A. , J. Jaffréjaffr´jaffré, A. G. Veerappa, and . Gowda, Application of the DFLU flux to Hamilton- Jacobi equations with discontinuous Hamiltonians. in preparation. [2] , Godunov-type methods for conservation laws with a flux function discontinuous in space, SIAM Journal in Numerical Analysis, pp.179-208, 2004.

A. , G. D. Veerappa, A. J. Gowda, and . Jaffréjaffr´jaffré, Monotonization of flux, entropy and numerical schemes for conservation laws, J. Math. Anal. Appl, vol.352, pp.427-439, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00349637

K. Aziz and A. Settari, Petroleum Reservoir Simulation, 1979.

Y. J. Brenier and . Jaffréjaffr´jaffré, Upstream Differencing for Multiphase Flow in Reservoir Simulation, SIAM Journal on Numerical Analysis, vol.28, issue.3, pp.685-696, 1991.
DOI : 10.1137/0728036

URL : https://hal.archives-ouvertes.fr/inria-00075414

R. Burger, K. H. Karlsen, N. H. Risebro, and A. J. Towers, Well-posedness in bv t and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numerische Mathematik, 2003.

G. Chavent, G. Cohen, and A. J. Jaffréjaffr´jaffré, A finite element simulator for incompressible two-phase flow, Transport in Porous Media, pp.465-478, 1987.

G. And and R. , Solutions of the Cauchy problem for a conservation law with discontinuous flux function, SIAM J. Math. Anal, vol.23, pp.635-648, 1992.

E. Issacson-and-b and . Temple, The structure of asymptotic states in a singular system of conservation laws, Advances in Applied Mathematics, vol.11, issue.2, pp.205-219, 1990.
DOI : 10.1016/0196-8858(90)90009-N

J. Jaffréjaffr´jaffré, Numerical calculation of the flux across an interface between two rock types of a porous medium for a two-phase flow, Hyperbolic Problems, pp.165-177, 1996.

T. Johansen, A. Tveito, and A. R. Winther, A Riemann Solver for a Two-Phase Multicomponent Process, SIAM Journal on Scientific and Statistical Computing, vol.10, issue.5, pp.846-879, 1989.
DOI : 10.1137/0910050

T. Johansen and R. Winther, The Solution of the Riemann Problem for a Hyperbolic System of Conservation Laws Modeling Polymer Flooding, SIAM Journal on Mathematical Analysis, vol.19, issue.3, pp.541-566, 1988.
DOI : 10.1137/0519039

E. Kaasschieter, Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium, Computational Geosciences, vol.3, issue.1, pp.23-48, 1999.
DOI : 10.1023/A:1011574824970

H. Langtangen, A. Tveito, and A. R. Winther, Instability of Buckley-Leverett flow in heterogeneous media, Transport in Porous Media, pp.165-185, 1992.

P. D. Lax-and-b and . Wendroff, Systems of conservation laws, Comm. Pure Appl. Math, vol.13, pp.217-237, 1960.

S. J. Mishra and . Jaffréjaffr´jaffré, On the upstream mobility scheme for two-phase flow in porous media, Computational Geosciences, vol.39, issue.3, 2009.
DOI : 10.1007/s10596-009-9135-0

URL : https://hal.archives-ouvertes.fr/inria-00353627

S. Mochen, An analysis of the traffic on highways with changing surface conditions, Mathematical Modelling, vol.9, issue.1, pp.1-11, 1987.
DOI : 10.1016/0270-0255(87)90068-6

H. Nessyahu-and-e and . Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, Journal of Computational Physics, vol.87, issue.2, pp.408-463, 1990.
DOI : 10.1016/0021-9991(90)90260-8

G. A. Pope, The Application of Fractional Flow Theory to Enhanced Oil Recovery, Society of Petroleum Engineers Journal, vol.20, issue.03, pp.191-205, 1980.
DOI : 10.2118/7660-PA

N. Seguin and J. Vovelle, ANALYSIS AND APPROXIMATION OF A SCALAR CONSERVATION LAW WITH A FLUX FUNCTION WITH DISCONTINUOUS COEFFICIENTS, Mathematical Models and Methods in Applied Sciences, vol.13, issue.02, pp.221-257, 2003.
DOI : 10.1142/S0218202503002477

URL : https://hal.archives-ouvertes.fr/hal-01376535

B. Temple, Global solution of the cauchy problem for a class of 2 ?? 2 nonstrictly hyperbolic conservation laws, Advances in Applied Mathematics, vol.3, issue.3, 1982.
DOI : 10.1016/S0196-8858(82)80010-9

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Musta: A multi-stage numerical flux, pp.1464-1479, 1999.
DOI : 10.1007/b79761

J. D. Towers, Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux, SIAM Journal on Numerical Analysis, vol.38, issue.2, pp.38-681, 2000.
DOI : 10.1137/S0036142999363668