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Sch�emas de marche en temps d�ecoupl�es en
�el�ectrophysiologie cardiaque computationnelle et

simulation num�erique de l'ECG

R�esum�e : Ce travail aborde l'appproximation des �equations bidomaine, isol�ees
ou coupl�ees avec le thorax, par des sch�emas semi-implicites de premier ordre,
permettant un calcul d�ecoupl�e des inconnues (�etat ionique, potentiel transmem-
branaire, potentiel extracellulaire et potentiel thoracique). Pour les �equations
bidomaine isol�ees, nous montrons que les d�ecouplages de type Gauss-Seidel et
Jacobi ne compromettent pas la stabilit�e (au sens de l'�energie), ils simplement
modi�ent la norme de l'�energie. Dans le cadre de la simulation num�erique de
l'�electrocardiogramme (ECG), nous proposons de combiner ces techniques avec
un traitement Robin-Robin explicite du couplage c�ur-thorax. Les sch�emas
ainsi obtenus permettent un calcul compl�etement d�ecoupl�e et stable (sous une
simple condition CFL-hyperbolique) des champs cardiaques et thoraciques. La
pr�ecision et taux de convergence des sch�emas propos�es sont illustr�es par des
exp�eriences num�eriques.

Mots-cl�es : �Electrophysiologie cardiaque, probl�eme direct, �electrocardio-
gramme, �equation bidomaine, couplage c�ur-thorax, discr�etisation en temps,
couplage explicite, m�ethode des �el�ements �nis, conditions de Robin, analyse de
stabilit�e.



Decoupled time-marching schemes 3

1 Introduction

Computational models of cardiac electrophysiology typically incorporate the
cell membrane activity and the intra- and extracellular components of cardiac
tissue by means of thebidomain model (see e.g. [44, 40]). This mathematical
model can be formulated as athree-�eld system (ionic state, transmembrane
and extracellular potentials) coupling a non-linear reaction-di�usion equation,
an elliptic equation and a non-linear system of ODE (alternative formulations
are discussed in [25, 36]).

The rapid dynamics of the ODE system, acting on the reaction terms, lead
to the presence of a sharp propagating wavefront, which often requires �ne
resolutions in space and in time. As a result, fully implicit time-marching is
extremely di�cult to perform since it involves the resolution of a large system
of non-linear equations at each time step (seee.g. [25, 8, 34]). Attempts to
reduce this computational complexity (without compromising too much numer-
ical stability) consist in introducing some sort of explicit treatment within the
time-marching procedure. For instance, by considering semi-implicit (seee.g.
[45, 31, 14, 2, 5, 19]) or operator splitting (seee.g. [27, 46, 50]) schemes. All
these approaches uncouple the ODE system (ionic state and non-linear reaction
terms) from the electro-di�usive components (transmembrane and extracellu-
lar potentials). However, only a few works [45, 31, 2, 50] propose a decoupled
(Gauss-Seidellike) time-marching of the three �elds.

In this paper we go further in the investigation of this kind of decoupling
techniques, by providing a general energy based stability analysis that covers
both the Gauss-Seidel and the Jacobi like approaches. In particular, we show
that these electro-di�usive splittings do not compromise the stability of the
resulting scheme. They simply alter the energy norm and time step restrictions
are uniquely dictated by the semi-implicit treatment of the ODE system and
the non-linear reaction terms. We also illustrate numerically that the splitting
preserves the �rst-order time accuracy of the original electro-di�usive coupling.

In the second part, we propose to extend these time-marching techniques to
the numerical simulation of the electrocardiogram (ECG), namely, the forward
problem of cardiac electrophysiology (seee.g. [30]). The bidomain equations
have then to be coupled to a generalized Laplace equation, describing the elec-
trical potential within the surrounding torso tissue. The heart-torso coupling
is enforced through standard interface conditions, ensuring a perfect electrical
balance (seee.g. [28, 40, 44]). This results in a coupledfour-�eld problem
(ionic state, transmembrane, extracellular and torso potentials) coupling a non-
linear system of ODEs, a non-linear reaction-di�usion equation and two elliptic
equations (seee.g. [30, 44]).

Traditionally, the heart-torso coupling has been treated using two di�erent
approaches (seee.g. [30]). The so calledheart-torso uncoupling approximation
(seee.g. [37, 39, 30, 4]) uncouples the heart and torso problems by neglecting
the torso-to-heart electrical feedback (i.e. the heart is isolated). Although this
approach is very appealing in terms of computational cost, it can compromise
the accuracy of the corresponding ECG signals (seee.g. [30, 40, 4]). The second
approach, the so calledheart-torso full coupling, treats the heart-torso interface
conditions in a fully implicit fashion and, therefore, requires the resolution of a
large heart-torso system at each time step (seee.g. [45, 31, 40, 4]). To the best of
our knowledge, none of the current approaches is able to provide accurate ECG
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4 M.A. Fern�andez & N. Zemzemi

signals (i.e. close to heart-torso full coupling) with a decoupled computation of
the extracellular and torso potentials.

In this paper, we introduce a series of time-marching schemes for ECG nu-
merical simulation involving a fully decoupled computation of the ionic state,
the transmembrane potential, the extracellular potential and the torso potential.

The main idea consists in combining the above mentioned Gauss-Seidel or
Jacobi like bidomain spplitings, with an explicit Robin-Robin treatment (derived
from [1]) of the heart-torso coupling. Note that, since the time discretization of
the two (quasi-static) elliptic equations does not produce numerical dissipation,
conventional explicit Dirichlet-Neumann heart-torso coupling might lead to nu-
merical instability. An energy based stability analysis shows that the proposed
schemes are stable under and additional mild hyperbolic-CFL like condition.
Optimal convergence rate, on the contrary, calls for a more stringent condition
between the space and time discretization parameters.

The remainder of this paper is organized as follows. In the next section we
brie
y recall the coupled system of equations describing the electrical activity
of the heart and its interaction with the surrounding torso tissue. The time
discretization of the bidomain equations is addressed in section§3, using Gauss-
Seidel and Jacobi like ecletrodi�usive splittings. The stability of the resulting
schemes is analyzed by means of energy arguments. Section§4 is devoted to
the discretization of the heart-torso system. The schemes analyzed in section
§3 are then combined with a speci�c explicit Robin-Robin treatment of the
heart-torso coupling. The energy based stability of the resulting schemes is
investigated. Numerical evidence of the stability and accuracy is provided in
section§5, with a mono-dimensional test problem and a three-dimensional study
based on realistic heart and torso geometries. A summary of the results and
some concluding remarks are given in section§6.

2 Mathematical models

This section contains standard material (seee.g. [44, Chapter 2]). We introduce
the notation and the coupled system of equations commonly used to model
the electrical activity of the heart and its interaction with surrounding tissue
(extramyocardial regions).

2.1 Isolated heart

The bidomain equations, originally derived in [48], are the most widely accepted
mathematical model of the macroscopic electrical activity of the heart (seee.g.
the monographs [44, 40]). This model is usually formulated in terms of three
variables: the transmembrane potentialVm , the extracellular potential ue and
the ionic state w (possibly vector valued). These space and time dependent
variables are de�ned in 
 H � (0; T), where 
 H and (0; T) denote, respectively,
the heart domain and the time interval of interest.

