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A geometrical characterization of a class of)-flat affine dynamical
systems

S. Bououden, Driss Boutat, Jean-Pierre Barbot adéfic Kratz

Abstract—This paper gives a description of a class of- so-called flat outputs in a constructive way. In addition to
flat dynamical systems. This class is characterized by the the fact that feedback linearizable dynamical systems are
involutivity of a distribution associated naturally to multi- flat, some results in this direction exist; [5] controllable

output affine dynamical systems and the Lie bracket of some di ionl affine d ical t di >
control vector fields fulfilling some conditions. We will also show codimensionl aitineé dynamical systems or codimensibn

that these conditions are a generalization of the well-known Non holonome dynamical systems are flat.

result on 0-flatness of codimensionl affine systems. In [25], the authors gave a characterization of the so-called
k-flatness with the Cartandhler approach.
I. INTRODUCTION In this paper, we will characterize @&flatness of particular

One important problem in control theory is to invertclasses of affine nonlinear dynamical systems for which we

dynamical systems in order to compute the inputs requirégn Puild the flat outputs in a constructive way. As we
to perform a given task, for example the trajectory plannin/ill Show with some examples, for this particular class,
problem. our method presents a new direction to solve the flatness
One classical solution to this problem is feedbacieroplem. _ _
linearization. Necessary and sufficient conditions for stati€iS Paper is outlined as follows. In the next section, we
state feedback linearizability were given in ([20], [22],[24]).address notations, definition and the problem statement. In

For dynamic state feedback linearization, several results c8RCtion3, we give a class of-flat of nonlinear dynamical
be found in (see [2], [5]’ [6], [18], [19],[33], [28], [31]’ systems. This class can be seen as a normal form which
[34], [37], [38)). is structurally O-flat. In section4, we give the necessary

and sufficient geometrical conditions for affine dynamical

Another approach to solve the trajectory planning problenfYStems to belong to the described class in section
is the concept of differential flatness. This concept was fir§j D ggNITIONS, NOTATIONS AND PROBLEM STATEMENT

addressgd by Fl!ess,ekz'me, Martin, and Rouchon ([11], Let us consider the following class of nonlinear dynamical
[13]), using the differential algebra theory. systems:

A second approach to deal with flatness is exteriof )

differential systems where a control dynamical system is &= f(z,u) @

regarded as a Pfaffian system on an appropriate jet spagierez ¢ X C R", u € Y C R™ and f is a smooth

(121, 71, 8], [25], [28], [39]), and flatness is related to function onX x U.

absolute equivalence introduced by E. Cartan [4]. Another

geometrical approach by means of Liédklund equivalence  Definition 1: Dynamical system (1) is flat if there exist

was addressed in ([12], [14], [15], [23]). functionsy = (y1, ..., ym) called the flat outputs such that:

Flat systems are a generalization of Linear dynamical 1) y(z,u,1,...,u™) is a function of stater, input v,

systems in the sense that all linear controllable dynamical and the derivatives,?,

systems are flat and static feedback linearizable (in 2) = = oy, 4, “.,y(rz)) is a function of the flat outputs

Brunovsky’s form). In contrast to the feedback linearization, and their derivatives,

the flatness does not need to convert nonlinear systems int(:3) u=(y, 4, ...,y2*+V) is a function of the flat outputs

linear ones to design different kinds of feedback ], and their derivatives.

[42], [43]. Therefore, when a system is flat, we can use it§, this paper, we will deal with multi-input affine dynamical

structure to design control for motion, trajectory generatlogystems in the following form:

and stabilization. .
A problem in the flatness theory is to give a general = flz) +;gl(x)uz 2)

criterion for checking flatness and an algorithm to build the ) . o
Without loss of generality, we will assume within this work
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many precisions on flatness and references on the topic which the flat outputs are only functions of statesThus,



in point 1) of definition 1 we havey(z). This class of . af,m #0onX
dynamical systems is calle@flat [25].

