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Abstract: We propose an approximate nearest neighbor search method based
on quantization. It uses, in particular, product quantizer to produce short codes
and corresponding distance estimators approximating the Euclidean distance
between the orginal vectors. The method is advantageously used in an asym-
metric manner, by computing the distance between a vector and code, unlike
competing techniques such as spectral hashing that only compare codes.

Our approach approximates the Euclidean distance based on memory effi-
cient codes and, thus, permits efficient nearest neighbor search. Experiments
performed on SIFT and GIST image descriptors show excellent search accuracy.
The method is shown to outperform two state-of-the-art approaches of the lit-
erature. Timings measured when searching a vector set of 2 billion vectors are
shown to be excellent given the high accuracy of the method.
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Quantifier pour chercher:

recherche approximative par codes compacts et

estimateurs de distances

Résumé : Nous proposons une méthode de recherche appproximative qui
permet d’estimer la distance entre deux vecteurs en utilisant des codes courts
quantifiés. Ces codes sont définis de manière conjointe avec leur estimateurs,
qui approximent la distance euclidienne entre deux vecteurs. La méthode per-
met d’estimer la distance entre deux vecteurs à partir de leur codes respectifs.
Contrairement aux techniques concurrentes, elle peut également être utilisée de
manière asymétrique avec un estimateur de distance qui prend en entrée un
vecteur et un code, ce qui améliore la qualité de l’estimation.

Nous montrons que notre approche offre des résultats qui sont significative-
ment au dessus de ceux de l’état de l’art en terme du compromis entre usage
mémoire et qualité de la recherche. Les temps de recherche mesurés sur une
base de vecteurs de 2 milliards de vecteurs SIFT montrent l’intérêt de notre
méthode en pratique.

Mots-clés : recherche de plus proches voisins, grandes bases de données,
distance euclidienne, quantification
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1 Introduction

Computing Euclidean distances between high dimensional vectors is a funda-
mental requirement in many applications. It is used, in particular, for nearest
neighbor (NN) search. Nearest neighbor search is inherently expensive due to
the curse of dimensionality [1, 2]. Focusing on the D-dimensional Euclidean
space R

D, the problem is to find the element NN(x) in a finite set Y ⊂ R
D

minimizing the distance to the query vector x ∈ R
D:

NN(x) = arg min
y∈Y

d(x, y). (1)

Several multi-dimensional indexing methods, such as the popular KD-tree [3]
or branch and bound techniques, have been proposed to reduce the search time.
However, for many dimensions it turns out [4] that such approaches are not more
efficient than the brute-force exhaustive distance calculation, whose complexity
is O(nD).

There is a large literature [5, 6, 7] on algorithms that overcome this issue by
performing approximate nearest neighbor (ANN) search. The key idea shared
by these algorithms is to find the NN with high probability “only”, instead of
probability 1. Most of the effort has been devoted to the Euclidean distance,
though recent generalizations have been proposed for other metrics [8]. In this
paper, we will only consider the Euclidean distance, which is relevant for many
applications. In that case, one of the most popular ANN algorithm is the Eu-
clidean Locality-Sensitive Hashing (E2LSH) [5, 9], which provides theoretical
guarantees on the search quality with limited assumptions. It has been success-
fully used for local descriptors [10] and 3D object indexing [11, 9]. However,
for real data, LSH is outperformed by heuristic methods [7], which exploit the
distribution of the vectors better.

ANN algorithms are typically compared on the trade-off between search
quality and efficiency. However, this trade-off does not take into account the
memory requirements of the indexing structure. In the case of E2LSH, the
memory usage may even be higher than that of the original vectors, i.e., sev-
eral hundreds of bytes. Only recently, researchers have tried to design methods
limiting the memory usage. This is a key criterion for problems involving large
amounts of data [12], for instance in large-scale scene recognition problems [13],
where millions to billions of images have to be indexed. In [13], Torralba et al.
represent an image by a single global GIST descriptor [14] which is mapped to
a short binary code. When no supervision is used, this mapping is learned such
that the neighborhood in the embedded space defined by the Hamming distance
reflects the neighborhood in the Euclidean space of the original features. The
search of the Euclidean nearest neighbors is then approximated by the search of
the nearest neighbors based on the Hamming distance. In [15], spectral hashing
(SH) is shown to outperform the binary codes generated by the restricted Boltz-
mann machine [13], boosting and LSH. Another related work is the Hamming
embedding method of Jegou et al. [16], where the binary signature is used to
refine quantized SIFT descriptors in a bag-of-features image search framework.

In this paper, we construct short codes using quantization. The goal is to
estimate distances using vector-to-centroid distances, i.e., the query vector is not
quantized, only the database vectors are assigned to codes. This reduces the
quantization noise and subsequently improves the search quality. This method

RR n➦ 7020



4 Jégou, Douze & Schmid

requires that the codebook provides a low quantization error. To obtain such a
precise representation, the total number k of centroids should be high enough,
e.g., k = 264 for codes of 64-bits. This raises several issues on how to learn
the codebook and assign a vector. First, the amount of samples required to
learn the quantizer should be several times k. Second, the complexity of the
algorithm itself is by many orders of magnitude too large. Finally, the amount
of computer memory available on earth is not sufficient to store the floating
points values representing the centroids.