The governing equations consist of a coupled system of ODE, a nonlinear
reaction-di�usion equation and an elliptic equation, with appropriate boundary

INRIA



Decoupled time-marching schemes 5

and initial conditions (see e.g. [44, 40]):

@t w + g(Vm ; w) = 0 ; in 
 H � (0; T);
(2.1)

� m @t Vm + I ion (Vm ; w) � div( � i r Vm ) � div( � i r ue) = I app ; in 
 H � (0; T);
(2.2)

� div(( � i + � e)r ue) � div( � i r Vm ) = 0 ; in 
 H � (0; T);
(2.3)

� i r Vm � n + � i r ue � n = 0 ; on � � (0; T);
(2.4)

� er ue � n = 0 ; on � � (0; T);
(2.5)

Vm (x ; 0) = V 0
m (x ); w(x ; 0) = w0(x ); 8x 2 
 H : (2.6)

Here, � m
def= Am Cm where Am is a geometrical quantity, Cm denotes the mem-

brane capacitance and tensors� i and � e represent, respectively, the intra- and

extracellular conductivities. The term I ion (Vm ; w) def= Am i ion (Vm ; w) denotes the
ionic current across the membrane andI app a given external current stimulus.
The explicit expression of functionsg and i ion depends on the considered cell
ionic model (see e.g. [44, 40] and the references therein). At last,n stands for

the outward unit normal to � def= @
 H (see Figure 1), andV 0
m , w0 are given

initial data.
The boundary conditions (2.4)-(2.5) state that the intra- and extracellular

currents do not propagate outside the heart. While (2.4) is a widely accepted
condition (see e.g. [48, 28, 40, 44]), the enforcement of (2.5) is only justi�ed
under an isolated heart assumption (see [44, 40]). The coupled system of equa-
tions (2.1)-(2.6) is often known in the literature as isolated bidomain model (see
e.g. [14, 15, 44]). The interested reader is referred to [16, 3, 7, 49] for the
mathematical analysis of problem (2.1)-(2.6).

The choice of the formulation (2.1)-(2.6) is motivated by the decoupling time-
marching schemes introduced in section§3. Other formulations of the bidomain
equations and their impact on the performance of the algebraic solvers have been
discussed in [25, 36]. A recent review of numerical methods for the bidomain
equations can be found in [32].

Remark 2.1 The complexity of (2.1)-(2.6) can be reduced by using, instead of
(2.2) and (2.4), the so-called monodomain approximation:

� m @t Vm + I ion (Vm ; w) � div
�
� r Vm

�
= I app ; in 
 H ;

� r Vm � n = 0 ; on � ;
(2.7)

where � def= � i (� i + � e) � 1� e is the bulk conductivity tensor (see e.g. [29, 13,
15, 38]). Note that (2.7) decouples de computation ofVm from that of ue.
Under the isolating condition (2.5), (2.7) can be interpreted as the zeroth-order
approximation of (2.2) and (2.4) with respect to a parameter,0 � � < 1, which
measures the gap between the anisotropy ratios of the intra- and extracellular
domains (see [13, 15] for details). Although several simulation analysis (see
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6 M.A. Fern�andez & N. Zemzemi

e.g. [13, 38]) suggest that the monodomain approximation may be adequate for
some propagation studies in isolated hearts, it cannot be applied in all situations
since it neglects the extracellular feedback intoVm (see e.g. [17, 13, 38] and
Remark 2.3 below).

2.2 Coupling with torso: ECG modeling

The myocardium is surrounded by a volume conductor, 
T , which contains all
the extramyocardial regions (see Figure 1). As a matter of fact, ECG signals
monitor the electrical activity of the heart from potential measurements at the
torso skin surface �ext . The torso volume is commonly modeled as a passive con-
ductor (generalized Laplace equation), electrically coupled to the heart across
the heart-torso interface �. The resulting coupled system can be formulated in

! T

! H

! ext

!

Figure 1: Two-dimensional geometrical description: heart domain 
H , torso
domain 
 T (extramyocardial regions), heart-torso interface � and torso external
boundary � ext .

terms of Vm , ue, w and the torso potential uT , as follows (seee.g. [44, 40]):

@t w + g(Vm ; w) = 0 ; in 
 H � (0; T);
(2.8)

� m @t Vm + I ion (Vm ; w) � div( � i r Vm ) � div( � i r ue) = I app ; in 
 H � (0; T);
(2.9)

� div(( � i + � e)r ue) � div( � i r Vm ) = 0 ; in 
 H � (0; T);
(2.10)

� div( � T r uT ) = 0 ; in 
 T � (0; T);
(2.11)

� T r uT � n T = 0 ; on � ext � (0; T);
(2.12)

� i r Vm � n + � i r ue � n = 0 ; on � � (0; T);
(2.13)

uT = ue; on � � (0; T);
(2.14)

� er ue � n = � � T r uT � n T ; on � � (0; T);
(2.15)

Vm (x ; 0) = V 0
m (x ); w(x ; 0) = w0(x ); 8x 2 
 H : (2.16)

INRIA
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Here, � T stands for the conductivity tensor of the torso tissue andn T for the

outward unit normal to the external boundary � ext
def= @
 T n � (see Figure 1).

The boundary condition (2.12) states that no current can 
ow from the ex-
ternal torso surface � ext , whereas (2.14)-(2.15) enforce a perfect electric balance
between the heart and torso domains (seee.g. [48, 28, 40, 44]).

The coupled system of equations (2.8)-(2.16) is often known in the litera-
ture as full bidomain or coupled bidomainmodel (seee.g. [13, 44]). It can be
considered as the state-of-the-art in the modeling of the ECG or, equivalently,
the forward problem of cardiac electrophysiology (seee.g. [30, 40, 44]). The
interested reader is referred to [6] for the mathematical analysis of problem
(2.8)-(2.16), and to [30] (see also [4]) for a review of the numerical methods.

Remark 2.2 A common approach to reduce the computational complexity of
(2.8)-(2.16) consists in uncoupling the computation of (w; Vm ; ue) and uT , by
neglecting the electrical torso-to-heart feedback (seee.g. [13, 37, 30]). Thus, the
coupling condition (2.15) is replaced by

� er ue � n = 0 ; on � ; (2.17)

which amounts to work with an isolated bidomain model, as described in the
previous subsection. Thereafter, the torso potentialuT is recovered by solving
(2.11) with boundary conditions (2.12)-(2.14). Despite this approach is very ap-
pealing in terms of computational cost, numerical evidence has shown that it
can compromise the accuracy of the ECG signals (see e.g. [30, 40, 4] and the
numerical study of subsection§5.2.3). The heart-torso uncoupling approxima-
tion is often further simpli�ed by replacing the interface condition (2.14) by a
(multi-) dipole representation of the cardiac source (see e.g. [23, 26]).

Remark 2.3 The monodomain approximation (2.7) can be combined with the
heart-torso uncoupling framework of Remark 2.2 (see e.g. [26, 37, 4]). This
yields a simpli�ed mathematical model which allows a fully decoupled computa-
tion of Vm , ue and uT . However, as noticed in [4, Section 5.2] (see also [13]),
without the uncoupling assumption(2.17) the monodomain approximation be-
comes

� m @t Vm + I ion (Vm ; w) � div
�
� r Vm

�
= I app ; in 
 H ;

� r Vm � n = � � � er ue � n ; on � ;
(2.18)

where0 < � < 1 is a dimensionless parameter related to the local conductivities.
Note that in (2.18) Vm and ue are still coupled. Therefore, under the full heart-
torso coupling (2.14)-(2.15), the monodomain approximation does not reduce the
computational complexity with respect to(2.8)-(2.16).

