M. Ainsworth, P. Monk, and W. Muniz, Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation, Journal of Scientific Computing, vol.15, issue.2, pp.5-40, 2006.
DOI : 10.1007/s10915-005-9044-x

L. Anné, P. Joly, and Q. H. Tran, Construction and analysis of higher order finite difference schemes for the 1D wave equation, Computational Geosciences, vol.4, issue.3, pp.207-249, 2000.
DOI : 10.1023/A:1011520202197

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.39, issue.5, pp.1749-1779, 2002.
DOI : 10.1137/S0036142901384162

G. A. Baker, Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations, SIAM Journal on Numerical Analysis, vol.13, issue.4, pp.564-576, 1976.
DOI : 10.1137/0713048

G. A. Baker and V. A. Dougalis, The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations, SIAM Journal on Numerical Analysis, vol.13, issue.4, pp.577-598, 1976.
DOI : 10.1137/0713049

E. Bécache, P. Joly, and J. Rodríguez, Space???time mesh refinement for elastodynamics. Numerical results, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.2-5, pp.355-366, 2005.
DOI : 10.1016/j.cma.2004.02.023

R. Carpentier, A. De-la-bourdonnaye, and B. Larrouturou, On the derivation of the modified equation for the analysis of linear numerical methods, RAIRO Modél, Math. Anal. Numér, pp.31-459, 1997.

P. Ciarlet, The Finite Element Method for Elliptic Problems, 1978.

B. Cockburn, Discontinuous Galerkin Methods for Convection-Dominated Problems, High- Order Methods for Computational Physics, pp.69-224, 1999.
DOI : 10.1007/978-3-662-03882-6_2

B. Cockburn, G. Karniadakis, and C. Shu, The Development of Discontinuous Galerkin Methods, Lect. Notes Comput. Sci. Eng, vol.11, pp.3-50, 2000.
DOI : 10.1007/978-3-642-59721-3_1

B. Cockburn and C. Shu, Runge?Kutta discontinuous Galerkin methods for convection? dominated problems, Journal of Scientific Computing, vol.16, issue.3, pp.173-261, 2001.
DOI : 10.1023/A:1012873910884

G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Sci. Comput, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01166961

G. Cohen and S. Fauqueux, Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains, SIAM Journal on Scientific Computing, vol.26, issue.3, pp.864-884, 2005.
DOI : 10.1137/S1064827502407457

URL : https://hal.archives-ouvertes.fr/hal-00982991

G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2047-2078, 2001.
DOI : 10.1137/S0036142997329554

URL : https://hal.archives-ouvertes.fr/hal-01010373

F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the 1-D wave equation. I. Construction, Numer. Math, pp.95-197, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00989055

F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the 1-D wave equation, II. Analysis, Numer. Math, pp.95-223, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00989055

F. Collino, T. Fouquet, and P. Joly, Conservative space-time mesh refinement methods for the FDTD solution of Maxwell???s equations, Journal of Computational Physics, vol.211, issue.1, pp.9-35, 2006.
DOI : 10.1016/j.jcp.2005.03.035

M. A. Dablain, High order differencing for the scalar wave equation, in SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, vol.3, pp.854-854, 1984.

A. Elmkies and P. Joly, Finite elements and mass lumping for Maxwell's equations: The 2D case, C. R. Acad. Sci. Paris Sér. I, pp.324-1287, 1997.

M. J. Gander, L. Halpern, and F. Nataf, Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.41, issue.5, pp.41-1643, 2003.
DOI : 10.1137/S003614290139559X

J. Gilbert and P. Joly, Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions, Partial Differential Equations, 2006.
DOI : 10.1007/978-1-4020-8758-5_4

URL : https://hal.archives-ouvertes.fr/hal-00976773

F. X. Giraldo and M. A. Taylor, A diagonal-mass-matrix triangular-spectral-element method based on cubature points, Journal of Engineering Mathematics, vol.131, issue.3, pp.307-322, 2006.
DOI : 10.1007/s10665-006-9085-7