The hierarchical k-means (HKM) was proposed as a way of improving the
efficiency the learning stage and of the corresponding assignment procedure,
see the numerous references in [17] and see [18] for an application in computer
vision. However, the aforementioned limitations still apply, in particular those
on the memory usage and the size of the learning set. One could also consider the
use of scalar quantizers. However, they offer poor quantization error properties
in terms of the trade-off between memory and reconstruction error. Lattice
quantizers offer better quantization properties for uniform vector distributions,
but this condition is rarely satisfied by real world vectors. In practice, these
quantizers are significantly inferior to k-means in indexing tasks [19]. In this
paper, we will focus on product quantizers. To our knowledge, such a semi-
structured quantizer has never been considered in any nearest neighbor search
method, and is the only one that fulfills the requirements of our search algorithm.

The advantages of our method are twofold. First, the number of possible
distances is significantly higher than for the competing embedding methods [16,
13, 15], for which this number is equal to the signature length plus one because
it is a Hamming distance. Second, as a byproduct of the method, we get an
estimation of the expected squared distance, which is interesting for ε-radius
search or to use Lowe’s distance ratio criterion [20]. The motivation of using
the Hamming space in [16, 13, 15] is the efficient computation of distances.
Note, however, that the fastest way of computing Hamming distances consists
of using table lookups. Our method is implemented using such a strategy and
provides comparable efficiency.

An exhaustive comparison with all codes representing the vectors is pro-
hibitive in the context of very large datasets. We, therefore, introduce a modi-
fied inverted file structure to rapidly access the most relevant vectors. A coarse
quantizer is used to implement this inverted file structure, where vectors corre-
sponding to a cluster (index) are stored in the associated list. The vectors in
the list are represented by short codes, similar to [16]. The difference is that we
use the codes computed by our product quantizer to encode the residual vector
with respect to the cluster center.

A comparison with the state-of-the-art shows that our approach significantly
outperforms existing techniques, in particular spectral hashing [15] and Ham-
ming embedding [16].

Our paper is organized as follows. In Section 2 we introduce the notations
for quantization as well as the product quantizer used by our method. Section 3
presents our approach for NN search and Section 4 introduces the structure used
to avoid exhaustive search. An evaluation of the parameters of our approach
and a comparison to the state-of-art is finally given in Section 5.

INRIA



Searching with quantization 5

2 Background: quantization, product quantizer

A large literature is available on vector quantization, see [17] for a survey. In
this section, we restrict our presentation to the notations and concepts used in
the rest of this paper.

2.1 Vector quantization

Quantization is a destructive process which has been extensively studied in
information theory [17]. Its purpose is to reduce the cardinality of the repre-
sentation space, in particular when the input data is real-valued. Formally, a
quantizer is a function q mapping a D-dimensional vector x ∈ R

D to a vector
q(x) ∈ C = {ci; i ∈ I}, where the index set I is from now on assumed to be
finite: I = 0 . . . k − 1. The reproduction values ci are called centroids. The set
of reproduction values C is the codebook. Denoting by k = |C| its cardinality, we
assume without loss of generalization that the indexes are consecutive integers
ranging from 0 to k − 1.

The set Vi of vectors mapped to a given index i is referred to as a (Voronoi)
cell, and defined as

Vi , {x ∈ R
D : q(x) = ci}. (2)

The k cells of a quantizer form a partition of R
D. By definition, all the

vectors lying in the same cell Vi are reconstructed by the same centroid ci. The
quality of a quantizer is usually measured by the mean square error between
the input vector x and its reproduction value q(x):

MSE(q) = EX

[
d(x̃, x)2

]
=

∫

p(x)d
(
q(x), x

)2
dx, (3)

where d(x, y) = ||x − y|| is the Euclidean distance between x and y, and where
p(x) is the probability distribution function corresponding to a generic random
variable X. For an arbitrary probability distribution function, Equation 3 is
numerically computed using Monte-Carlo sampling, as the average of ||q(x)−x||2

on a large set of samples.
In order for the quantizer to be optimal, it has to satisfy two properties

known as the Lloyd optimality conditions. First, a vector x must be quantized
to its nearest codebook centroid, in terms of the Euclidean distance, as

q(x) = arg min
i∈I

d(x, ci). (4)

As a result, the cells are delimited by hyperplanes. The second Lloyd con-
dition is that the reconstruction value must be the expectation of the vectors
lying in the Voronoi cell:

ci = EX

[
x|i

]
=

∫

Vi

p(x)x. (5)

The Lloyd quantizer, which corresponds to the k-means clustering algorithm,
finds the optimal solution by iteratively assigning the vectors of a training set to
centroids and re-estimating these centroids from the assigned points. In the fol-
lowing, we assume that the two Lloyd necessary conditions hold, as we learn the
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6 Jégou, Douze & Schmid

quantizer using k-means. Note, however, that k-means does not necessarily find
the global optimum, but a local one satisfying the aforementioned conditions.

Another interesting quantity that will be used afterward is the mean squared
distortion ξ(q, ci) obtained when reconstructing a vector of a cell Vi by the
corresponding centroid ci. Denoting by pi = P

(
q(x) = ci

)
the probability that

a vector is assigned to the centroid ci, it is computed as

ξ(q, ci) =
1

pi

∫

Vi

d
(
x, q(x)

)2
p(x) dx. (6)

Note that the MSE can be obtained from these quantities as

MSE(q) =
∑

i∈I

pi ξ(q, ci). (7)

The memory cost of storing the index value, without any further processing
(entropy coding), is ⌈log2 k⌉ bits. Therefore, it is convenient to use a power of
two for k, as the code produced by the quantizer is usually stored in a binary
memory.

