Parallel Geometric Algorithms for Multi-Core Computers - Archive ouverte HAL Access content directly
Conference Papers Year : 2009

Parallel Geometric Algorithms for Multi-Core Computers

(1) , (2) , (3) , (4)
1
2
3
4
David L. Millman
  • Function : Author
  • PersonId : 856291
Sylvain Pion
Johannes Singler
  • Function : Author
  • PersonId : 856292

Abstract

Computers with multiple processor cores using shared memory are now ubiquitous. In this paper, we present several parallel geometric algorithms that specifically target this environment, with the goal of exploiting the additional computing power. The d-dimensional algorithms we describe are (a) spatial sorting of points, as is typically used for preprocessing before using incremental algorithms, (b) kd-tree construction, (c) axis-aligned box intersection computation, and finally (d) bulk insertion of points in Delaunay triangulations for mesh generation algorithms or simply computing Delaunay triangulations. We show experimental results for these algorithms in 3D, using our implementations based on the Computational Geometry Algorithms Library (CGAL, http://www.cgal.org/). This work is a step towards what we hope will become a parallel mode for CGAL, where algorithms automatically use the available parallel resources without requiring significant user intervention.
Fichier principal
Vignette du fichier
parallel_cgal.pdf (236.38 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00409051 , version 1 (05-08-2009)

Identifiers

  • HAL Id : inria-00409051 , version 1

Cite

Vicente H. F. Batista, David L. Millman, Sylvain Pion, Johannes Singler. Parallel Geometric Algorithms for Multi-Core Computers. ACM Symposium on Computational Geometry, Jun 2009, Aarhus, Denmark. pp.217-226. ⟨inria-00409051⟩

Collections

INRIA INRIA2
202 View
218 Download

Share

Gmail Facebook Twitter LinkedIn More