Among the flat dynamic systems we can quoted the classRemark 1:a) For a fixedi and for all1 < j < m
of controllable linear dynamical systems. Therefore, anothelynamics(; ;),,>; depend on the variables:
class of0-flat dynamical systems is given by dynamical sys- 1) 4, for v, <i
tems which are linearizable by means of a diffeomorphism 2 zog for 1<s<uy if v <i<uy,
and a static feedback. This class was characterized in ([20],3) zog for 1<s<i+1 if i<y <u,.
[22],[24]).
Finally, recall that a dynamical affine system withstates
andn — 1 inputs isO-flat as soon as it is controllable ([23],
[30]).
Hereafter, we give another class of dynamical systems whi

Thus, forl < j < m dynamics z; ; depend only on
(uk)vo=1, (#1,1)1<i<m @nd(z21)y,>2.
Dynamics(Z2,;),,>2 depend only onfug),, =1, (ux)v, =2,

(z1.0)1<i<m» (#2.0)1<1<m and (23,1)y, >3-

d so on.
are O-flat locally. b) We can use the fact thalt,{m # 0 on X to have
1. A CLASS OF0-FLAT DYNAMICAL SYSTEM a,;, = 0 andu; = 1. Indeed, we consider the following
Let us in this section give a class of affine controllabl&@c feedback:
dynamical systems in the (2) form which &belat. W — 1 (v; — ay.).
Let vy > vy > ... > v, bem integers such that: ! af,m. ! !

To give a geometrical interpretation of the above conditions,
let us give some notations. We set dynamical system (3)-(4)
in the following compact form:

V1 + ... +VUp =n,

and letr an integer such that:

m
i=F+) G, (5)
k=1
v, >2 if i<, with _
;o= 1if i> 5
V; = 1 T B fg
Let us set f=
z={2;1<j<m and 1<i<uy;}, 7.
and consider the following dynamical system: where forl < j < m we have:
For 1 <j <m we set
22,
m 23,
Zij = Zig15F Zozéj(z)ul if 1<i<y;—1(3) fi= K
I=k 2vj.j
m a’j
L aj(z) + ;a%](z)ul if i=vy; 4) And 1< k< m we set -
—k
wherek = min{l; v, <i}, and gllc
functionsa; and afiyj satisfy to the following conditions: Ty = 92
_k
ASSUMPTIONZ: Im
where forl <j <m
1) For 1 < k < m, functionsa; depend only on the &
following variables: 1
. ko C¥27j
e z;; such that; > v, and1 <i <y +1 g; =
e 2;; such thaty; <y, andl <i < a,;' '
2) Functionsoy; ; are as follows: v
o if v, > i, thena®, =0 Thanks to condition(2) in assumption 2, we have fdr <
;> 1, i ,

o if v <1, thenaﬁj depend only on the following k<m: . _
variables gr=0if v <u,
—zgy for 1<s<uy if vy <i<y;,

, ot = aszoif v <1<y
—zgy for 1<s<i+1 if i<y <vj. ’



Remark 2:

« Let us consider the following distribution:

A= span{ad?ﬁi, forall v; >2 and 0 <k <wy; —2},

which is involutive.
given by:

T
A = Spal’{dz’lﬁj}lgjgm.

This is compatible with the form of dynamic (3)-(4)

and the fact that functions; satisfy point (1) of
assumption 2.

« Conditions2) are equivalent to the following fact:
for 1 < k < m with v, > 2 and for indiced such that:
v < v, we have for0 < s <y, —y — 1.

G, adp ™" 10, ) €
span{adfgl for j=0:v;,—y;—s and j > 0}.

In fact its dual codistribution is

wherea{l depend only or{z; ;) 1<i<m and(z2)., 2.
Therefore, we have to compute variables(zz;),,>2.
(), =1 The differential of the above equation by
means of5— Uk) is equal tol + O'(z,u) which is
locally |nvert|ble (here we used poirib) of remark 1
and remark 3).

Therefore, we have :

(6)
()

wherey;, = 2z, and1 < k < m. Thus, we know all
the variables in5;.

« Second step, we put expressions (6)-(7) in the dynamics
(22,)v;>2. Then, we use the same argument to compute
(23,1)1,>3 and uy, for indicesk such thaty, = 2 (if
v, > 2 we only have to computézs ;),,>3). Thus, we
know all the variables ir6,

« Then, by induction we assume that we had computed
&,, and from dynamicgZ,1,;)s+1<», We will com-
pute the variables i®,,1 by using the same argument

o1y, yr) for v <2
Yie(Yr, gr) for v =1

221

U =

Remark 3:Using a linear change of coordinates we cang

assume thata, = 0?(z) and foro/C such thati # v; we
havea} ; = O'(z).