2.2 Product quantizers

Let us consider a 128-dimensional vector, for example the SIFT descriptors [20].
A quantizer producing 64-bits codes, i.e., “only” 0.5 bit per component, contains
k = 264 centroids. Therefore, it is impossible to use Lloyd’s algorithm or even
HKM. The number of samples and the learning complexity required to learn
the quantizer should be several times k. Furthermore, it is impossible to store
the D × k floating point values representing the k centroids.

Product quantizers are an efficient solution to address all these issues. The
input vector x is split into m distinct subvectors uj , 1 ≤ j ≤ m of dimension
D∗ = D/m, where D is a multiple of m. The subvectors are quantized separately
using m distinct quantizers. A given vector x is therefore mapped as follows:

x1, ..., xD∗

︸ ︷︷ ︸

u1(x)

, ..., xD−D∗+1, ..., xD
︸ ︷︷ ︸

um(x)

→ q1

(
u1(x)), ..., qm(um(x)

)
, (8)

where qj is a low-complexity quantizer associated with the jth subvector. With
the subquantizer qj we associate the index set Ij , the codebook Cj and the
corresponding reproduction values cj,i.

A reproduction value of the product quantizer is identified by an element of
the product index set I = I1 × . . . × Im. The codebook is therefore defined as
the Cartesian product

C = C1 × . . . × Cm, (9)

and a centroid of this set is the concatenation of centroids of the subquantizers.
From now on, we assume that all subquantizers have the same finite number k∗

of reproduction values. In that case, the total number of centroids is given by

k = (k∗)m. (10)

Note that in the extremal case where m = D, the components of a vector x
are all quantized separately. Then the product quantizer turns out to be a scalar

INRIA



Searching with quantization 7

memory usage assignment complexity

k-means k D k D

HKM bf
bf−1 (k − 1) D l D

product k-means k1/m D k1/m D

Table 1: Memory usage of the codebook and assignment complexity for different
quantizers. HKM is parameterized by tree height l and the branching factor bf .

quantizer, where the quantization function associated with each component may
be different from one component to another.

The strength of a product quantizer is to produce a large set of centroids
from several small sets of centroids: those associated with the subquantizers.
When learning the subquantizers using Lloyd’s algorithm, a limited number of
vectors is used, but the codebook is still adapted to the data distribution to
represent. The complexity of learning the quantizer is m times the complexity
of performing k-means clustering with k∗ centroids of dimension D∗.

A centroid of the product quantizer is obtained by concatenating m subquan-
tizer centroids. Storing this codebook C explicitly is not efficient. Instead, we
store the m× k∗ centroids of all the subquantizers, i.e, m D∗ k∗ = k∗ D floating
points values. Quantizing an element requires k∗D floating point operations.
Table 1 summarizes the resource requirements associated with k-means, HKM
and product k-means. The product quantizer is clearly the only quantizer that
can be reasonably indexed in memory for large values of k.

In order to provide good quantization properties when choosing a constant
value of k∗, each subvector should have, on average, a comparable energy. One
way to ensure this property is to multiply the vector by a random orthogonal
matrix prior to quantization. However, for most vector types this is not required
and not recommended, as consecutive components are often correlated by con-
struction and are better quantized together with the same subquantizer. As the
subspaces are orthogonal, the squared distortion associated with the product
quantizer is

MSE(q) =
∑

j

MSE(qj), (11)

where MSE(qj) is the distortion associated with quantizer qj . Figure 1 shows
the MSE as a function of the code length for different (m,k∗) tuples, where the
code length is l = m log2 k∗, if k∗ is a power of two. The curves are obtained
for a set of 128-dimensional SIFT descriptors, see section 5 for details. One can
observe that for a fixed number of bits, it is better to use a small number of
subquantizers with many centroids than having many subquantizers with few
bits. At the extreme when m = 1, the product quantizer becomes a regular
k-means codebook.

High values of k∗ increases the computational cost of the quantizer, as shown
by Table 1. This also increases the memory usage of storing the centroids (k∗×D
floating point values), which by itself further reduces the efficiency if the centroid
look-up table does not fit in cache memory anymore. In the case where m = 1,
we can not afford using more than 16 bits to keep this cost tractable. Using
k∗ = 256 and m = 8 seems a reasonable choice.

RR n➦ 7020
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Figure 2: Principle of our method: the distance d(x, y) is estimated using the
distance d(x, q(y)). The mean squared error on the distance is bounded, on
average, by the quantization error.

3 Searching with quantization

Nearest neighbor search depends solely on the distances between the query vec-
tor and the database vectors, or equivalently the squared distances. The method
introduced in this section compares the vectors based on their quantization in-
dices. We first explain how the product quantizer properties are used to compute
the distances. Then we provide a statistical bound on the distance estimation
error, and propose a refined estimator for the squared Euclidean distance.

3.1 Computing distances using quantized codes

Let us consider the query vector x and a database vector y. We propose two
methods to compute an approximate Euclidean distance d(x, yi) between these
vectors, a symmetric and a asymmetric one. See Figure 2 for an illustration.

