense that all linear controllable dynamical
systems are flat and static feedback linearizable (in
Brunovsky’s form). In contrast to the feedback linearization,
the flatness does not need to convert nonlinear systems into
linear ones to design different kinds of feedback laws1 [41],
[42], [43]. Therefore, when a system is flat, we can use its
structure to design control for motion, trajectory generation
and stabilization.

A problem in the flatness theory is to give a general
criterion for checking flatness and an algorithm to build the
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so-called flat outputs in a constructive way. In addition to
the fact that feedback linearizable dynamical systems are
flat, some results in this direction exist; [5] controllable
codimension1 affine dynamical systems or codimension2
non holonome dynamical systems are flat.
In [25], the authors gave a characterization of the so-called
k-flatness with the Cartan-K̈ahler approach.
In this paper, we will characterize a0-flatness of particular
classes of affine nonlinear dynamical systems for which we
can build the flat outputs in a constructive way. As we
will show with some examples, for this particular class,
our method presents a new direction to solve the flatness
problem.
This paper is outlined as follows. In the next section, we
address notations, definition and the problem statement. In
section3, we give a class of0-flat of nonlinear dynamical
systems. This class can be seen as a normal form which
is structurally 0-flat. In section4, we give the necessary
and sufficient geometrical conditions for affine dynamical
systems to belong to the described class in section3.

II. D EFINITIONS, NOTATIONS AND PROBLEM STATEMENT

Let us consider the following class of nonlinear dynamical
systems:

ẋ = f(x, u) (1)

where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm and f is a smooth
function onX × U .

Definition 1: Dynamical system (1) is flat if there existm
functionsy = (y1, ..., ym) called the flat outputs such that:

1) y(x, u, u̇, ..., u(r1)) is a function of statex, input u,
and the derivativesu(i),

2) x = ϕ(y, ẏ, ..., y(r2)) is a function of the flat outputs
and their derivatives,

3) u = γ(y, ẏ, ..., y(r2+1)) is a function of the flat outputs
and their derivatives.

In this paper, we will deal with multi-input affine dynamical
systems in the following form:

ẋ = f(x) +
m∑

i=1

gi(x)ui (2)

Without loss of generality, we will assume within this work
that:

ASSUMPTION1: G = [g1, ..., gm] is of rank m.
We will characterize a class of dynamical systems for

which the flat outputs are only functions of statesx. Thus,



in point 1) of definition 1 we havey(x). This class of
dynamical systems is called0-flat [25].

Among the flat dynamic systems we can quoted the class
of controllable linear dynamical systems. Therefore, another
class of0-flat dynamical systems is given by dynamical sys-
tems which are linearizable by means of a diffeomorphism
and a static feedback. This class was characterized in ([20],
[22],[24]).
Finally, recall that a dynamical affine system withn states
andn− 1 inputs is0-flat as soon as it is controllable ([23],
[30]).
Hereafter, we give another class of dynamical systems which
are0-flat locally.

III. A CLASS OF0-FLAT DYNAMICAL SYSTEM

Let us in this section give a class of affine controllable
dynamical systems in the (2) form which are0-flat.
Let ν1 ≥ ν2 ≥ ... ≥ νm be m integers such that:

ν1 + ... + νm = n,

and letr an integer such that:

νi ≥ 2 if i ≤ r,

νi = 1 if i > r

Let us set

z = {zi,j , 1 ≤ j ≤ m and 1 ≤ i ≤ νj},
and consider the following dynamical system:
For 1 ≤ j ≤ m we set

żi,j = zi+1,j +
m∑

l=k

αl
i,j(z)ul if 1 ≤ i ≤ νj − 1 (3)

żνj ,j = aj(z) +
m∑

l=k

αl
νj ,j(z)ul if i = νj (4)

wherek = min{l; νl ≤ i}, and
functionsaj andαl

i,j satisfy to the following conditions:

ASSUMPTION2:

1) For 1 ≤ k ≤ m, functions ak depend only on the
following variables:

• zi,j such thatνj > νk and1 ≤ i ≤ νk + 1
• zi,j such thatνj ≤ νk and1 ≤ i ≤ νj

2) Functionsαk
i,j are as follows:

• if νk > i, thenαk
i,j = 0,

• if νk ≤ i, thenαk
i,j depend only on the following

variables

– zs,l for 1 ≤ s ≤ νl if νl ≤ i ≤ νj ,
– zs,l for 1 ≤ s ≤ i + 1 if i < νl ≤ νj .