M. J. Grote, A. Schneebeli, and D. Schötzau, Discontinuous Galerkin Finite Element Method for the Wave Equation, SIAM Journal on Numerical Analysis, vol.44, issue.6, pp.2408-2431, 2006.
DOI : 10.1137/05063194X

URL : https://hal.archives-ouvertes.fr/hal-01443184

M. J. Grote, A. Schneebeli, and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell's equations: Energy norm error estimates, Journal of Computational and Applied Mathematics, vol.204, issue.2, pp.375-386, 2007.
DOI : 10.1016/j.cam.2006.01.044

URL : http://doi.org/10.1016/j.cam.2006.01.044

M. J. Grote, A. Schneebeli, and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell's equations: optimal L2-norm error estimates, IMA Journal of Numerical Analysis, vol.28, issue.3, pp.440-468, 2008.
DOI : 10.1093/imanum/drm038

URL : http://imajna.oxfordjournals.org/cgi/content/short/28/3/440

M. J. Grote and D. Schötzau, Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation, Journal of Scientific Computing, vol.8, issue.23
DOI : 10.1007/s10915-008-9247-z

B. Gustafsson and E. Mossberg, Time Compact High Order Difference Methods for Wave Propagation, SIAM Journal on Scientific Computing, vol.26, issue.1, pp.259-271, 2004.
DOI : 10.1137/030602459

B. Gustafsson and P. Wahlund, Time Compact High Order Difference Methods for Wave Propagation, 2D, Journal of Scientific Computing, vol.14, issue.1, pp.195-211, 2005.
DOI : 10.1007/s10915-004-4639-1

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Structure- Preserving Algorithms for Ordinary Differential Equations, Comput. Math, vol.31, 2006.

L. Halpern, LOCAL SPACE-TIME REFINEMENT FOR THE ONE-DIMENSIONAL WAVE EQUATION, Journal of Computational Acoustics, vol.13, issue.03, pp.547-568, 2005.
DOI : 10.1142/S0218396X0500275X

J. P. Hennart, Topics in finite element discretization of parabolic evolution problems, in Numerical Analysis, Proceedings of the Third IIMAS Workshop Held at Cocoyoc, Mexico, Lecture Notes in Math. 909, pp.185-199, 1982.

T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 1987.

P. Joly and J. Rodríguez, An Error Analysis of Conservative Space-Time Mesh Refinement Methods for the One-Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.43, issue.2, pp.825-859, 2005.
DOI : 10.1137/040603437

H. Kreiss, N. A. Petersson, and J. Yström, Difference Approximations for the Second Order Wave Equation, SIAM Journal on Numerical Analysis, vol.40, issue.5, pp.1940-1967, 2002.
DOI : 10.1137/S0036142901397435

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monogr, Appl. Comput. Math, 2004.
DOI : 10.1017/cbo9780511614118

URL : https://repozitorij.uni-lj.si/Dokument.php?id=39532

J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, 1972.
DOI : 10.1007/978-3-642-65161-8

Y. Maday and A. Patera, Spectral element methods for the incompressible Navier-Stokes equations, in State-of-the-Art Surveys in Computational Mechanics, pp.71-143, 1989.

S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.5, pp.815-841, 2006.
DOI : 10.1051/m2an:2006035

URL : https://hal.archives-ouvertes.fr/hal-00607709

G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heterogeneous media, Finite Elements in Analysis and Design, vol.16, issue.3-4, pp.337-348, 1994.
DOI : 10.1016/0168-874X(94)90076-0

G. R. Shubin and J. B. Bell, A Modified Equation Approach to Constructing Fourth Order Methods for Acoustic Wave Propagation, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.2, pp.135-151, 1987.
DOI : 10.1137/0908026

V. Villamizar, Time-Dependent Numerical Method with Boundary-Conforming Curvilinear Coordinates Applied to Wave Interactions with Prototypical Antennas, Journal of Computational Physics, vol.177, issue.1, pp.1-36, 2002.
DOI : 10.1006/jcph.2001.6987