INRIA



Searching with quantization 9

SDC ADC

encoding x k∗ D 0

compute d
`

uj(x), cj,i

´

0 k∗ D

for y ∈ Y, compute d̂(x, y) or d̃(x, y) n m n m

find the k smallest distances n + k log n n + k log n

Table 2: Algorithm and computational costs associated with searching the k
nearest neighbors using the product quantizer for symmetric and asymmetric
distance computations (SDC, ADC).

Symmetric distance computation (SDC): both the vectors x and y are
represented by their respective centroids q(x) and q(y). The distance d(x, y)

is approximated by the distance d̂(x, y) , d
(
q(x), q(y)

)
which is efficiently ob-

tained using a product quantizer as

d̂(x, y) = d
(
q(x), q(y)

)
=

√
∑

j

d
(
qj(x), qj(y)

)2
, (12)

where the distance d
(
qj(x), qj(y)

)2
is read from a look-up table associated with

the jth subquantizer. Each look-up table contains all the possible square dis-
tances between the centroids of the subquantizer, or (k∗)2 square distances1.

Asymmetric distance computation (ADC): a given database vector y is
represented by q(y), but the query x is not encoded. The distance d(x, y) is
approximated by the distance d̃(x, y) , d

(
x, q(y)

)
, which is computed using the

decomposition

d̃(x, y) = d
(
x, q(y)

)
=

√
∑

j

d
(
uj(x), qj(uj(y))

)2
, (13)

where the square distances d
(
uj(x), cj,i

)2
: j = 1 . . .m, i = 1 . . . k∗, are com-

puted prior to the search. For nearest neighbors search, we do not compute
the square root in practice: the square root function is monotonously increasing
and the square distances produces the same vector ranking.

Table 2 summarizes the complexity of the different steps involved in search-
ing the k nearest neighbors of a vector x in a dataset Y of n = |Y| vectors.
One can see that SDC and ADC have the same query preparation cost, which
does not depend on the dataset size n. When n is large (n > k∗D∗), the most
consuming operations are the summations in Equations 12 and 13. The com-
plexity given in this table for searching the k smallest elements is the worst
case complexity [21]. For n ≫ k and when the elements are arbitrarily ordered,
this complexity is overestimated (the behavior is closer to linear) and the search
bottleneck is the distance calculation step.

1In fact, it is possible to store only k∗ (k∗
− 1)/2 pre-computed square distances, because

this distance matrix is symmetric and the diagonal elements are zeros.

RR n➦ 7020



10 Jégou, Douze & Schmid

The only advantage of SDC over ADC is to limit the memory usage associ-
ated with the queries, as in that case the query vector is completely defined by
a code. In most cases, one should prefer the asymmetric version, which obtains
a lower distance distortion for a similar complexity. We will focus on ADC in
the rest of this section.

3.2 Analysis of the distance error

In this subsection, we analyze the error affecting the distance when using d̃(x, y)
instead of d(x, y). This analysis does not depend on the use of a product quan-
tizer and is valid for any quantizer satisfying Lloyd’s optimality conditions de-
fined by Equations 4 and 5 in Section 2. The analysis is similar for the symmetric
version.

In the spirit of the mean squared error criterion used for the reconstruction,
the distance distortion is measured by the mean square distance error (MSDE)
on the distances:

MSDE(q) ,

∫ ∫
(
d(x, y) − d̃(x, y)

)2
p(x, y) dx dy, (14)

where it is reasonable to assume that the joint probability distribution function
p(x, y) = p(x) p(y) is separable.

Given the triangular inequality, we have

d
(
x, q(y)

)
− d

(
y, q(y)

)
≤ d(x, y) ≤ d

(
x, q(y)

)
+ d

(
y, q(y)

)
, (15)

and, equivalently,

∣
∣
∣d(x, y) − d(x, q(y))

∣
∣
∣

2

≤ d
(
y, q(y)

)2
. (16)

Combining this inequality with Equation 14, we obtain

MSDE(q) ≤

∫

p(x)

(∫

d
(
y, q(y)

)2
p(y) dy

)

dx (17)

≤ MSE(q). (18)

where MSE(q) is the mean squared error associated with quantizer q. This
inequality, which holds for any quantizer, shows that the distance error of our
method is statistically bounded by the MSE associated with the quantizer. For
the symmetric version, a similar derivation shows that the error is statistically
bounded by 2×MSE(q). It is, therefore, worth minimizing the quantization
error, as this criterion provides a statistical guarantee on the error altering
the distance. If an exact distance calculation is performed on the first vector,
as done in LSH [5], the quantization error can be used (instead of selecting an
arbitrary set of k elements) as a criterion to dynamically select the set of vectors
on which the post-processing should be applied.

3.3 Estimator of the squared distance

As shown later in this subsection, using the estimations d
(
q(x), q(y)

)
or d

(
x, q(y)

)

leads to underestimate, on average, the distance between points. Figure 3 shows

INRIA
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Figure 3: Typical query of a SIFT vector in a set of 1000 vectors: comparison
of the distance d(x, y) obtained with the SDC and ADC estimators. We have
used m = 8 and k∗ = 256, i.e., 64-bit code vectors. Best viewed in color.

the distances obtained when querying a SIFT descriptor in a dataset of 1000
SIFT vectors. It compares the true distance against the estimates computed
with Equations 12 and 13. One can clearly see the bias on these distance esti-
mators. Unsurprisingly, the symmetric version is more sensitive to this bias.