• αj
νj ,j 6= 0 on X

Remark 1:a) For a fixed i and for all 1 ≤ j ≤ m
dynamics(żi,j)νj≥i depend on the variables:

1) uk for νk ≤ i
2) zs,l for 1 ≤ s ≤ νl if νl ≤ i ≤ νj ,
3) zs,l for 1 ≤ s ≤ i + 1 if i < νl ≤ νj .

Thus, for 1 ≤ j ≤ m dynamics ż1,j depend only on
(uk)νk=1, (z1,l)1≤l≤m and (z2,l)νl≥2.
Dynamics(ż2,j)νj≥2 depend only on:(uk)νk=1, (uk)νk=2,
(z1,l)1≤l≤m, (z2,l)1≤l≤m and (z3,l)νl≥3.
And so on.
b) We can use the fact thatαj

νj ,j 6= 0 on X to have
aνj = 0 and uj = 1. Indeed, we consider the following
static feedback:

uj =
1

αj
νj ,j

(vj − aνj ).

To give a geometrical interpretation of the above conditions,
let us give some notations. We set dynamical system (3)-(4)
in the following compact form:

ż = f +
m∑

k=1

gkuk, (5)

with

f =




f1

f2

..

..

fm




where for1 ≤ j ≤ m we have:

fj =




z2,j

z3,j

..
zνj ,j

aj




.

And 1 ≤ k ≤ m we set :

gk =




gk
1

gk
2

..
gk

m




where for1 ≤ j ≤ m

gk
j =




αk
1,j

αk
2,j

..
αk

νj ,j


 .

Thanks to condition(2) in assumption 2, we have for1 ≤
k ≤ m:

gk
j = 0 if νj < νk,

αk
i,j = 0 if νk < i ≤ νj .



Remark 2:

• Let us consider the following distribution:

∆ = span{adk
fgi, for all νi ≥ 2 and 0 ≤ k ≤ νi − 2},

which is involutive. In fact its dual codistribution is
given by:

∆
T

= span{dz1,j}1≤j≤m.

This is compatible with the form of dynamic (3)-(4)
and the fact that functionsaj satisfy point (1) of
assumption 2.

• Conditions2) are equivalent to the following fact:
for 1 ≤ k ≤ m with νk ≥ 2 and for indicesl such that:
νl < νk we have for0 ≤ s ≤ νk − νl − 1:

[gl, adνk−νl−1−s
f gk] ∈

span{adj
fgi for j = 0 : νi − νl − s and j ≥ 0}.

Remark 3:Using a linear change of coordinates we can
assume that:ak = O2(z) and for αk

i,j such thati 6= νj we
haveαk

i,j = O1(z).

Now, we have the following preliminary result.

Proposition 1: Under assumptions (1-2), dynamical
system (3)-(4) is 0-flat and the flat outputs are
(z1,j)1≤j≤mlocally.

Proof: By assumption 2, for a fixed1 ≤ s ≤ maxm
j=1(νj)

the following set of dynamics:

{żs,j , 1 ≤ j ≤ m with s ≤ νj}
depend only on theSs set of the following variables :

1) uk for νk ≤ i
2) zs,l for 1 ≤ s ≤ νl if νl ≤ i ≤ νj ,
3) zs,l for 1 ≤ s ≤ i + 1 if i < νl ≤ νj .

We will show thatyj = z1,j for 1 ≤ j ≤ m are the flat
outputs. For this, we start by writing all variables in theS1

set by means ofyj = z1,j andẏj = z1,j . However, inS1 we
already know the variables(yj = z1,j)1≤j≤m. We then have
to determine all the state variables(z2,j)νj≥2 and outputs
(uk)νk=1.

• For this, we use the implicite function theorem to
compute variables(z2,j)νj≥2 and the inputs(uk)νk=1,
from the dynamicṡz1,l for 1 ≤ l ≤ m. In fact from the
following equations:

ż1,j − z2,j −
m∑

l=r+1

αj
1,lul = 0 if νj ≥ 2

ż1,j − aj −
m∑

l=r+1

αj
1,lul = 0 if νj = 1,

whereαj
1,l depend only on(z1,l)1≤l≤m and(z2,l)νl≥2.

