F. Bernardin, M. Bossy, C. Chauvin, P. Drobinski, A. Rousseau et al., Stochastic downscaling method: application to wind refinement, Stochastic Environmental Research and Risk Assessment, vol.58, issue.3, pp.851-859, 2009.
DOI : 10.1007/s00477-008-0276-9

URL : https://hal.archives-ouvertes.fr/inria-00337526

M. Bossy, J. Jabir, and D. Talay, On conditional McKean Lagrangian stochastic models, Probability Theory and Related Fields, vol.71, issue.4, 2008.
DOI : 10.1007/s00440-010-0301-z

URL : https://hal.archives-ouvertes.fr/inria-00345524

M. Bossy, J. Fontbona, and J. Jabir, Incompressible Lagrangian stochastic model in the torus

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System, Mathematical Methods in the Applied Sciences, vol.130, issue.10, pp.907-938, 1998.
DOI : 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.0.CO;2-W

C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol.67, 1988.
DOI : 10.1007/978-1-4612-1039-9

C. Chauvin, S. Hirstoaga, P. Kabelikova, F. Bernardin, and A. Rousseau, Solving the Uniform Density Constraint in a Stochastic Downscaling Model, ESAIM: Proceedings, vol.24, pp.97-110, 2008.
DOI : 10.1051/proc:2008032

URL : https://hal.archives-ouvertes.fr/inria-00326931

C. Chauvin, F. Bernardin, M. Bossy, and A. Rousseau, Wind Simulation Refinement: Some New Challenges for Particle Methods
DOI : 10.1007/978-3-642-12110-4_123

URL : https://hal.archives-ouvertes.fr/hal-00644924

P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions, Annales scientifiques de l'??cole normale sup??rieure, vol.19, issue.4, pp.519-542, 1986.
DOI : 10.24033/asens.1516

P. Degond and S. Mas-gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation, Transport Theory and Statistical Physics, vol.3, issue.4-6, 1985.
DOI : 10.1007/BF01238866

M. , D. Francesco, and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express, vol.3, pp.77-116, 2005.

M. , D. Francesco, and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Diff. Equ, vol.11, pp.1261-1320, 2006.

P. Drobinski, J. L. Redelsperger, and C. Pietras, Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy, Geophysical Research Letters, vol.7, issue.23, pp.33-23806, 2006.
DOI : 10.1029/2006GL027062

URL : https://hal.archives-ouvertes.fr/hal-00141760

C. W. Gardiner, Handbook of stochastic methods, Springer Series in Synergetics 13, 1985.

J. Guermond and L. Quartapelle, Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM, Journal of Computational Physics, vol.132, issue.1, pp.12-33, 1997.
DOI : 10.1006/jcph.1996.5587

F. H. Harlow and P. I. Nakayama, Transport of turbulence energy decay rate, p.451, 1968.
DOI : 10.2172/4556905

J. Jabir, Lagrangian Stochastic Models of conditional McKean-Vlasov type and their confinements, 2008.

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 1988.
DOI : 10.1007/978-1-4612-0949-2

E. Lanconelli, A. Pascucci, and S. Polidoro, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in Nonlinear problems in mathematical physics and related topics, Int. Math. Ser., Kluwer, pp.243-265, 2002.

H. P. Mckean, A winding problem for a resonator driven by a white noise, Journal of Mathematics of Kyoto University, vol.2, issue.2, pp.227-235, 1963.
DOI : 10.1215/kjm/1250524936

J. Minier and E. Peirano, The pdf approach to turbulent polydispersed two-phase flows, Physics Reports, vol.352, issue.1-3, pp.1-214, 2001.
DOI : 10.1016/S0370-1573(01)00011-4

B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model, 1994.

C. M. Mora, Weak exponential schemes for stochastic differential equations with additive noise, IMA Journal of Numerical Analysis, vol.25, issue.3, pp.486-506, 2005.
DOI : 10.1093/imanum/dri001

T. Plewa, T. Linde, and V. G. Eds, Adaptive Mesh Refinement ? Theory and Applications, Lecture Notes in Computational Science and Engineering 41, 2003.

S. B. Pope and P. D. , PDF methods for turbulent reactive flows, Progress in Energy and Combustion Science, vol.11, issue.2, pp.119-192, 1985.
DOI : 10.1016/0360-1285(85)90002-4

S. B. Pope, On the relationship between stochastic Lagrangian models of turbulence and second???moment closures, Physics of Fluids, vol.6, issue.2, pp.973-985, 1993.
DOI : 10.1063/1.868329

S. B. Pope, Lagrangian PDF Methods for Turbulent Flows, Annual Review of Fluid Mechanics, vol.26, issue.1, pp.23-63, 1994.
DOI : 10.1146/annurev.fl.26.010194.000323

S. B. Pope, Turbulent flows, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00338511

P. Raviart, An analysis of particle methods, Lecture Notes in Mathematics, vol.1127, pp.243-324, 1985.
DOI : 10.1007/BFb0074532

J. L. Redelsperger, F. Mahé, and P. Carlotti, A simple and general subgrid model suitable both for surface layer and free-stream turbulence, Boundary-Layer Meteorology, vol.101, issue.3, pp.375-408, 2001.
DOI : 10.1023/A:1019206001292

A. Rousseau, F. Bernardin, M. Bossy, P. Drobinski, and T. Salameh, Stochastic particle method applied to local wind simulation, 2007 International Conference on Clean Electrical Power, pp.526-528, 2007.
DOI : 10.1109/ICCEP.2007.384265

URL : https://hal.archives-ouvertes.fr/inria-00172503

P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction. Scientific Computation Series, Applied Mechanics Reviews, vol.55, issue.6, 2001.
DOI : 10.1115/1.1508154

D. W. Stroock and S. R. Varadhan, Multidimensional diffusion processes, 1979.
DOI : 10.1007/3-540-28999-2

R. B. Stull, An Introduction to Boundary Layer Meteorology Atmospheric and Oceanographic Sciences Library, 1988.

A. Sznitman, Topics in propagation of chaos, Lecture Notes in Mathematics, vol.22, issue.1, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689