Hereafter, we compute the expectation of the square distance in order to
cancel the bias. For a particular vector y, we have the quantized index q(y),
which in the case of the product quantizer is obtained for subquantizers indexes
qj

(
uj(y)

)
, j = 1 . . .m. The quantization index identifies the cells Vi in which

y lies. We can then compute the expected square distance ẽ
(
x, q(y)

)
between

x, which is fully known in our asymmetric distance computation method, and
a random variable Y , knowing q(Y ) = q(y) = ci, which represents all the
hypothesis on y knowing its quantization index.

ẽ(x, y) , EY

[
(x − Y )2|q(Y ) = ci

]
(19)

=

∫

Vi

(x − y)2 p(y|i) dy, (20)

=
1

pi

∫

Vi

(x − ci + ci − y)2 p(y) dy. (21)

Developing the squared expression and observing, using Lloyd’s condition of
Equation 5, that ∫

Vi

(y − ci) p(y) dy = 0, (22)

RR n➦ 7020



12 Jégou, Douze & Schmid

Equation 21 simplifies to

ẽ(x, y) =
(
x − q(y)

)2
+

∫

Vi

(x − y)2 p
(
y|q(y) = ci

)
dy (23)

= d̃(x, y)2 + ξ
(
q, q(y)

)
(24)

where we recognize the distortion ξ
(
q, q(y)

)
associated with the reconstruction

of y by its reproduction value.
Using the product quantizer and Equation 24, the computation of the ex-

pected squared distance between a vector x and the vector y, for which we only
know the quantization indices qj

(
uj(y)

)
, consists in correcting Equation 13 as

ẽ(x, y) = d̃(x, y) +
∑

j

ξj(y) (25)

where the correcting term, i.e., the average distortion

ξj(y) , ξ
(
qj , qj

(
uj(y)

))
(26)

associated with quantizing uj(y) to qj(y) using the jth subquantizer, is learned
and stored in a look-up table for all indexes of Ij .

Performing a similar derivation for the symmetric version, i.e., when both x
and y are encoded using the product quantizer, we obtain the following corrected
version of the symmetric square distance estimator:

ê(x, y) = d̂(x, y) +
∑

j

ξj(x) +
∑

j′

ξj′(y). (27)

Discussion: Figure 4 illustrates the probability distribution function of the dif-
ference between the true distance and the ones estimated by Equations 13
and 25. It has been measured on a large set of SIFT descriptors. Clearly
the bias of the distance estimation by Equation 13, significantly reduced in the
corrected version. However, correcting the bias leads, in some cases, to a higher
variance of the estimator, which is a common phenomenon in statistics. More-
over, for the nearest neighbors, the correcting term is likely to be higher than
the measure of Equation 13, which means that we penalize the vectors with
rare indexes. Note that the correcting term is independent of the query in the
asymmetric version,

In our experiments, we observe that the correction returns inferior results on
average. Therefore, we advocate the use of Equation 13 for the nearest neighbor
search. The corrected version is useful only if we are interested in the distances
themselves.

4 Non exhaustive search

The search method proposed in the previous section allows the efficient cal-
culation of distances with a small amount of memory. Searching the nearest
neighbors with a product quantizer is faster because less memory has to be vis-
ited and only m additions are required per distance calculation, but the search
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Figure 4: PDF of the error on the distance estimation d− d̃ for the asymmetric
method, evaluated on a set of 10000 SIFT vectors with m = 8 and k∗ = 256.
The bias (=-0.044) of the estimator d̃ is corrected (=0.002) with the error quan-
tization term ξ

(
q, q(y)

)
. However, the variance of the error increases with this

correction: σ2(d − ẽ) = 0.00155 whereas σ2(d − d̃) = 0.00146.

is still exhaustive. This is possible in the context of a global descriptor [13]
and [15]. However, to index billions of descriptors and perform multiple queries,
as required by approaches based on local descriptors [16], an exhaustive search
is prohibitive.

In this section, we propose an approach, denoted by inverted file asymmetric
distance computation (IVFADC), that avoids the exhaustive search at the cost
of a few additional bits/bytes per descriptor. It is built upon an inverted file
structure, which has been shown successful for very large scale image search [22,
18, 16, 23]. This approach significantly accelerates the search and in addition
improves its quality.

4.1 Coarse quantizer, inverted lists and multiple assign-

ment

Similar to the so-called Video-Google approach [22], a codebook is learned using
k-means, producing a quantizer qc, referred to as the coarse quantizer in the
following. The regular k-means is advantageously replaced by an approximate k-
means and the corresponding approximate quantization strategy, as done in [18,
24, 25]. For SIFT descriptors, the number k′ of centroids associated with qc

typically ranges from k′ = 1000 to k′ = 1000 000. It is therefore small compared
to that of the product quantizers used in this paper.