Therefore, we have to computem variables(z2,l)νl≥2,
(uj)νj=1. The differential of the above equation by
means of ∂

∂(z2,j ,uk) is equal toI + O1(z, u) which is
locally invertible (here we used point(b) of remark 1
and remark 3).
Therefore, we have :

z2,l = ϕl(yk, ẏk) for νl ≤ 2 (6)

uk = γk(yk, ẏk) for νk = 1 (7)

whereyk = z1,k and 1 ≤ k ≤ m. Thus, we know all
the variables inS1.

• Second step, we put expressions (6)-(7) in the dynamics
(ż2,j)νj≥2. Then, we use the same argument to compute
(z3,l)νl≥3 and uk for indices k such thatνk = 2 (if
νk > 2 we only have to compute(z3,l)νl≥3). Thus, we
know all the variables inS2

• Then, by induction we assume that we had computed
Ss, and from dynamics(żs+1,j)s+1≤νj

we will com-
pute the variables inSs+1 by using the same argument
.

Let us give an example of dynamical systems which
are in the 0-flat form (3)-(4), to show the procedure of
computation of the state variables and the inputs by means
of the flat outputs and their derivatives.

Example 1:Consider the following dynamical system :




ż1,1 = z2,1

ż2,1 = z3,1 + z2,1
z2,2−1u2

ż3,1 = (z2,2 − 1)u1 + z3,1
z2,2−1u2

ż1,2 = z2,2

ż2,2 = u2

We will give the procedure to compute all variable states and
inputs fromy1 = z1,1 andy2 = z1,2. For this, let us consider
the following sub-dynamics:

{
ż1,1 − z2,1 = 0
ż1,2 − z2,2 = 0

we obtainz2,1 = ẏ1 andz2,2 = ẏ2.
Now, from the following dynamics:

{
ż2,1 = z3,1 + z2,1

z2,2−1u2

ż2,2 = u2

we obtain:u2 = ÿ2 andz3,1 = y
(2)
1 − ẏ1

ẏ2−1 ÿ2.
Finally, from the third equation of the dynamical system we
obtain:

ż3,1 − (z2,2 − 1) u1 − z3,1

z2,2 − 1
u2 = 0

we obtain

u1 =
1

ẏ2 − 1


y

(3)
1 +

˙̂
(

ẏ1

ẏ2 − 1
ÿ2)−

y
(2)
1 − ẏ1

ẏ2−1 ÿ2

ẏ2 − 1
y
(2)
2


 .



IV. MAIN RESULT

In this section, we will give the geometrical necessary and
sufficient conditions for the existence of a local diffeomor-
phism which transforms an affine dynamical system in (2)
form into the (3)-(4) form.
For this, we assume that there existν1 ≥ ν2 ≥ ... ≥ νm

integers such that :

1)
∑m

i=1 νi = n,
2) ∆0 = {adk

fgi for i = 1 : m and 1 ≤ k ≤ νk − 1}
is of rankn on X .

Let us also consider the following distribution:

∆ = span{adk
fgi, for all νi ≥ 2 and 0 ≤ k ≤ νi − 2}

Theorem 1:There exists a local diffeomorphism which
transforms dynamical system (2) into the (3)-(4) form if and
only if

1) ∆ is involutive and
2) for 1 ≤ k ≤ m with νk ≥ 2 and for indicesl such

that: νl < νk we have for0 ≤ s ≤ νk − νl − 1:

[gl, adνk−νl−1−s
f gk] ∈

span{adj
fgi for j = 0 : νi − νl − s and νi − νl ≥ s}.

Before giving the proof of the theorem below, let us state
the following result.

Corollary 1: If νj ≤ 2 for all j = 1 : m then there exists
a local diffeomorphism which transforms dynamical system
(2) into the (3)-(4) form if and only if the distribution

∆ = {gj for 1 ≤ j ≤ m such νj = 2}
is involutive. (Thus, we do not need condition(2) of theorem
1).
In particular, a codimension1 dynamical systemm = n− 1
is flat (well-known result [5].)