3 Decoupled time-marching for the bidomain eq-
uation

In this section we analyze some time-discretization schemes for the isolated
bidomain system (2.1)-(2.6). The main feature of the analyzed schemes is that
they all allow a decoupled (Gauss-Seidel or Jacobi like) computation ofVm and
ue, without compromising stability.

RR n ° 7022



8 M.A. Fern�andez & N. Zemzemi

3.1 Preliminaries

In what follows, we will consider the usual Lebesgue and Sobolev spaces,L m (
)
and H m (
) respectively ( m > 0), for a domain 
 � R3. Then, for a given
X � @
 (with meas( X ) > 0), we de�ne H 1

X (
) as the subspace of H 1(
) with
vanishing trace onX . The L 2(
)-norm is denoted by k � k0;
 and the vanishing
mean value subspace ofL 2(
) by L 2

0(
).
Problem (2.1)-(2.6) can be cast into weak form as follows (seee.g. [6]): for

t > 0, �nd w(�; t) 2 L 1 (
 H ), Vm (�; t) 2 H 1(
 H ) and ue(�; t) 2 H 1(
 H ) \ L 2
0(
 H ),

such that
Z


 H

�
@t w + g(Vm ; w)

�
� dx = 0 ;

� m

Z


 H

�
@t Vm + I ion (Vm ; w)

�
� dx +

Z


 H

� i r (Vm + ue) � r � dx =
Z


 H

I app � dx ;
Z


 H

(� i + � e)r ue � r  dx +
Z


 H

� i r Vm � r  dx = 0

(3.19)
for all ( �; �;  ) 2 L 2(
 H ) � H 1(
 H ) �

�
H 1(
 H ) \ L 2

0(
 H )
�
.

3.2 Time semi-discrete formulations: decoupled time-mar-
ching schemes

Let N 2 N� be a given integer and consider a uniform partitionf [tn ; tn +1 ]g0� n � N � 1,

with tn
def= n� , of the time interval of interest (0 ; T), with time-step � def= T=N.

For a given time dependent functionX , the quantity X n denotes an approxima-

tion of X (tn ) and D � X n def= ( X n � X n � 1)=� the �rst order backward di�erence.

Moreover, we setI n
app

def= I app (tn ; �).
We propose to time semi-discretize (3.19) by combining a �rst order semi-

implicit treatment of the ionic current evaluation with an explicit (Gauss-Seidel
or Jacobi like) treatment of the coupling between Vm and ue. The resulting
schemes can be cast into a common frame as follows: For 0� n � N � 1, we
solve

1. Ionic state: �nd wn +1 2 L 1 (
 H ) such that
Z


 H

�
D � wn +1 + g(V n

m ; wn +1 )
�
� dx = 0 (3.20)

for all � 2 L 2(
 H ).

2. Transmembrane potential: �nd V n +1
m 2 H 1(
 H ) such that

� m

Z


 H

D � V n +1
m � dx +

Z


 H

� i r V n +1
m � r � dx +

Z


 H

� i r u?
e � r � dx

=
Z


 H

�
I n +1

app � I ion (V n
m ; wn +1 )

�
� dx (3.21)

for all � 2 H 1(
 H ).

INRIA
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3. Extracellular potential: �nd un +1
e 2 H 1(
 H ) \ L 2

0(
 H ),
Z


 H

(� i + � e)r un +1
e � r  dx +

Z


 H

� i r V ?
m � r  dx = 0 (3.22)

for all  2 H 1(
 H ) \ L 2
0(
 H ).

Note that the non-linear system (3.20) and the ionic current evaluation
I ion (V n

m ; wn +1 ) in (3.21) are decoupled from (3.21)-(3.22). This semi-implicit
treatment is quite popular in the literature (see e.g. [45, 31, 14, 2, 5, 19]). For
(u?

e; V ?
m ) = ( un +1

e ; V n +1
m ), the unknown potentials V n +1

m and un +1
e are implicit

coupled and, therefore, equations (3.21) and (3.22) have to be solved simulta-
neously (seee.g. [27, 46, 19, 19, 4]). The energy based stability analysis of this
semi-implicit scheme, using �rst and second order time discretizations, has been
recently reported in [19].

On the contrary, for ( u?
e; V ?

m ) = ( un
e ; V n +1

m ) or (u?
e; V ?

m ) = ( un
e ; V n

m ), the
electro-di�usive coupling becomes explicit and therefore (3.21) and (3.22) can
be solved separately: either sequentially (Gauss-Seidel) or in parallel (Jacobi).
Similar Gauss-Seidel like splittings have been proposed and successfully applied
in [45, 31, 2, 50]. The theoretical stability of the schemes is, however, not
established therein. To the best of our knowledge, the Jacobi like splitting has
not yet been considered in the literature.

The energy based stability analysis of these time splitting schemes is per-
formed in the next subsection.

Remark 3.1 The Gauss-Seidel and Jacobi like electro-di�usive splittings allow
a decoupled computation ofVm and ue without the need to resort to monodomain
approximations (see Remark 2.1).

3.3 Stability analysis

For the stability analysis below, we shall make use of the following simplifying
assumption (see [19, Section 3.2.2] and Remark 3.1 therein) on the structure of
the ionic functions g and I ion :

I ion (Vm ; w) � CI
�
jVm j + jwj

�
;

g(Vm ; w) � Cg
�
jVm j + jwj

� (3.23)

for all Vm ; w, and we set� def= 1 + 3 CI + Cg and � def= CI + 3Cg.
The next theorem states the energy based stability of the time-marching

schemes (3.20)-(3.22), in terms ofu?
e and V ?

m .

Theorem 3.2 Assume that (3.23) holds and that the conductivity tensors� i ; � e

are symmetric and positive-de�nite. Let f (wn ; V n
m ; un

e )gN
n =0 be solution of (3.20)-

(3.22) and C(T; �; � ) def= exp
�
T=(1 � � maxf �; � g)

�
. Then, under the condition

� <
1

maxf �; � g
; (3.24)

there follows:
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10 M.A. Fern�andez & N. Zemzemi

ˆ For (u?
e; V ?

m ) = ( un +1
e ; V n +1

m ):




 wn




 2

0;
 H
+ � m




 V n

m




 2

0;
 H
+2

n � 1X

m =0

�



 �

1
2
e r um +1

e




 2

0;
 H
+2

n � 1X

m =0

�



 �

1
2
i r (V m +1

m + um +1
e )




 2

0;
 H

� C(T; �; � )

 



 w0




 2

0;
 H
+ � m




 V 0

m




 2

0;
 H
+

n � 1X

m =0

�



 I m +1

app




 2

0;
 H

!

; (3.25)

with 1 � n � N .

ˆ For (u?
e; V ?

m ) = ( un
e ; V n +1

m ):




 wn




 2

0;
 H
+ � m




 V n

m




 2

0;
 H
+ �




 �

1
2
i r un

e




 2

0;
 H

+ 2
n � 1X

m =0

�



 �

1
2
e r um +1

e




 2

0;
 H
+

n � 1X

m =0

�



 �

1
2
i r (V m +1

m + um +1
e )




 2

0;
 H

� C(T; �; � )

 



 w0




 2

0;
 H
+ � m




 V 0

m




 2

0;
 H
+ �




 �

1
2
i r u0

e




 2

0;
 H
+

n � 1X

m =0

�



 I m +1

app




 2

0;
 H

!