We use this coarse quantizer to implement an inverted file structure. It is an
array of lists L1 . . .Lk′ . If Y is the vector dataset to index, the list Li associated
with the centroid ci of qc stores the set {y ∈ Y : qc(y) = ci}.
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14 Jégou, Douze & Schmid

Using only the index obtained with qc is an imprecise representation of a
vector. The vector description can be further improved by adding a binary
signature [16], that refines the vector location in a cell of the coarse quantizer.
It is stored jointly with the vector identifier in Li. An entry is then defined as

field length (bits)

identifier 8–32

code l

where l is the length of the binary code associated with each descriptor. The
identifier field is the overhead due to the inverted file structure. Depending on
the nature of the vectors to be stored, the identifier is not necessarily unique.
For instance, to describe images by local descriptors, image identifiers can re-
place vector identifiers, i.e., all the vectors of the same image have the same
identifier. Therefore, a 20-bit field is sufficient to identify an image among one
million images. This memory cost can be further reduced by the use of index
compression [26, 27], which may reduce the average cost of storing the iden-
tifier to about 8 bits, depending on parameters2. Note that some geometrical
information can also be inserted in this entry, as in [16] and [26].

Given an inverted list, the nearest neighbor y of a query vector x may not
be quantized to qc(x). To address this problem, we use the multiple assign-
ment strategy of [28]. The query3 is assigned to w indexes instead of only one,
which correspond to the w nearest neighbors of x in the codebook qc. All the
corresponding inverted lists are scanned.

4.2 Locally defined product quantizer codes

We adopt a strategy similar to that proposed in [16], i.e., the description of a
vector is refined by a short code obtained with a product quantizer. However,
in order to take into account the information provided by the coarse quantizer,
i.e, the centroid qc(x) associated with the vector x, the product quantizer is
used to encode the residual vector

r(x) = x − qc(x), (28)

corresponding to the offset in the Voronoi cell. The energy of the residual vector
is small compared to that of the vector itself.

Denoting by qp the product quantizer used to encode the residual vector,
a vector x is then represented by the tuple

(
qc(x), qp(r(x))

)
, where qp(r(x)) is

stored in the inverted list entry associated with x. By analogy with the binary
representation of a value, the coarse quantizer provides the most significant bits,
while the product quantizer code corresponds to the least significant bits. The
estimator of d(x, y), where x is the query and y the database vector, is formally
computed as the distance d̈(x, y) between x and the approximation of y by

ÿ , qc(y) + qp

(
y − qc(y)

)
. (29)

2An average cost of 11 bits is reported in [26] using delta encoding and Huffman codes.
3Multiple assignment is not applied to database vectors, as this would severely increase

the memory usage.
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It can be re-written as

d̈(x, y) = d
(

x − qc(x), qp

(
y − qc(y)

))

. (30)

Denoting by qpj the jth subquantizer, we use the following decomposition to
compute this estimator efficiently:

d̈(x, y)2 =
∑

j

d
(

uj

(
x − qc(x)

)
, qpi

(
uj(y − qc(y))

))2

. (31)

Similar to the ADC strategy, for each subquantizer qpi the distances between
the partial residual vector uj

(
x − qc(x)

)
and all the centroids cj,i of qpi are

preliminarily computed and stored. This improves the efficiency of the distance
calculation when the query x is compared with a large set of vectors in the
inverted list.

The product quantizer is determined on a set of residual vectors collected
from a learning set. Although the vectors are quantized to different indexes by
the coarse quantizer, the resulting residual vectors are used to learn an unique
product quantizer. We assume that the same product quantizer is accurate when
the distribution of the residual is marginalized over all the Voronoi cells. This
is probably inferior to the approach consisting of learning and using a distinct
product quantizer per Voronoi cell. However, this would be computationally
expensive and would require storing k′ product quantizer codebooks, i.e., k′ ×
d × k∗ floating points values, which would be memory-intractable for common
values of k′.

4.3 Indexing structure and search algorithm

Figure 5 gives an overview of how a database is indexed and searched.

Indexing a vector y proceeds as follows:

1. quantize y to qc(y)

2. compute the residual r(y) = y − qc(y)

3. quantize r(y) to qp(r(y)), which is done for the product quantizer by
assigning uj(y) to qj(uj(y)), j = 1 . . .m.

4. store the vector (or image) identifier and the binary code representing the
product quantizers indexes in an entry of the inverted list.

Searching the nearest neighbor(s) of a query x consists of

1. quantize x to its w nearest neighbors in the codebook qc;

For the sake of presentation, in the two next step we simply denote by
r(x) the residuals associated with these w assignments. The two steps are
applied to all w assignments.

2. compute the square distance d
(
uj(r(x)), cj,i

)2
for each subquantizer j and

each of its centroids cj,i;
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16 Jégou, Douze & Schmid

Figure 5: Overview of the inverted file with asymmetric distance computation
(IVFADC) indexing system. Left: insertion of a vector. Right: search.

3. compute the square distance between r(x) and all the indexed vectors
of the inverted list. Using the subvector-to-centroid distances computed
in the previous step, this distance is the sum of m looked-up values, see
Equation 31;

4. select the k-nearest neighbors of x based on the estimated distance using
the Maxheap algorithm. Note that, for more efficiency, this step is done
jointly with the distance calculation, which avoids storing all the distances.

Only Step 3 depends on the database size. Compared with ADC, the ad-
ditional step of quantizing x to qc(x) consists in computing k′ distances for
D-dimensional vectors. Assuming that the inverted lists are balanced, about
n × w/k′ entries have to be parsed. Therefore the search is significantly faster
than ADC, as shown in the next subsection.