Remark 4: In the case of a single inputm = 1, we
only have condition(1) of theorem 1 and this condition is
equivalent to the linearization by means of a diffeomorphism
and a static feedback.

Now, we will prove theorem 1.

Proof: Conditions(1)-(2) of theorem 1 are necessary
as we showed in remark 2.
Let us show that these conditions are sufficient. For this,
we assume thatνi ≥ 2 for i = 1 : r and νi = 1 of
r + 1 ≤ i ≤ m. Thusdim∆ = ν1 + ... + νr − r and it is of
codimensionm.
If ∆ is involutive then, there existm independent functions

h1, ..., hr, hr+1, ..., hm such that:

1) dhi(∆) = 0 for 1 ≤ i ≤ m,
2) dhi(adνi−1

f gi) 6= 0 on X for 1 ≤ i ≤ m.
Now, let us consider the following coordinates:

zi,j = Li−1
f hj for j = 1 : m and 1 ≤ i ≤ νi.

and setz = (zj)1≤j≤m where for1 ≤ j ≤ m

zj = (zi,j)1≤i≤νj .

We consider the diffeomorphismz = φ(x), and for
1 ≤ s ≤ m, we denote bygs = φ∗gs, gs = (αs

j)1≤j≤m

whereαs
j = (αs

i,j)1≤i≤νs
.

By definition of the new coordinates for1 ≤ j ≤ m and
1 ≤ i ≤ νj , we have :
dzi,jgs = 0 for νs − i > 0. Thus,αs

i,j = 0 for 1 ≤ j ≤ m
and1 ≤ i ≤ νj such thatνs − i > 0.
It is clear thatφ∗f is in (3)-(4) form.

Moreover, by the involutivity condition functionsak fulfill
points (1) of assumption 2.
Now, the(2) following conditions of theorem:

[gl, adνk−νl−1−s
f gk] ∈

span{adj
fgi for j = 0 : νi − νl − s and νi − νl ≥ s},

implies thatαl
p,q with p ≤ νq do not depend on variables

zνl+s+1,k for p ≤ νl + s. Therefore, point(2) of assumption
2 is fulfilled.

Case 1: Codimension 2 case
Let us analyse the codimension2 case, thusm = n− 2.
By reordering(gj)1≤j≤m we have two cases :

1) ν1 = 2 and ν2 = 2
2) ν1 = 3.

The first case is similar to corollary 1. Thus, we have to
check the involutivity of distribution∆ = span{g1, g2}.
For the second case, we have to check two conditions :
• distribution∆ = {g1, adfg1} is involutive, and
• for all 2 ≤ k ≤ m we must have[gk, g1] ∈

span{g1, adfg1}.

Consider the following academic example [25] modified for
a regularity question.

Example 2:Consider the following dynamical system:



ẋ1 = x2 + x4x3

ẋ2 = x4

ẋ3 = x5

ẋ4 = u1

ẋ5 = u2

A simple calculation shows that distribution∆0 is spanned
by the following vector fields:

g1 = ∂
∂x4

,

adfg1 = − ∂
∂x2

− x3
∂

∂x1

ad2
fg = (1− x5) ∂

∂x1

g2 = ∂
∂x5

and adfg2 = − ∂
∂x3

.



Thus,dim∆0 = 5 on an open set of0 such thatx5 6= 1.

Moreover, distribution

∆ = span {g1, adfg1, g2}

is involutive. Thus, condition(1) of theorem 1 is fulfilled.
Condition (2) is obviously fulfilled, becauseg2 commutes
with g1 andadfg1 by means of Lie bracket, thus:

[g2, g1] = [g2, adfg1] = 0.

Now, we will give the diffeomorphism. For this, it is easy to
see that codistribution∆T is spanned bydh1 anddh2 where:

h1 = x3x2 − x1 andh2 = x3.
Therefore, the following diffeomorphism :

z1,1 = h1

z2,1 = Lfh1 = (x5 − 1)x2

z3,1 = L2
fh1 = (x5 − 1)x4

z1,2 = h2

z2,2 = Lfh2 = x5

transforms the dynamical system into the following0-flat
form studied in example 1 :





ż1,1 = z2,1

ż2,1 = z3,1 + z2,1
z2,2−1u2

ż3,1 = (z2,2 − 1)u1 + z3,1
z2,2−1u2

ż1,2 = z2,2

ż2,2 = u2

Remark 5: If, instead of the first dynamiċx1 = x2 +
x4x3 we take the same dynamiċx1 = x4x3 as in [25], then,
∆0 is of rank 5 on an open dense of0. In this case, the
same flat outputs work well except thatdy1(ad3

fg1) 6= 0 and
dy2(ad2

fg2) 6= 0 on an open dense subset.
We think that we can generalize theorem 1 by assuming that
distribution ∆0 is of dimensionn in a dense subset ofX
and∆ is regular onX .