;

(3.26)

with 1 � n � N .

ˆ For (u?
e; V ?

m ) = ( un
e ; V n

m ):




 wn




 2

0;
 H
+ � m




 V n

m




 2

0;
 H
+ �




 �

1
2
i r un

e




 2

0;
 H
+ �




 �

1
2
i r V n

m




 2

0;
 H

+ 2
n � 1X

m =0

�



 �

1
2
e r um +1

e




 2

0;
 H
� C(T; �; � )

� 


 w0




 2

0;
 H
+ � m




 V 0

m




 2

0;
 H

+ �



 �

1
2
i r V 0

m




 2

0;
 H
+ �




 �

1
2
i r u0

e




 2

0;
 H
+

n � 1X

m =0

�



 I m +1

app




 2

0;
 H

�
; (3.27)

with 1 � n � N .

Proof. See appendix§A.1.
We conclude this section with a series of remarks.

Remark 3.3 Theorem 3.2 shows that electro-di�usive Gauss-Seidel and Ja-
cobi splittings are energy stable under condition(3.24), as for the unsplit case
(u?

e; V ?
m ) = ( un +1

e ; V n +1
m ) (analyzed in [19]), but with slightly altered energy

norms. As a result, stability is not compromised.

Remark 3.4 The proof of Theorem 3.2 (see appendix§A.1) does not depend
on the time discretization considered in (3.20) and (3.21). Indeed, we do not
make use of any numerical dissipation produced by the scheme, a part from that
is directly provided by the splitting. Therefore, the backward Euler quotients,
D � wn +1 and D � V n +1

m , can be safely replaced by a second order backward di�er-
ence formula, and perform one correction (see e.g. [43, 41]) to recover overall
second order accuracy.
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Remark 3.5 The above stability result can be adapted, with minor modi�ca-
tions, to the case (u?

e; V ?
m ) = ( un +1

e ; V n
m ). The full Jacobi splitting, obtained

after replacing I ion (V n
m ; wn +1 ) by I ion (V n

m ; wn ) in (3.21) could also be consid-
ered.

Remark 3.6 Theorem 3.2 holds also for the fully discrete counterpart of(3.20)-
(3.22) obtained by discretizing in space using �nite elements (see subsection
§4.1).

4 Decoupled time-marching for ECG numerical
simulation

In this section, we introduce fully discrete schemes for the heart-torso system
(2.8)-(2.16), allowing a decoupled computation of the transmembrane, extracel-
lular and torso potentials. The main idea consists in combining the bidomain
splittings of the previous section, with a speci�c explicit Robin-Robin treatment
of the heart-torso coupling conditions (2.14)-(2.15).

4.1 Preliminaries

Problem (2.8)-(2.16) can be cast into weak form as follows (seee.g. [6]): for
t > 0, �nd w(�; t) 2 L 1 (
 H ), Vm (�; t) 2 H 1(
 H ), ue(�; t) 2 H 1(
 H ) \ L 2

0(
 H )
and uT (�; t) 2 H 1(
 T ) with ue(�; t) = uT (�; t) on �, such that

Z


 H

�
@t w + g(Vm ; w)

�
� dx = 0 ;

� m

Z


 H

�
@t Vm + I ion (Vm ; w)

�
� dx +

Z


 H

� i r (Vm + ue) � r � dx =
Z


 H

I app � dx ;
Z


 H

(� i + � e)r ue � r  dx +
Z


 H

� i r Vm � r  dx +
Z


 T

� T r uT � r � dx = 0

(4.28)
for all ( �; �;  ; � ) 2 L 2(
 H ) � H 1(
 H ) �

�
H 1(
 H ) \ L 2

0(
 H )
�

� H 1(
 T ) with
 = � on �.

Assume that 
 H and 
 T are polygonal domains and letfT H;h g0<h � 1 (fT T ;h g0<h � 1)
be a family of triangulations of 
 H (resp. 
 T ) satisfying the usual requirements
of �nite element approximations (see e.g. [18]). The subscript h 2 (0; 1] refer
to the level of re�nement of the triangulations. For the sake of simplicity and
without loss of generality, we assume that both families of triangulations are
quasi-uniform and that they match at the heart-torso interface �. We de�ne
X H;h (resp. X T ;h ) as an internal continuous Lagrange �nite element approx-
imation of H 1(
 H ) (resp. H 1(
 T )). We also introduce the standard �nite
element (heart-to-torso) lifting operator L h : X H;h ! X T ;h \ H 1

� ext
(
 T ), such

that L h  =  on � and L h  = 0 on � ext , for all  2 X H;h . Note that we have
the direct sum decomposition
�

( ; � ) 2 X H;h � X T ;h :  j � = � j �
	

=
��

 ; L h  
�

:  2 X H;h
	

�
�

(0; � ) : � 2 X T ;h \ H 1
� (
 T )

	
:

(4.29)
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12 M.A. Fern�andez & N. Zemzemi

In the stability analysis below, we shall make use of the following standard
discrete trace-inverse inequality (seee.g. [47]):

jjvjj2
0;@K �

Cti

h
jjvjj2

0;K 8v 2 X T ;h ; (4.30)

for all K 2 TT ;h , and with Cti > 0 a constant independent of the discretization
parameter h (but that might depend on the polynomial order).

By combining the semi-implicit time-marching schemes of section§3 with a
�nite element discretization in space, we can derive from (4.28) the following
fully discrete heart-torso scheme: for 0� n � N � 1, �nd wn +1 2 X H;h ,
V n +1

m 2 X H;h , un +1
e 2 X H;h \ L 2

0(
 H ) and un +1
T 2 X T ;h with un +1

T = un +1
e on

�, such that
Z


 H

�
D � wn +1 + g(V n

m ; wn +1 )
�
� dx = 0 ;

(4.31)

� m

Z


 H

D � V n +1
m � dx +

Z


 H

� i r (V n +1
m + u?

e) � r � dx =
Z


 H

�
I n +1

app � I ion (V n
m ; wn +1 )

�
� dx ;

(4.32)
Z


 H

(� i + � e)r un +1
e � r  dx +

Z


 H

� i r V ?
m � r  dx +

Z


 T

� T r un +1
T � r � dx = 0

(4.33)

for all ( �; �;  ; � ) 2 X H;h � X H;h �
�
X H;h \ L 2

0(
 H )
�

� X T ;h with � =  on �.
Equivalently, using (4.29), the heart-torso subproblem (4.33) can be split into
two coupled, torso (Dirichlet) and heart (Neumann), subproblems as follows:

ˆ Find un +1
T 2 X T ;h , with un +1

T = un +1
e on �, such that

Z


 T

� T r un +1
T � r � dx = 0 (4.34)

for all � 2 X T ;h , with � = 0 on �.

ˆ Find un +1
e 2 X H;h \ L 2

0(
 H ) such that
Z


 H

(� i + � e)r un +1
e �r  dx +

Z


 H

� i r V ?
m �r  dx = �

Z


 T

� T r un +1
T �r L h  dx

(4.35)
for all  2 X H;h \ L 2

0(
 H ).