Now, we have the following preliminary result.
Proposition 1: Under

system (3)-(4)
(21,5)1<j<mloCally.

assumptions (1-2),
is 0-flat and the flat

Proof: By assumption 2, for a fixed < s < maxjL
the following set of dynamics:

1(v5)

{255, 1<j<m with s<v;}

depend only on th&, set of the following variables :

1) Uk for v <1

2) zgy for 1<s<y if vy <i<yy,

3) zgy for 1<s<i+1 if i<y <y
We will show thaty; = z;; for 1 < 5 < m are the flat
outputs. For this, we start by writing all variables in t&e
set by means of; = z; ; andy; = z; ;. However, inG; we
already know the variableg/; = z; ;)i1<;j<m. We then have
to determine all the state variabl¢s; ;),,>2 and outputs
(Uk)ve=1-

« For this, we use the implicite function theorem toWe obtainiu; =i, andzs; =y,

compute variables$zs ;),,>2 and the inputuz),, -
from the dynamics; ; for 1 <1 < m. In fact from the
following equations:

m
Z ozjuul =0 if v;>2
l=r+1

m
J _ i _
— Z oy u =0 if v;=1,
l=r+1

2 T A2

Z1j —

dynamical
outputs are

Let us give an example of dynamical systems which
are in theoO-flat form (3)-(4), to show the procedure of
computation of the state variables and the inputs by means
of the flat outputs and their derivatives.

Example 1:Consider the following dynamical system :
211 = 29, L
Z91 =231+ 22271
231 = (222 —1)u1 +
212 = 222
222 = U2

U2

3.1
22,2—1u2

We will give the procedure to compute all variable states and
inputs fromy; = z1 1 andy, = z1 2. For this, let us consider
the following sub-dynamics:

211 — 221 =0
Z12—222=0

we ObtainZQ’l =1 and 292 = Ya-
Now, from the following dynamics:
{ Zoq =231+ 2t
Z9,2 = U2

(2) _ ..7]1
Finally, from the third equation of the' dynamlcal system we
obtain:

23,1

UQZO
227271

231 — (222 — 1) ug —

we obtain
- (2)

(3) U . Y1
Yy + (1-12 _ 192)

1
P2 — 1

0
T -192 (2

uyp = 5
72 — 1 2




IV. MAIN RESULT hi,.oos By hpg1, ..., iy SUCh that:

In this section, we will give the geometrical necessary and )
sufficient conditions for the existence of a local diffeomor- 1) dhi(A)yflo for 1<¢<m, ,
phism which transforms an affine dynamical system in (2) 2) dhi(ady™ gi) #0on X for 1 <i<m.

form into the (3)-(4) form. Now, let us consider the following coordinates:
For this, we assume that there exist > v, > ... > v, Zij = Llj}_lhj for j=1:m and 1<i<u,.
integers such that : .
" and setz = (z;)1<j<m Where forl <j <m
1) Zi:l v =n, =J=
2) Ao = {adbg; for i=1:m and 1<k < —1} zj = (Zig)hi<i<,.
is of rankn on X.

Let us also consider the following distribution: We consider the diffeomorphism = ¢(z), and for
1 < s < m, we denote byg; = ¢.9s, §s =

WherEOzj = (O[f’j)lgig,,s.

By definition of the new coordinates far < j < m and

1 <4 <v;, we have :

Theorem 1:There exists a local diffeomorphism which @%ij9s = 0 for v; —i > 0. Thus,af ; = 0 for 1 < j <m

transforms dynamical system (2) into the (3)-(4) form if andNd 1 <@ < v; such that; —i > 0.
only if It is clear thatp. f is in (3)-(4) form.

as)i<i<
A= span{adl;gi, forall v; >2 and 0 <k <y, —2} ( j) <j<m

1) A is involutive and
2) for 1 < k < m with v, > 2 and for indices! such
that: v; < v, we have for0 < s <y, —y — 1.

Moreover, by the involutivity condition functions, fulfill
points (1) of assumption 2.
Now, the (2) following conditions of theorem:

g ad ) €

[gl,ad;k_”l_l_sgk] c span{adgcgi for j=0:v,—y,—s and v; —y; > s},
spanfadyg; for j=0:v;—vi—s and vi =1 > s} implies thatal, , with p < v, do not depend on variables
Zy+s+1,k Tor p < v+ s. Therefore, poin{2) of assumption
2 is fulfilled.
Before giving the proof of the theorem below, let us state m
the following result. Case 1: Codimension2 case

Let us analyse the codimensi@ncase, thusn =n — 2.
Corollary 1: If v; <2 for all j = 1:m then there exists By reordering(g;)1<;j<m» We have two cases :
a local diffeomorphism which transforms dynamical system 1) v, =2 and vy = 2
(2) into the (3)-(4) form if and only if the distribution 2) v =3.
The first case is similar to corollary 1. Thus, we have to
check the involutivity of distributiom®A = span{gi, g2}.
is involutive. (Thus, we do not need conditi¢®) of theorem For the second case, we have to check two conditions :

A={g; for 1 <j<m such vy; =2}

1). « distribution A = {g1, adsg:} is involutive, and
In particular, a codimensioh dynamical systemn = n — 1 o for all 2 < k < m we must have[gy,g1] €
is flat (well-known result [5].) span{gi,adysg: }.