Let us give another example to highlight the second condi-
tions in theorem.

Example 3:Consider inR6 the following dynamical sys-
tem:





ẋ1 = x2 + βu2 + ((1 + x3)β + x5)u3

ẋ2 = x3 + x4u2 + x3u3

ẋ3 = u1

ẋ4 = x5

ẋ5 = u2 + x3u3

ẋ6 = x3x5e
x4 + ex4u1 + u3

whereβ = x6 − x3e
x4 .

The generators of the distribution∆0 are:

g1 =
∂

∂x3
+ ex4 ∂

∂x6

adfg1 = − ∂

∂x2
, ad2

fg1 =
∂

∂x1

g2 =
∂

∂x5
+ β

∂

∂x1
+ x4

∂

∂x2

adfg2 = − ∂

∂x4
− x3e

x4 ∂

∂x6
+ x5

∂

∂x2

g3 =
∂

∂x6
+ x3

∂

∂x5
+ x3

∂

∂x2
+ (x5 + (1 + x3)β)

∂

∂x1
.

It is easy to see that:

[g2, g1] = 0 ∈ span{g1, adfg1}

[g3, g1] = − ∂

∂x2
− ∂

∂x5
− β

∂

∂x1
∈ span{g1, adfg1, g2}

Thus, conditions(2) of theorem 1 are fulfilled.
Condition(1) of theorem is also fulfilled. In fact, distribution

∆ = span{g1, adfg1, g2},
is involutive. Moreover,

∆T = span{dh1, dh2, dh3}.
where h1 = x1 − x5(x6 − x3e

x4), h2 = x4 and h3 =
x6 − x3e

x4 .
Let us setz1,1 = h1, z1,2 = h2 and z1,3 = h3, we obtain
the following diffeomorphism:

z1,1 = x1 − x5 (x6 − x3e
x4)

z2,1 = Lfh1 = x2 and z3,1 = L2
fh1 = x3

z1,2 = h2 = x4 and z2,2 = Lfh2 = x5

z1,3 = h3 = x6 − x3e
x4

which transforms the dynamic into the following0-flat form
(3)-(4): 




ż1,1 = z2,1 + (z2.2 + z1,3)u3

ż2,1 = z3,1 + z1,2u2 + z3,1u3

ż3,1 = u1

ż1,2 = z2.2

ż2,2 = u2 + z3.1u3

ż1,3 = u3

V. CONCLUSION

This paper deals with a characterization of a class of
0-flat dynamical systems. The conditions fulfilled by this
class appear as a natural generalization of conditions of
codimension1 dynamical systems.
In our futur work, we try to characterize a class ofk-flat dy-
namical systems by adapting the Charlet, Lévine and Marino
method introduced for dynamic feedback linearization in [5].
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[15] M. Fliess, J. Ĺevine, P. Martin, and P. Rouchon.Nonlinear control
and diffieties, with an application to physics.In J. Krasilshchik
M. Henneaux and A. Vinogradov, editors, Secondary Calculus and
Cohomological Physics, volume 219 of Contemporary Math., pages
8192, 1998.
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[17] M. Fliess, J. Ĺevine, P. Martin, and P. Rouchon.Some open question
related to flat nonlinear systems.In V.D. Blondel, E. Sontag, M.
Vidyasagar, and J.C. Willems, editors, Open Problems in Mathe-
matical Systems and Control Theory, pages 99103, London, 1999.
Springer Verlag.

[18] R. B. Gardner and W. F. Shadwick.The GS algorithm for exact
linearization to Brunovsky normal form.IEEE Trans. Automat.
Control, 37:224230, 1992.

[19] M. Guay, P. J. McLellan, and D.W. Bacon. Acondition for dynamic
feedback linearization of control-affine nonlinear systems.Internat.
J. Control, 68(1):87106, 1997.