Remark 4.1 The residual term in the right hand side of (4.35) amounts to
enforce the Neumann condition(2.15) in a variational consistent fashion.

Despite the Gauss-Seidel and Jacobi splittings allow a decoupled solution of
(4.31) and (4.32), the heart and torso potentialsun +1

e and un +1
T are still implic-

itly coupled. Therefore, problems (4.34) and (4.35) must be solved simultane-
ously: either monolithically, after assembling of (4.33) (seee.g. [45, 31, 46, 50])
or, in a partitioned fashion, by sub-iterating between them (seee.g. [9, 4]).
Note that, since the (quasi-static) time discretization (4.34) and (4.35) do not
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Decoupled time-marching schemes 13

generate numerical dissipation in time, the naive Dirichlet-Neumann explicit
coupling, obtained by enforcing

un +1
T = un

e on � ;

in the torso subproblem (4.34), might lead to numerical instability.
In the next subsection, we introduce an alternative heart-torso splitting,

based on Robin-Robin transmission conditions, which remains stable under a
hyperbolic-CFL like condition.

4.2 Fully discrete formulation: decoupled time-marching
schemes

We propose to combine the decoupling techniques introduced in section§3 with
the following explicit Robin-Robin splitting, derived from [1] (see also [10]), of
the heart-torso coupling:

� er un +1
e � n +


� t
T

h
un +1

e = � � T r un
T � n T +


� t
T

h
un

T ; on � ;

� T r un +1
T � n T +


� t
T

h
un +1

T = � T r un
T � n T +


� t
T

h
un +1

e ; on � ;
(4.36)

where 
 > 0 is a free Robin parameter, to be speci�ed later on, and� t
T is such

that � T j � = � t
T I .

Remark 4.2 We have assumed, without loss of generality, that the torso con-
ductivity tensor is isotropic on the boundary, � T j � = � t

T I , and that � t
T is

constant.

Thus, the resulting schemes read as follows: for 0� n � N � 1, we solve:

1. Ionic state: �nd wn +1 2 X h such that
Z


 H

�
D � wn +1 + g(V n

m ; wn +1 )
�

� dx = 0 (4.37)

for all � 2 X h .

2. Transmembrane potential: �nd V n +1
m 2 X h such that

� m

Z


 H

D � V n +1
m � dx +

Z


 H

� i r V n +1
m � r � dx +

Z


 H

� i r u?
e � r � dx

=
Z


 H

�
I n +1

app � I ion (V n
m ; wn +1 )

�
� dx (4.38)

for all � 2 X h .

3. Extracellular potential: �nd un +1
e 2 X h such that

Z


 H

(� i + � e)r un +1
e � r  dx +

Z


 H

� i r V ?
m � r  dx +


� t
T

h

Z

�
un +1

e  ds

= �
Z

�
� T r un

T � n T  ds +

� t

T

h

Z

�
un

T  ds (4.39)

for all  2 X h .
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4. Torso potential: �nd un +1
T 2 X h

Z


 T

� T r un +1
T �r � dx +


� t
T

h

Z

�
un +1

T � ds =
Z

�
� T r un

T �n T � ds+

� t

T

h

Z

�
un +1

e � ds

(4.40)
for all � 2 X h .

Contrarily to (4.31)-(4.33), the cardiac subproblem (4.37)-(4.39) can be
solved independently of the torso subproblem (4.40). In particular, the choices
(u?

e; V ?
m ) = ( un

e ; V n +1
m ) or (u?

e; V ?
m ) = ( un

e ; V n
m ) lead to a fully decoupled compu-

tation of wn +1 , V n +1
m , un +1

e and un +1
T . In other words, the four subproblems

(4.37)-(4.40) are decoupled and can be solved sequentially.
The energy based numerical stability of these schemes is addressed in the

next subsection.

Remark 4.3 The choices (u?
e; V ?

m ) = ( un
e ; V n +1

m ) or (u?
e; V ?

m ) = ( un
e ; V n

m ) in
(4.37)-(4.40) allow a fully decoupled computation ofwn +1 , V n +1

m , un +1
e and

un +1
T without the need to resort to monodomain and uncoupling approximations

(see Remark 2.3).

4.3 Stability analysis

We address here the energy based stability of the heart-torso coupling schemes
(4.37)-(4.40). Hence, in order to alleviate the exposition, we denote byE 0

H

�
u?

e; V ?
m

�

(resp. E n
H

�
u?

e; V ?
m

�
) the discrete bidomain energy at steps 0 (resp.n), arising

in the stability estimates provided by Theorem 3.2. For instance, in the case
(u?

e; V ?
m ) = ( un

e ; V n
m ), we have

E 0
H

�
u?

e; V ?
m

� def=



 w0




 2

0;
 H
+ � m




 V 0

m




 2

0;
 H
+ �




 �

1
2
i r V 0

m




 2

0;
 H
+ �




 �

1
2
i r u0

e




 2

0;
 H
;

E n
H

�
u?

e; V ?
m

� def=



 wn




 2

0;
 H
+ � m




 V n

m




 2

0;
 H
+ �




 �

1
2
i r un

e




 2

0;
 H
+ �




 �

1
2
i r V n

m




 2

0;
 H

+ 2
n � 1X

m =0

�



 �

1
2
e r um +1

e




 2

0;
 H
;

and similarly for the rest.
The next theorem states the main result of this section.

Theorem 4.4 Assume that the hypothesis of Theorem 3.2 hold and that the
torso conductivity tensor � T is symmetric and positive-de�nite. Let

��
wn ; V n

m ; un
e ; un

T

�	 N
n =0

be solution of (4.37)-(4.40). Then for


 > 2Cti ; (4.41)

the following estimate holds

E n
H

�
u?

e; V ?
m

�
+ �


� t
T

h




 un

T




 2

0;� +
n � 1X

m =0

�



 �

1
2
T r um +1

T




 2

0;
 T
+

n � 1X

m =0

�

� t

T

2h




 um +1

T � um +1
e




 2

0;�

� C(T; �; � )

 

E 0
H

�
u?

e; V ?
m

�
+ �


� t
T

h




 u0

T




 2

0;� + �



 �

1
2
T r u0

T




 2

0;
 T
+

n � 1X

m =0

� kI m +1
app k2

0;
 H

!

;

(4.42)
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with 1 � n � N . In particular, (4.42) ensures the energy based stability of the
explicit heart-torso coupling (4.37)-(4.40) under the condition � = O(h).

Proof. See appendix§A.2.

Remark 4.5 The above proof does not make use of any numerical dissipation
apart from that directly provided by the explicit Robin-Robin splitting (4.36).
Note that this is particularly well adapted to the heart-torso coupling(2.8)-
(2.16), since the quasi-static elliptic equations(2.9) and (2.10) do not generate
numerical dissipation in time.

Remark 4.6 The 
ux terms in (4.39) and (4.40) can be evaluated face-wise,
i.e. as broken integrals, or using a discrete variational expression, as in(4.35).
Hence,

R
� � T r un

T �n T  and
R

� � T r un
T �n T � , can be safely replaced by

R

 T

� T r un
T �

r L h  and
R


 T
� T r un

T � r L h � , respectively.