Consider the following academic example [25] modified for

Remark 4:In the case of a single inputh = 1, we & regularity question. _ _
only have condition(1) of theorem 1 and this condition is Example 2:Consider the following dynamical system:

equivalent to the linearization by means of a diffeomorphism T1 = Xo + 1473
and a static feedback. To = x4

i‘g = XI5
Now, we will prove theorem 1. Ty =1

565 = U9y

Proof: Conditions(1)-(2) of theorem 1 are necessary o simple calculation shows that distributiah, is spanned

as we showed in remark 2. o _by the following vector fields:
Let us show that these conditions are sufficient. For this,

_ 0
we assume that; > 2 fori = 1 : r andy; = 1 of 91_5’9747 5
r+1<i<m. ThusdimA = vy + ... + v, —r and it is of adfgr = — 52> — xgé,}Tl
codimensionm. “dffg = (1—xs) o
If A is involutive then, there exist: independent functions go = 3%5 and adygs = — ez



Thus,dimAy = 5 on an open set dd such thate; # 1.
Moreover, distribution

A = span{g1,adsg1, 92}

is involutive. Thus, conditior(1) of theorem 1 is fulfilled.
Condition (2) is obviously fulfilled, becausg, commutes
with g, andadysg: by means of Lie bracket, thus:

l92, 91] = [g2, adsgr] = 0.

Now, we will give the diffeomorphism. For this, it is easy to

see that codistribution” is spanned byih; anddh, where:

hi = x319 — 1 andhg = 3.
Therefore, the following diffeomorphism :

21,1 = hi
22’1 = thl = (xg, — 1) T2
2’3’1 = Lfchl = (.%'5 — 1) Ty
21,2 = ha

22,2 = thg = XI5

transforms the dynamical system into the followifiglat
form studied in example 1 :

21,1 = 22,1

. _ 22,1
22,1 =231+ 0

231 = (222 —1)us +

%)
23,1
z2,2—

U2

212 = 22,2

Z92 = Uz

Remark 5:1f, instead of the first dynamic:y = x5 +

x4x3 We take the same dynamig = xz4x3 as in [25], then,
Aq is of rank 5 on an open dense df. In this case, the
same flat outputs work well except thaj; (adfcgl) #0and
dyz(adfcgz) = 0 on an open dense subset.

We think that we can generalize theorem 1 by assuming that

distribution A is of dimensionn in a dense subset ot
and A is regular onX.

Let us give another example to highlight the second condi-

tions in theorem.

Example 3:Consider inR® the following dynamical sys-
tem:

&1 = xo + Pug + (1 + 23) + x5) uz
T = x3 + Tauz + T3U3
T3 = U1
Ty = Ts
Ty = ug + T3u3
fb@ = ZE3£56‘T4 —+ €$4U1 —+ us

where = xg — x3e*4.

The generators of the distributialy, are:

U
gt - 8333 6336
_ _ 9 e =2
adfgn = 787322’ adfgl =
0,0 0
g2 o a$5 8a:1 4 8;152
— 9 T4
adsgr = g T waC g T,
0 0 0 0
gs = 87%+$367x5+$387m+(1’5+(1+1’3)6)?1~

It is easy to see that:

(92, 1] = 0 € span{gi,adsg1}
0 0 0
93, 91] = _87:52 - 87x5 - Bé)ixl € span{gi,adsgi, g2}

Thus, conditiong2) of theorem 1 are fulfilled.
Condition(1) of theorem is also fulfilled. In fact, distribution

A= Span{gh adfgh 92}»
is involutive. Moreover,
AT = span{dh, dhs, dhs}.

where hi = z1 — l’5($6 — ZC3€$4>, ho = x4 and hs =
Tg — T3eT4.
Let us setz; 1 = hy, 212 = ho and z; 3 = hs, we obtain
the following diffeomorphism:

21,1 ry — x5 (26 — x3€")

z91 = Lghi =29 and z3; = L?ch1 =13
zip = ho=uwz4 and 299 = Lshy = x5
z1,3 = hs=x¢— xze™

which transforms the dynamic into the followirigflat form
(3)-(4) ,

Z10 = 22,1 + (222 + 21,3)us

221 = 23,1 + 21,2U2 + 23,1U3

231 = U1

21,92 = 222
Z2,2 = Uz + 23.1U3

21,3 = u3

V. CONCLUSION

This paper deals with a characterization of a class of
0-flat dynamical systems. The conditions fulfilled by this
class appear as a natural generalization of conditions of
codimensionl dynamical systems.