5 Evaluation of NN search

In this section, we introduce the datasets used for the evaluation. We first ana-
lyze the impact of the parameters for SDC, ADC and IVFADC. Our approach
is then compared to two state-of-the-art methods: spectral hashing [15] and
Hamming embedding [16]. Finally, we evaluate the complexity and speed of our
approach.
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5.1 Datasets

In this section we use two datasets, one with local SIFT descriptors [20] and the
other with global color GIST descriptors [14]. The learning stage is performed
on separate sets of vectors. Therefore, we have three vector subsets per dataset:
learning, database and query. Both datasets were constructed using publicly
available data and software. For the SIFT descriptors4, the learning is set
extracted from Flickr images and the database and query descriptors are from
the INRIA Holidays dataset [16]. For GIST, the learning set consists of the first
100k images extracted from the tiny image dataset [12]. The database set is the
Holidays dataset combined with the Flickr1M dataset used in [16]. The query
images are the Holidays queries. Table 3 summarizes the number of descriptors
extracted for the two datasets.

vector dataset: SIFT GIST

descriptor dimensionality d 128 960

learning set size 100,000 100,000

database set size 1,000,000 1,000,991

queries set size 10,000 500

Table 3: Summary of the SIFT and GIST datasets.

The search quality is measured by the recall@R, i.e., the proportion of query
vectors, for which the nearest neighbor is ranked in the first R positions. This
measures indicates the fraction of queries for which the nearest neighbor is re-
trieved correctly, if a short-list of R vectors is verified using Euclidean distances.
Furthermore, the curve obtained by varying R corresponds to the distribution
function of the ranks.

5.2 Memory vs search accuracy: trade-offs

The product quantizer is parametrized by the number of subvectors m and the
number of quantizers per subvector k∗, which corresponds to a code length of
m×log2 k∗. Figure 6 shows the trade-off between code length and search quality
for our SIFT descriptor dataset. The quality is measured for recall@100 for the
two estimators ADC and SDC, for m ∈ {1, 2, 4, 8, 16} and k∗ ∈ {24, 26, 28, 210, 212}.
As for the quantizer distortion in Figure 1, we can observe that for a fixed num-
ber of bits, it is better to use a small number of subquantizers with many
centroids than to have many subquantizers with few bits. However, we can also
see that MSE underestimates, for a fixed number of bits, the quality obtained
for a large number of subquantizers against using more centroids per quantizer.

As expected, the asymmetric estimator ADC significantly outperforms SDC.
For m=8 we obtain the same accuracy for ADC and k∗=64 as for SDC and
k∗=256. Given the efficiency of the two approaches is equivalent, we advocate
not to quantize the query, but only the database elements.

Figure 7 is an evaluation of the parameters for the IVFADC method in-
troduced in Section 4. We can observe that the recall@100 depends on the
codebook size k′ as well as the number of neighboring cells w visited during the
multiple assignment. We can observe that increasing the code length is useless

4This dataset is available at http://lear.inrialpes.fr/people/jegou/data.php
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if w is not big enough, as the nearest neighbors which are not assigned to one
of the w centroids associated with the query are definitely lost.

We have, in addition, to set the codebook size k′ for the IVFADC approach.
Recall that this approach is significantly more efficient than SDC and ADC on
large datasets, as it only compares the query to a small fraction of the database
vectors. The proportion of the dataset to visit is roughly linear in w/k′. For
a fixed proportion, it is worth using higher values of k′, as this increases the
accuracy, as shown by comparing, for the tuple (m,w), the parameters (1024, 1)
against (8192, 8) and (1024, 8) against (8192, 64).

5.3 Impact of the component grouping

The product quantizer defined in Section 2 creates the subvectors by splitting
the input vector according to the order of the components. However, vectors
such as SIFT and GIST descriptors are structured because they are built as
concatenated orientation histograms. Each histogram is computed on grid cells
of an image patch. Using a product quantizer, the bins of a histogram may end
up in different quantization groups.

The natural order corresponds to grouping consecutive components, as pro-
posed in Equation 8. For the SIFT descriptor, this means that histograms
stemming from neighboring grid cells are quantized together. GIST descriptors
are composed of three 320-dimension blocks, one per color channel. The product
quantizer splits these blocks into parts.

To evaluate the influence of the grouping, we modify the uj operators in
Equation 8, and measure the impact of their construction on the performance
of the ADC method. Table 4 shows the effect on the search quality, measured by
recall@100. The analysis is restricted to the parameters k∗=256 and m ∈ {4, 8}.
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20 Jégou, Douze & Schmid

SIFT SIFT GIST

m 4 8 8

natural 0.593 0.921 0.338

random 0.501 0.859 0.286

structured 0.640 0.905 0.652

Table 4: Impact of the dimension grouping on the retrieval performance of ADC
(recall@100, k∗=256).

Overall, the choice of the components appears to have a significant impact
of the results. Using a random order instead of the natural order leads to poor
results. This is true even for GIST, for which the natural order is somewhat
arbitrary.

The “structured” order consists in grouping together dimensions that are
related. For the m = 4 SIFT quantizer, this means that the 4 × 4 patch cells
that make up the descriptor [20] are grouped into 4 2× 2 blocks. For the other
two, it groups together dimensions that have have the same index modulo 8.
The orientation histograms of SIFT and most of GIST’s have 8 bins, so this
ordering quantizes together bins corresponding to the same orientation. On
SIFT descriptors, this is a slightly less efficient structure, probably because the
natural order corresponds to spatially related components. On GIST, this choice
significantly improves the performance. Therefore, we use this ordering in the
following experiments.