5 Numerical results

In this section we illustrate, via numerical experiments, the stability and accu-
racy of the time decoupling schemes analyzed in the previous sections. Subsec-
tion §5.1 reports on numerical investigations with an academic mono-dimensional
test problem. Numerical results based on anatomical heart and torso geometries
are presented in subsection§5.2.

5.1 Mono-dimensional study

In this subsection we illustrate numerically the convergence behavior of the de-
coupling schemes considered above. We limit the study to the mono-dimensional
case, which allows to consider highly accurate reference solutions at a moderate
computational cost. Subsection§5.1.2 is devoted to electro-di�usive splittings
analyzed in section§3, whereas the convergence of the heart-torso decoupling
schemes, introduced in section§4, is investigated in subsection§5.1.3.

5.1.1 Simulation data

We consider a variant of the mono-dimensional test case introduced in [19,
Section 4.1], all parameters and quantities are dimensionless. In (2.1)-(2.6) and
(2.8)-(2.16), we take 
 H = [0 ; L ], 
 T = [ L; 2L ], L = 40, T = 11, ue(0) = 0 and
uT (2L) = 0. The phenomenological FitzHugh-Nagumo model [20, 35] is used
as ionic model:

I ion (Vm ; w) = w +
V 3

m

3
� Vm ;

g(Vm ; w) = �
�

v � Vm � �

�
;

with � = 0 :1, � = 1 and 
 = 0 :5. The remaining parameters are

Am = � � 1; Cm = �; � i = � e = 1 ; � T (x) = x=L 8x 2 
 T ;

and the initial condition is chosen as

�
V 0

m ; w0�
=

(
�

�
1:2879; 0:5758

�
in

�
0; 3:5

�
;

2 in
�
3:5; L

�
:
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The corresponding solution involves the propagating wave fronts depicted in
Figure 2. Continuous P1 Lagrange �nite elements are used for the discretization
in space and we take
 = 0 :1 in (4.39)-(4.40).
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Figure 2: Transmembrane potential at time T = 11 obtained with the isolated
bidomain model (left). Heart and torso potentials at the same time instant
obtained with the full bidomain (heart-torso) model (right).

5.1.2 Isolated heart

The isolated bidomain equations (2.1)-(2.6) are here approximated in time using
the schemes (3.20)-(3.22). For comparison purposes, we shall refer to each of
these schemes with the following terminology:

ˆ Coupled: (u?
e; V ?

m ) = ( un +1
e ; V n +1

m );

ˆ Gauss-Seidel: (u?
e; V ?

m ) = ( un
e ; V n +1

m );

ˆ Jacobi: (u?
e; V ?

m ) = ( un
e ; V n

m ).

In order to illustrate the time convergence behavior (i.e. with respect to � ) of
these schemes, we have reported in Figure 3 the transmembrane potential error,
at �nal time T, kV ref

m � V N
m k0;
 H , for di�erent values of � . A �ne enough space

resolution, h = 2 � 10� 3, has been used in order to limit the impact of the space
discretization error in the convergence history. The reference numerical solution
V ref

m has been generated with the Coupled scheme and a very small time-step
size, � = 10 � 4.

Figure 3 shows that the Coupled, the Gauss-Seidel and the Jacobi time-
marching schemes all provide the expected �rst order accuracyO(� ) in time.
Therefore, the considered electro-di�usive splittings do not compromise the time
convergence rate. Note that, at a given time-step size, Gauss-Seidel is slightly
more accurate than Jacobi and Coupled than Gauss-Seidel. Somehow, this
accuracy shifting is in agreement with the energy-norm weakening observed in
the stability analysis of section §3 (see Remark 3.3).

5.1.3 Heart-torso coupling

We now investigate the convergence behavior of the time-marching schemes
introduced in section §4. We shall refer to each of these schemes using the
following terminology:
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Figure 3: Time convergence history of the transmembrane potential error for
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space grid,h = 2 � 10� 3).
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schemes.

ˆ Full coupling: (u?
e; V ?

m ) = ( un +1
e ; V n +1

m ) in (4.31)-(4.33);

ˆ Robin: (u?
e; V ?

m ) = ( un +1
e ; V n +1

m ) in (4.37)-(4.40);

ˆ Gauss-Seidel-Robin: (u?
e; V ?

m ) = ( un
e ; V n +1

m ) in (4.37)-(4.40);

ˆ Jacobi-Robin: (u?
e; V ?

m ) = ( un
e ; V n

m ) in (4.37)-(4.40);
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For the convergence study, a reference heart-torso numerical solution has been
generated with the Full coupling scheme and a �ne space-time resolution,� =
5 � 10� 5 and h = 2 � 10� 3.

The Full coupling scheme is expected to yield an overallO(h+ � ) convergence
rate, irrespectively of h and � . However, for the Robin schemes (4.37)-(4.40),
the penalty 1=h involved in the explicit Robin treatment introduces a non-
standard coupling between space and time discretizations. Indeed, a formal
truncation analysis shows that the leading consistency order isO(�=h). As a
result, the hyperbolic-CFL stability condition � = O(h) of Theorem 4.4 might
not be enough to ensure convergence. This behavior is illustrated numerically in
Figure 4(a), where we have reported the following errors, at timeT, k� T r (uref

T �
uN

T )k0;
 T , k� er (uref
e � uN

e )k0;
 H , kV ref
m � V N

m k0;
 H for the Full coupling and
Robin schemes, in terms ofh with �=h = 2 :56. As indicated above, the torso
error remains constant for the Robin scheme. Instead, we can take� = O(h2)
to obtain an overall consistency ofO(h), which can be considered optimal for
piecewise a�ne space approximations. This is illustrated in Figure 4(b): Robin,
Gauss-Seidel-Robin and Jacobi-Robin all yield the expected �rst order torso
accuracyO(h) with �=h 2 � 12. Note that, in this case, the Full coupling scheme
provides a superior accuracyO(h2). This suggests that, for the considered set of
discretization parameters, the error is mainly driven by the time discretization.
In Figures 4(c) and 4(d) (and also in Figure 4(a)) we can observe that all
the considered methods provide practically the same accuracy on the heart
potentials Vm and ue.

In summary, the superior stability properties (compared to Dirichlet-Neumann)
and computational cost reduction (compared to Full coupling) featured by the
proposed Robin heart-torso decoupling schemes come with a price: a condition
� = O(h2) is required to guarantee an overallO(h) convergence rate. We shall
see, in the tree-dimensional study of the next section, that these schemes are
well-suited to simulate accurate ECG signals.

5.2 Three-dimensional study

Results for the isolated bidomain model using the time-marching procedures of
section§3 are presented in subsection§5.2.2. Subsection§5.2.3 demonstrates the
capabilities of the splitting schemes introduced in section§4 to provide accurate
12-lead ECG signals.

5.2.1 Simulation data

The simulations are performed with the anatomical data and the model param-
eters used in [11, 12]. For the sake of conciseness we only report here the main
ingredients (full details are given in [11, 12]).

The computational heart and torso meshes were obtained starting from the
Zygote (www.3dscience.com) anatomical model, using the 3-matic software
(www.materialise.com ) to obtain computationally-correct surface meshes. The
mesh, displayed in Figure 5, contains the heart, lung, bones and remaining
extramyocardial tissue. They have been obtained by processing the surface
meshes withYams[21] and GHS3D[22]. The volume heart and torso meshes are
made of 542 000 and 1 242 000 tetrahedra, respectively.
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Figure 5: Cut view of the heart-torso computational mesh: heart (red) lungs
(green), bone (blue) and remaining tissue (apricot).