In our futur work, we try to characterize a classkoflat dy-
namical systems by adapting the Charldtyine and Marino
method introduced for dynamic feedback linearization in [5].
Acknowledgement

We thank Mr Michel Fliess for all the papers and references
that he gave us in the field of flathess and also for his
encouragements to work in this field. We also express all
our gratitude for anonymous reviewers



(1]
(2]

(3]

(4]

(5]

(6]

[7]

8]

&l
(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

REFERENCES

R.L. Anderson and N. H. Ibragimotie-Backlund Transformations [27]
in Applications.SIAM, Philadelphia, 1979.

Aranda-Bricaire E. , C. H. Moog, and J. B. Pomgtinear algebraic
framework for dynamic feedback linearizatidBEE Trans. Automat. [28]

Control, 40:127132, 1995.

R. Briant, S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths.
Exterior Differential SystemsSpringer Verlag, 1991.

E. CartanSur lequivalence absolue de certains syst'emes dequations
differentielles et sur certaines familles de courb@sll. Soc. Math.

2
France, 42:1248, 1914. in Oeuvres Compl‘etes, part Il, vol 2, pageé

11331168, CNRS, Paris, 1984.

9]

B. Charlet, J. evine. On dynamic feedback linearizatioBystems [30]
Control Lett., 13:143151, 1989.

B. Charlet, J. Evine, and R. MarinoSufficient conditions for dy- 131]
namic state feedback linearizatidBLAM J. Control Optim., 29:3857,

1991. 132]

E. Delaleau and P. S. Pereira da Sih&ltrations in feedback
synthesis: Part | systems and feedba&sum Math., 10(2):147174,
1998.

J. Descusse and C. H. Moog. Decoupling with dynamic compensatior[33]

for strong invertible affine nonlinear systems. Internat. J. Control,
42:13871398, 1985. [
M. D. Di Benedetto, J. W. Grizzle, and C. H. Moog. Rank invariants
of nonlinear systems. SIAM J. Control Optim., 27:658672, 1989.
M. Fliess.Automatique et corps differentieBorum Math., 1:227238,
1989.

M. Fliess, J. levine, P. Martin, and P. RouchoBur les syst'emes
non lineaires differentiellement plat€. R. Acad. Sci. Paris Ser. |
Math., 315:619624, 1992.

M. Fliess, J. levine, P. Martin, and P. Rouchohinearisation par
bouclage dynamique et transformations de LéeBund.C. R. Acad.
Sci. Paris 8r. | Math., 317:981986, 1993.

M. Fliess, J. levine, P. Martin, and P. RouchoRlatness and defect
of non-linear systems: introductory theory and examplieternat. J.
Control, 61:13271361, 1995.

M. Fliess, J. levine, P. Martin, and P. Rouchdbeux applications de
la geometrie locale des diéfies.Ann. Inst. H. Poincare Phys. Theor.,
66:275292, 1997.

M. Fliess, J. levine, P. Martin, and P. RouchoNonlinear control
and diffieties, with an application to physicth J. Krasilshchik

34]

(35]
(36]

(37]

(38]

(39]

[40]

M. Henneaux and A. Vinogradov, editors, Secondary Calculus and[41]

Cohomological Physics, volume 219 of Contemporary Math., pages
8192, 1998.

M. Fliess, J. levine, P. Martin, and P. RouchoA Lie-Backlund
approach to equivalence and flatness of nonlinear systéBEE
Trans. Automat. Control, 44(5):922937, 1999. [
M. Fliess, J. levine, P. Martin, and P. RouchoBome open question
related to flat nonlinear systemtén V.D. Blondel, E. Sontag, M.
Vidyasagar, and J.C. Willems, editors, Open Problems in Mathe-
matical Systems and Control Theory, pages 99103, London, 1999.
Springer Verlag.

R. B. Gardner and W. F. Shadwickhe GS algorithm for exact
linearization to Brunovsky normal formlEEE Trans. Automat.
Control, 37:224230, 1992.

