K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When Is ???Nearest Neighbor??? Meaningful?, Proceedings of the International Conference on Database Theory, pp.217-235, 1999.
DOI : 10.1007/3-540-49257-7_15

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1422

C. Böhm, S. Berchtold, and D. Keim, Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases, ACM Computing Surveys, vol.33, issue.3, pp.322-373, 2001.
DOI : 10.1145/502807.502809

J. Friedman, J. L. Bentley, and R. A. , An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software, vol.3, issue.3, pp.209-226, 1977.
DOI : 10.1145/355744.355745

R. Weber, H. Schek, and S. Blott, A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces, Proceedings of the International Conference on Very Large DataBases, pp.194-205, 1998.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, Proceedings of the twentieth annual symposium on Computational geometry , SCG '04, pp.253-262, 2004.
DOI : 10.1145/997817.997857

A. Gionis, P. Indyk, and R. Motwani, Similarity search in high dimension via hashing, Proceedings of the International Conference on Very Large DataBases, pp.518-529, 1999.

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, VISAPP, 2009.

B. Kulis and K. Grauman, Kernelized locality-sensitive hashing for scalable image search, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459466

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.4414

G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods in Learning and Vision: Theory and Practice, ch, 2006.

Y. Ke, R. Sukthankar, and L. Huston, Efficient near-duplicate detection and sub-image retrieval, ACM Multimedia, pp.869-876, 2004.
DOI : 10.1145/1027527.1027729

B. Matei, Y. Shan, H. Sawhney, Y. Tan, R. Kumar et al., Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.7, pp.1111-1126, 2006.
DOI : 10.1109/TPAMI.2006.148

A. Torralba, R. Fergus, and W. T. Freeman, 80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.11, pp.1958-1970, 2008.
DOI : 10.1109/TPAMI.2008.128

A. Torralba, R. Fergus, and Y. Weiss, Small codes and large image databases for recognition, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587633

A. Oliva and A. Torralba, Modeling the shape of the scene: a holistic representation of the spatial envelope, International Journal of Computer Vision, vol.42, issue.3, pp.145-175, 2001.
DOI : 10.1023/A:1011139631724

Y. Weiss, A. Torralba, and R. Fergus, Spectral hashing, NIPS, 2008.

H. Jégou, M. Douze, and C. Schmid, Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search, Proceedings of the European Conference on Computer VIsion, 2008.
DOI : 10.1007/978-3-540-88682-2_24

R. M. Gray and D. L. Neuhoff, Quantization, IEEE Transactions on Information Theory, vol.44, issue.6, pp.2325-2384, 1998.
DOI : 10.1109/18.720541

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.2161-2168, 2006.
DOI : 10.1109/CVPR.2006.264

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Lost in quantization: Improving particular object retrieval in large scale image databases, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587635

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

D. E. Knuth, The Art of Computer Programming, Sorting and Searching, 1998.

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, pp.1470-1477, 2003.
DOI : 10.1109/ICCV.2003.1238663

M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. Schmid, Evaluation of GIST descriptors for web-scale image search, Proceeding of the ACM International Conference on Image and Video Retrieval, CIVR '09, 2009.
DOI : 10.1145/1646396.1646421

URL : https://hal.archives-ouvertes.fr/inria-00394212

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383172

H. Jégou, M. Douze, and C. Schmid, Improving Bag-of-Features for Large Scale Image Search, International Journal of Computer Vision, vol.42, issue.3, 2009.
DOI : 10.1007/s11263-009-0285-2

M. Perdoch, O. Chum, and J. Matas, Efficient representation of local geometry for large scale object retrieval, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206529

H. Jégou, M. Douze, and C. Schmid, Packing bag-of-features, 2009 IEEE 12th International Conference on Computer Vision
DOI : 10.1109/ICCV.2009.5459419

H. Jégou, H. Harzallah, and C. Schmid, A contextual dissimilarity measure for accurate and efficient image search, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.382970