The bidomain model parameters are given in Table 1, where� l
i ;e (resp. � t

i ;e)
denotes the scalar intra- and extracelluar longitudinal (resp. transverse) conduc-
tivities. Table 2 provides the conductivity parameters for the torso (supposed
isotropic).

Am (cm� 1) Cm (mF) � l
i (S cm� 1) � l

e (S cm� 1) � t
i (S cm� 1) � t

e (S cm� 1)

500 10� 3 3:0 � 10� 3 3:0 � 10� 3 3:0 � 10� 4 1:2 � 10� 3

Table 1: Bidomain model parameters.

� t
T (S cm� 1) � l

T (S cm� 1) � b
T (S cm� 1)

6:0 � 10� 4 2:4 � 10� 4 4:0 � 10� 5

Table 2: Torso conductivity parameters: tissue (t), lungs (l) and bone (b).

As in [4], a rescaled version of the phenomenological two-variable model pro-
posed by Mitchell and Schae�er in [33] is considered as ionic model. Functions
g and I ion are then given by

I ion (Vm ; w) = � w
(Vm � Vmin )2(Vmax � Vm )

� in (Vmax � Vmin )
+

Vm � Vmin

� out (Vmax � Vmin )
;

g(Vm ; w) =

8
><

>:

w
� open

�
1

� open (Vmax � Vmin )2 if Vm < Vgate ;

w
� close

if Vm � Vgate ;

RR n ° 7022



20 M.A. Fern�andez & N. Zemzemi

where the values of the free parameters� in , � out , � open , � close, Vgate are reported
in Table 3, and Vmin , Vmax are scaling constants (-80 and 20 mV, respectively).

� in � out � open � RV
close � LV � endo

close � LV � epi
close Vgate

4.5 90 100 120 140 105 -67

Table 3: Mitchell-Schae�er ionic model parameters.

Continuous P1 Lagrange �nite elements are used for the space discretization
of both the heart and the torso equations. The time step size was �xed to
� = 0 :25 ms and the Robin parameter, for the heart-torso coupling scheme
(4.37)-(4.40), to 
 = 0 :1.

5.2.2 Isolated heart

The isolated bidomain equations (2.1)-(2.6) are approximated using the time-
marching schemes (3.20)-(3.22). We shall refer to each of these schemes using
the terminology of subsection§5.1.2.
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Figure 6: Time course of the transmembrane potential (left) and extracellular
potential (right) at a given location in the epicardium.

The time course of the transmembrane and extracellular potentials at a
given epicardial location are displayed in Figure 6. We can observe that the
simulations are numerically stable and the curves are practically indistinguish-
able. Somehow, this is not surprising since, as shown in subsection§5.1.2, the
electro-di�usive Gauss-Seidel and Jacobi splittings still provide optimal �rst or-
der accuracy. A slight di�erence can be seen after axis rescaling, as shown in
Figure 7.

The results reported in Table 4 con�rm that the electro-di�usive Gauss-
Seidel and Jacobi splittings do not introduce additional constraints on the time
step size� , as predicted by Theorem 3.2.

5.2.3 12-lead ECG

The simulated 12-lead ECG signals obtained with the explicit Robin coupling
procedures (4.37)-(4.40) are here compared with those obtained using full heart-
torso coupling (seee.g. [30, 4]) and heart-torso uncoupling (seee.g. [4] and
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Figure 7: Time course, after axis rescaling, of the transmembrane potential
(left) and extracellular potential (right) at a given location in the epicardium.

X X X X X X X X XX� (ms)
scheme

Coupled Gauss-Seidel Jacobi

0.25 3 3 3
0.50 3 3 3
1.00 3 3 3
1.25 5 5 5
1.50 5 5 5

Table 4: Stability sensitivity to the time step size � . Symbol 5 indicates nu-
merical instability.

Remark 2.2). For comparison purposes, the latter will be termed asUncoupling
and, for the rest, we will employ the terminology used in subsection§5.1.3.

In Figures 8 and 9 we provide the complete 12-lead ECG signals obtained
using the full coupling (black) and uncoupling (red) approaches. We can ob-
serve that the uncoupling approach is unable to reproduce the correct signal
amplitude, which is indeed magni�ed by a factor close to 2 in practically all the
ECG leads. Moreover, the shape mismatch in some of the leads is clearly visible:
the QRS complex in V3 and the T-wave in V2, for instance. Similar observa-
tions have been reported in [4] (see also [30]), for both healthy and pathological
conditions.

In the next paragraphs, we shall see that (for an equivalent computational
cost) the Robin based explicit coupling introduced in section§4 provides much
more accurate ECG signals. For illustration purposes, in Figure 13, we have re-
ported some snapshots of the body surface potentials obtained with the Jacobi-
Robin scheme. Figure 12 shows a posterior view of the potential within the
torso and the heart. The potential matching at the heart-torso interface is
clearly visible.

In Figures 10 and 11 we compare the simulated 12-lead ECG signals obtained
with full coupling (black) to those obtained with fully decoupled Jacobi-Robin
scheme (red). The improved accuracy with respect to the uncoupling approach
is striking. Indeed, the signals are practically indistinguishable in all the 12

RR n ° 7022



22 M.A. Fern�andez & N. Zemzemi

-1

 0

 1

 2

 3

 0  200  400

I

-1

 0

 1

 2

 3

 0  200  400

II

-1

 0

 1

 2

 0  200  400

III

-3

-2

-1

 0

 1

 0  200  400

aVR

-1

 0

 1

 2

 0  200  400

aVL

-1

 0

 1

 2

 3

 0  200  400

aVF

Figure 8: Simulated ECG signals (standard and augmented leads) obtained
using heart-torso full coupling (black) and uncoupling (red).

leads. Some minor di�erences are visible in the QRS complex of V2 and V3.
Similar results are obtained with the Robin and Gauss-Seidel-Robin schemes,
that we omit for the sake of conciseness. Nevertheless, in order to illustrate the
impact of the level of decoupling in the accuracy of the ECG, we have reported in
Figure 14 a rescaled comparison of the QRS complex (left) and T-wave (right) of
the �rst ECG lead, obtained with the full coupling, Robin, Gauss-Seidel-Robin
and Jacobin-Robin approaches. No signi�cant di�erences are observed in the
T-wave, whereas slightly better results are obtained with the Robin approach
in the QRS-complex.

The 12-lead ECG signals of a pathological situation, a left bundle branch
block (LBBB), have been also computed to illustrate the robustness of the
proposed splitting schemes. Figures 15 and 16 presents the corresponding signals
obtained with the full coupling (black) and Jacobi-Robin (red) schemes. Once
more, the decoupled scheme shows very good accuracy and stability.

Finally, we go further in the investigation of the robustness of the schemes,
by considering di�erent heart and torso geometries and model parameters. In
particular, we keep 
 = 0 :1 as in the previous cases. To this aim, we revisit
the ECG numerical simulations recently reported in [4]. Figures 17 and 18 the
corresponding signals obtained with the full coupling (black) and Jacobi-Robin
(red) schemes. Once more, both signals are in excellent agreement. Similar
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Figure 9: Simulated ECG signals (chest leads) obtained using heart-torso full
coupling (black) and uncoupling (red).

results have been obtained for a LBBB pathology, that we omit here for the
sake of conciseness.