M. Guay, P. J. McLellan, and D.W. Bacon. @ndition for dynamic
feedback linearization of control-affine nonlinear systeingernat.

J. Control, 68(1):87106, 1997.

L. R. Hunt, R. Su, and G. Meyebesign for multi-input nonlinear
systemsin R. Brocket, R. Millmann, and H. J. Sussmann, editors,
Differential Geometric Methods in Nonlinear Control Theory, pages
268298, 1983.

A. Isidori. Nonlinear Control Systems. Springer Verlag, 3nd edition,
1995.

B. Jakubczyk and W. Respondédn linearization of control systems.
Bull. Acad. Pol. Sc., Ser. Sci. Math., 28:517522, 1980.

P. Martin, R. M. Murray, P. Rouchoiftlat SystemsEuropean Control
Conference, Plenary Lectures and Mini-Courses, 1997 Brussels.

H. Nijmeijer andW. Respondek. Dynamic input-output decoupling
of nonlinear control systems. IEEE Trans. Automat. Control,
33:10651070, 1988.

P. S. Pereira da SilvaFlatness of nonlinear control systems : a
Cartan-Kahler approachln Proc. Mathematical Theory of Networks

and Systems MTNS'2000, pages 110, Perpig- nan, Jun. 1923, 2000.

CDROM.

[42]

43]

[26] P. S. Pereira da Silv@®n the nonlinear dynamic disturbance decou-

pling problem.J. Math. Systems Estim. Control, 6:126, 1996.

J.B. Pomet,(1995)A differential geometric setting for dynamic
equivalence and dynamic linearizatioBanach Center Publications
pp. 319339.

J.B. PometA differential geometric setting for dynamic equivalence
and dynamic linearizationln B. Jackubczyk, W. respondek, and
T. Rzezuchowski, editors, Geometry in Nonlinear Control and Dif-
ferential Inclusions, pages 319339, Warsaw, 1995. Banach Center
Publications.

J.B. PometOn dynamic feedback linearization of four-dimensional
affine control systems with two inpuSsSAIM Control Optim. Calc.
Var., 2:151230 (electronic), 1997.

F. Rotella and |. ZambettakiSommande des systmes par platitude.
Techniques de l'ingnieurs.

P. RouchonNecessary condition and genericity of dynamic feedback
linearization.J. Math. Systems Estim. Control, 5(3):345358, 1995.
J. RudolphWell-formed dynamics under quasi-static state feedback.
In B. Jackubczyk, W. Respondek, and T. Rzezuchowski, editors,
Geometry in Nonlinear Control and Differential Inclusions, pages
349360, Warsaw, 1995. Banach Center Publications.

W. F. Shadwick.Absolute equivalence and dynamic feedback lin-
earization.Systems Control Lett., 15:35 39, 1990.

William F. Shadwick and Willem M. SluisDynamic feedback for
classical geometriesin Differential geometry and mathematical
physics (Vancouver, BC, 1993), volume 170 of Contemp. Math.,
pages 207213. Amer. Math. Soc., Providence, RI, 1994.

S. N. Singh.A modified algorithm for invertibility in nonlinear
systemslEEE Trans. Automat. Control, AC 26:595598, 1981.

W. M. Sluis. A necessary condition for dynamic feedback lineariza-
tion. Systems Control Lett., 21:277283, 1993.

W. M. Sluis and D. M. Tilbury.A bound on the number of inte-
grators needed to linearize a control systeBystems Control Lett.,
29(1):4350, 1996.

D. Tilbury, R. M. Murray, and S. R. Sastrifrajectory generation
for the n-trailer problem using Goursat normal fortEEE Trans.
Automat. Control, 40:802819, 1995.

M. van Nieuwstadt, M. Rathinam, and R. M. Murrayifferential
flatness and absolute equivalence of nonlinear control sys®rAd

J. Control Optim., 36(4):12251239 (electronic), 1998.

F. W. Warner. Foundations of differentiable manifolds and Lie
Groups.Scott, Foresman and Company, Glenview, lllinois, 1971.

V. Hagenmeyer, E. Delaledobustness analysis of exact feedforward
linearization based on differential fatnegsutomatica, vol. 39, 1941-
1946.

J. Lévine. On flatness necessary and sufficient conditioRsoc.
NOLCOS 2004, Stuttgart (Germany), Sep. 2004.

K. Schlacher, M. Schbefonstruction of flat outputs by reduction
and elimination Proc. NOLCOS 2007, Pretoria (South Africa), Aug.
2004.