[20] L. R. Hunt, R. Su, and G. Meyer.Design for multi-input nonlinear
systems.In R. Brocket, R. Millmann, and H. J. Sussmann, editors,
Differential Geometric Methods in Nonlinear Control Theory, pages
268298, 1983.

[21] A. Isidori. Nonlinear Control Systems. Springer Verlag, 3nd edition,
1995.

[22] B. Jakubczyk and W. Respondek.On linearization of control systems.
Bull. Acad. Pol. Sc., Ser. Sci. Math., 28:517522, 1980.

[23] P. Martin, R. M. Murray, P. Rouchon.Flat Systems.European Control
Conference, Plenary Lectures and Mini-Courses, 1997 Brussels.

[24] H. Nijmeijer andW. Respondek. Dynamic input-output decoupling
of nonlinear control systems. IEEE Trans. Automat. Control,
33:10651070, 1988.

[25] P. S. Pereira da Silva.Flatness of nonlinear control systems : a
Cartan-Kähler approach.In Proc. Mathematical Theory of Networks
and Systems MTNS’2000, pages 110, Perpig- nan, Jun. 1923, 2000.
CDROM.

[26] P. S. Pereira da Silva.On the nonlinear dynamic disturbance decou-
pling problem.J. Math. Systems Estim. Control, 6:126, 1996.

[27] J.B. Pomet,(1995).A differential geometric setting for dynamic
equivalence and dynamic linearization.Banach Center Publications
pp. 319339.

[28] J.B. Pomet.A differential geometric setting for dynamic equivalence
and dynamic linearization.In B. Jackubczyk, W. respondek, and
T. Rzezuchowski, editors, Geometry in Nonlinear Control and Dif-
ferential Inclusions, pages 319339, Warsaw, 1995. Banach Center
Publications.

[29] J.B. Pomet.On dynamic feedback linearization of four-dimensional
affine control systems with two inputs.ESAIM Control Optim. Calc.
Var., 2:151230 (electronic), 1997.

[30] F. Rotella and I. ZambettakisCommande des systmes par platitude.
Techniques de l’ing̀enieurs.

[31] P. Rouchon.Necessary condition and genericity of dynamic feedback
linearization.J. Math. Systems Estim. Control, 5(3):345358, 1995.

[32] J. Rudolph.Well-formed dynamics under quasi-static state feedback.
In B. Jackubczyk, W. Respondek, and T. Rzezuchowski, editors,
Geometry in Nonlinear Control and Differential Inclusions, pages
349360, Warsaw, 1995. Banach Center Publications.

[33] W. F. Shadwick.Absolute equivalence and dynamic feedback lin-
earization.Systems Control Lett., 15:35 39, 1990.

[34] William F. Shadwick and Willem M. Sluis.Dynamic feedback for
classical geometries.In Differential geometry and mathematical
physics (Vancouver, BC, 1993), volume 170 of Contemp. Math.,
pages 207213. Amer. Math. Soc., Providence, RI, 1994.

[35] S. N. Singh. A modified algorithm for invertibility in nonlinear
systems.IEEE Trans. Automat. Control, AC 26:595598, 1981.

[36] W. M. Sluis. A necessary condition for dynamic feedback lineariza-
tion. Systems Control Lett., 21:277283, 1993.

[37] W. M. Sluis and D. M. Tilbury.A bound on the number of inte-
grators needed to linearize a control system.Systems Control Lett.,
29(1):4350, 1996.

[38] D. Tilbury, R. M. Murray, and S. R. Sastry.Trajectory generation
for the n-trailer problem using Goursat normal form.IEEE Trans.
Automat. Control, 40:802819, 1995.

[39] M. van Nieuwstadt, M. Rathinam, and R. M. Murray.Differential
flatness and absolute equivalence of nonlinear control systems.SIAM
J. Control Optim., 36(4):12251239 (electronic), 1998.

[40] F. W. Warner. Foundations of differentiable manifolds and Lie
Groups.Scott, Foresman and Company, Glenview, Illinois, 1971.

[41] V. Hagenmeyer, E. Delaleau.Robustness analysis of exact feedforward
linearization based on differential fatness. Automatica, vol. 39, 1941-
1946.
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