5.4 Comparison with state-of-the-art

Our methods are compared with the spectral hashing of Weiss et al. [15], which
maps vectors to binary signatures. The search consists in comparing the Ham-
ming distances between the database signatures and the query vector signa-
ture. This approach was shown to outperform the restricted Boltzmann ma-
chine of [13]. We have used the publicly available code for SH. We also compare
to the Hamming embedding (HE) method of [16], which also maps vectors to
binary signatures. Similar to IVFADC, HE uses an inverted file, which avoids
comparing to all the database elements.

Figures 8 and 9 shows, respectively for the SIFT and the GIST datasets, the
rank repartition of the nearest neighbors when using a signature of sizes 64 bits.
For our product quantizer we have used m = 8 and k∗ = 256, which gives similar
results in terms of run time. All our approaches significantly outperform spectral
hashing on the two datasets. To achieve the same recall as spectral hashing,
ADC returns an order of magnitude less vectors.

Best results are obtained by IVFADC, which for low ranks provides a signif-
icant improvement. Recall that this strategy avoids the exhaustive search and
is therefore significantly faster, as discussed in the next section. This partial
scan explains why the IVFADC and HE curves stop at some point, as only a
fraction of the database vectors are ranked. Comparing these two approaches,

INRIA



Searching with quantization 21

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1k 10k 100k 1M

re
ca

ll@
R

R

SIFT, 64-bit codes

SDC
ADC

IVFADC w=1
IVFADC w=16

HE w=1
HE w=16

spectral hashing

Figure 8: SIFT dataset: recall@R for varying values of R. Comparison of the dif-
ferent approaches SDC, ADC, IVFADC, spectral hashing [15] and HE [16]. We
have used m=8, k∗=256 for SDC/ADC. The coarse quantizer contains k′=1024
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method parameters search average number of recall@100

time (ms) code comparisons

SDC 16.8 1 000 991 0.446

ADC 17.2 1 000 991 0.652

IVFADC k′= 1 024, w=1 1.5 1 947 0.308

k′= 1 024, w=8 8.8 27 818 0.682

k′= 1 024, w=64 65.9 101 158 0.744

k′= 8 192, w=1 3.8 361 0.240

k′= 8 192, w=8 10.2 2 709 0.516

k′= 8 192, w=64 65.3 19 101 0.610

SH 22.7 1 000 991 0.132

Table 5: GIST dataset (500 queries): search timings for 64-bit codes and differ-
ent methods. We have used m=8 and k∗=256 for SDC, ADC and IVFADC.

HE is significantly outperformed by IVFADC. The results of HE are similar to
spectral hashing, but HE is more efficient5.

5.5 Complexity and speed

Table 5 evaluates the search time of our methods. For reference, we report
the results obtained with the spectral hashing algorithm of [15] on the same
dataset and machine (using only one core). Since we use a separate learning

5In defense of spectral hashing, which can be used for arbitrary distance measures, the
other approaches are adapted to the Euclidean distance only.
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Figure 9: GIST dataset: recall@R for varying values of R. Comparison of the
different approaches SDC, ADC, IVFADC and spectral hashing [15]. We have
used m=8, k∗=256 for SDC/ADC and k′ = 1024 for IVFADC.

set, we use the out-of-sample evaluation of this algorithm. Note that we have
re-implemented the Hamming distance computation in C in order to have the
approaches similarly optimized. The algorithms SDC, ADC and SH provide
similar efficiencies. IVFADC significantly improves the performance by avoiding
exhaustive search. Higher values of k′ yield higher search efficiencies for large
datasets, as the search benefits from parsing a smaller fraction of the memory.
However, for small datasets, the complexity of the coarse quantizer may be the
bottleneck if k′ × D > n/k′ when using a regular k-means for qc. For large
datasets and using an efficient assignment strategy for the coarse quantizer,
higher values of k′ generally lead to better efficiency, as first shown in [18].
In this work, the authors propose a hierarchical quantizer to efficiently assign
descriptors to the centroids in a codebook of size one million.

5.6 Large-scale experiments

To evaluate the search efficiency of the product quantizer method on larger
datasets we extracted SIFT descriptors from one million images. Searches are
performed with 30 000 query descriptors from ten images. We compared the IV-
FADC and HE methods, with similar parameters. In particular, the amount of
memory that is scanned for each method and the cost of the coarse quantization
are the same.

The query times per descriptor are shown on Figure 10. The cost of the extra
quantization step required by IVFADC appears clearly for small database sizes.
For larger scales, the distance computation with the database vectors become
preponderant. The processing that is applied to each element of the inverted
lists is approximately as expensive in both cases. For HE, it is a Hamming
distance computation, implemented as 8 table lookups. For IVFADC it is a
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distance computation that also boils down to 8 table lookups. Interestingly, the
floating point operations involved in IVFPQ are not much more expensive than
the simple binary operations of HE.

6 Conclusion

In this paper, we have introduced a product quantizer for nearest neighbor
search. Our coding scheme permits to approximate the Euclidean distance ac-
curately as well as memory efficiently. It is shown to significantly outperform
the comparable state-of-the-art approaches [16, 15] in terms of the trade-off
between search quality and memory usage.
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