6 Conclusion

We have introduced and analyzed a series of �rst order semi-implicit time-
marching schemes for the cardiac bidomain equations, either isolated or coupled
with generalized Laplace equation for the torso. The main feature of the ana-
lyzed schemes is that they all allow a fully decoupled computation of the ionic
state, the transmembrane potential, the extracellular potential and the torso
potential.

For the isolated bidomain model, Theorem 3.2 shows that the Gauss-Seidel
and Jacobi splittings do not compromise the stability of the resulting schemes;
they simply alter the energy norm. Moreover, the time step restrictions are
only dictated by the semi-implicit treatment of then non-linear reaction terms.
The numerical results, reported in subsections§5.1.2 and§5.2.2, con�rmed these
theoretical �ndings and demonstrated that the splitting preserves the �rst-order
time accuracy O(� ) of the original electro-di�usive coupling.

We extended these time-marching techniques to the numerical simulation of
the ECG, by combining the Gauss-Seidel and the Jacobi like bidomain spplitings
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Figure 10: Simulated ECG signals (standard and augmented leads) obtained
using heart-torso full coupling (black) and the Jacobi-Robin scheme (red).

with an explicit Robin-Robin heart-torso coupling. This speci�c treatment of
the heat-torso coupling is well-suited, particularly, since the time discretization
of the two (quasi-static) elliptic equations does not produce numerical dissi-
pation and, therefore, conventional Dirichlet-Neumann explicit coupling might
lead to numerical instability. Theorem 4.4 shows that the proposed splitting
schemes are stable under an additional hyperbolic-CFL condition� = O(h).
As regards the convergence behavior, the numerical study of subsection§5.1.3
showed that a condition � = O(h2) is required to guarantee an overall asymp-
totic rate of O(h) (optimal for piecewise a�ne approximations in space). This
limitation comes from the semi-implicit treatment of the stabilizing penalty
term scaling with 1=h. In spite of that, the numerical study reported in sec-
tion 5.2.3, using anatomical heart and torso geometries, demonstrated that the
Gauss-Seidel-Robin and the Jacobi-Robin splittings are able to provide accu-
rate 12-lead ECG signals, both for a healthy and a pathological condition. Note
that this is a major advantage with respect to the conventional heart-torso
uncoupling approximation, which (for a similar computational cost) is known
to provide inaccurate ECG signals (seee.g. [30, 40, 4]). Somehow the dis-
cretization error introduced by the Robin heart-torso decoupling is negligible
with respect to the modeling error involved in the heart-torso uncoupling ap-
proximation. The robustness of the proposed splitting schemes has been also
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Figure 11: Simulated ECG signals (chest leads) obtained using heart-torso full
coupling (black) and the Jacobi-Robin scheme (red).

Figure 12: Posterior view and cut plane of the torso and heart potentials at
time t = 10 ms.

illustrated with numerical experiments based on di�erent model parameters and
heart/torso geometries.

The theoretical and numerical study of this paper is limited to discretizations
yielding �rst order accuracy in time. Some insights into feasible extensions to
higher order are commented in Remark 3.4. Although the present stability
analysis holds irrespectively of the original time discretization scheme, it does
depend on the (�rst order) extrapolation involved in the splittings. As a result,
the generalization of the present analysis to hight order extrapolations seems
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Figure 13: Snapshots of the body surface potentials at timest = 10, 32, 40,
200, 250 and 310 ms (from left to right and top to bottom).

not straightforward. Further numerical investigations would certainly help to
clarify this issue and could be the topic of future work.
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Figure 14: Comparison of the QRS complex (left) and T-wave (right) of the
�rst ECG lead: Full coupling (black), Robin (green), Gauss-Seidel-Robin (blue),
Jacobin-Robin (red).

Figure 15: Simulated ECG signals (standard and augmented leads) for a LBBB
pathology, obtained using heart-torso full coupling (black) and the Jacobi-Robin
scheme (red).
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Figure 16: Simulated ECG signals (chest leads) for a LBBB pathology, obtained
using heart-torso full coupling (black) and the Jacobi-Robin scheme (red).

A Proofs of the stability results

A.1 Proof of Theorem 3.2

Under assumptions (3.23) and (3.24), the stability estimate (3.25), for the mono-
lithic case (u?

e; V ?
m ) = ( un +1

e ; V n +1
m ), can be straightforwardly derived from the

analysis reported in [19] (see also [47]). Therefore, we only detail here the proofs
of (3.26) and (3.27).

Let �rst consider the Gauss-Seidel like decoupling (u?
e; V ?

m ) = ( un
e ; V n +1

m ).
By testing (3.20)-(3.22) with � (wn +1 ; V n +1

m ; un +1
e ) and after summation of the
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Figure 17: Simulated ECG signals (standard and augmented leads) obtained
using heart-torso full coupling (black) and the Jacobi-Robin scheme (red). Ge-
ometry data and model parameters from [4].

resulting expressions we have:
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(A.43)

where the square roots�
1
2
e ; �

1
2
i are well de�ned since� i ; � e are symmetric and

positive-de�nite tensors (seee.g. [42]). We now provide appropriate bounds for
terms I 1 and I 2.
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Figure 18: Simulated ECG signals (chest leads) obtained using heart-torso full
coupling (black) and the Jacobi-Robin scheme (red). Geometry data and model
parameters from [4].

As regards the �rst term, we have
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(A.44)
On the other hand, from (3.23), for the second term can be bounded as follows
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As a result, inserting (A.44) and (A.45) into (A.43), yields
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Estimate (3.26) then follows by applying Gronwall's lemma (seee.g. [24, Lemma
5.1]) under condition (3.24).

Finally, let consider the Jacobi like decoupling (u?
e; V ?

m ) = ( un
e ; V n

m ). In this
case, estimate (A.43) becomes
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(A.46)

The new term I 3 can be bounded similarly to I 1, that is,
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(A.47)
Therefore, by inserting (A.44), (A.45) and (A.47) into (A.46), there follows that
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Estimate (3.27) then holds, under condition (3.24), by replacing indexn by m,
summing over 0� m � n � 1 and applying Gronwall's lemma. This completes
the proof.

A.2 Proof of Theorem 4.4

Since the stability of the heart-torso coupling (4.39)-(4.40) does not depend on
the choice ofu?

e and V ?
m , we restrict ourselves to the case (u?

e; V ?
m ) = ( un

e ; V n
m ).

The rest of estimates can be derived in a similar fashion.
By testing (3.20)-(3.22) with ( �; �;  ; � ) = � (wn +1 ; V n +1

m ; un +1
e ; un +1

T ) and
after summation of the resulting expressions we have:
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Terms I 1, I 2 and I 3 have already been estimated in the proof of Theorem 3.2,
so we only need to provide bounds forI 4 and I 5.

Term I 4 is treated as follows (see [1, 10]),
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(A.49)
On the other hand, using (4.30), for the last term we have
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Therefore, by inserting (A.44), (A.45), (A.47), (A.49) and (A.50) into (A.48)
we get the estimate
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Estimate (4.42) then follows, under conditions (4.41) and (3.24), by replacing
index n by m, summing over 0� m � n � 1 and applying Gronwall's lemma,
which completes the proof.
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