M. Astorino, F. Chouly, and M. A. Fernández, Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics, SIAM Journal on Scientific Computing, vol.31, issue.6
DOI : 10.1137/090749694

URL : https://hal.archives-ouvertes.fr/inria-00361284

T. M. Austin, M. L. Trew, and A. J. Pullan, Solving the Cardiac Bidomain Equations for Discontinuous Conductivities, IEEE Transactions on Biomedical Engineering, vol.53, issue.7, pp.1265-72, 2006.
DOI : 10.1109/TBME.2006.873750

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Networks and Heterogeneous Media, vol.1, issue.1, pp.185-218, 2006.
DOI : 10.3934/nhm.2006.1.185

M. Boulakia, S. Cazeau, M. A. Fernández, J. Gerbeau, and N. Zemzemi, Mathematical Modeling of Electrocardiograms: A Numerical Study, Annals of Biomedical Engineering, vol.98, issue.1???3, pp.1071-1097, 2010.
DOI : 10.1007/s10439-009-9873-0

URL : https://hal.archives-ouvertes.fr/inria-00400490

M. Boulakia, M. A. Fernández, J. Gerbeau, and N. Zemzemi, Towards the Numerical Simulation of Electrocardiograms, Functional Imaging and Modeling of the Heart, number 4466 in Lecture Notes in Computer Science, pp.240-249, 2007.
DOI : 10.1007/978-3-540-72907-5_25

M. Boulakia, M. A. Fernández, J. Gerbeau, and N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiograms modelling, Applied Math. Res. Exp, issue.abn002, p.28, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00701786

Y. Bourgault, Y. Coudì, and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, vol.10, issue.1, pp.458-482, 2009.
DOI : 10.1016/j.nonrwa.2007.10.007

URL : https://hal.archives-ouvertes.fr/hal-00101458

Y. Bourgault, M. Ethier, V. G. Le, and . Blanc, Simulation of Electrophysiological Waves with an Unstructured Finite Element Method, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.649-661, 2003.
DOI : 10.1051/m2an:2003051

M. Buist and A. Pullan, Torso Coupling Techniques for the Forward Problem of Electrocardiography, Annals of Biomedical Engineering, vol.30, issue.10, pp.1299-1312, 2002.
DOI : 10.1114/1.1527045

E. Burman and M. A. Fernández, Stabilization of explicit coupling in fluidstructure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg, vol.198, pp.5-8766, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00247409

D. Chapelle, M. A. Fernández, J. Gerbeau, P. Moireau, J. Sainte-maire et al., Numerical Simulation of the Electromechanical Activity of the Heart, Functional Imaging and Modeling of the Heart, pp.357-365, 2009.
DOI : 10.1016/j.compstruc.2006.05.003

URL : https://hal.archives-ouvertes.fr/inria-00542779

D. Chapelle, M. A. Fernández, J. Gerbeau, P. Moireau, and N. Zemzemi, A 3D model for the electromechanical activity of the heart, 2009.

J. Clements, J. Nenonen, P. K. Li, and B. M. Horacek, Activation Dynamics in Anisotropic Cardiac Tissue via Decoupling, Annals of Biomedical Engineering, vol.32, issue.7, pp.984-990, 2004.
DOI : 10.1023/B:ABME.0000032461.80932.eb

P. , C. Franzone, and L. F. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. Models Methods Appl. Sci, vol.14, issue.6, pp.883-911, 2004.

P. Colli-franzone, L. F. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models, Mathematical Biosciences, vol.197, issue.1, pp.35-66, 2005.
DOI : 10.1016/j.mbs.2005.04.003

P. , C. Franzone, and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro-and macroscopic level In Evolution equations, semigroups and functional analysis, Progr. Nonlinear Differential Equations Appl. Birkhäuser, vol.50, pp.49-78, 2002.

I. R. Efimov, R. A. Gray, and B. J. Roth, Virtual Electrodes and Deexcitation: New Insights into Fibrillation Induction and Defibrillation, Journal of Cardiovascular Electrophysiology, vol.82, issue.3, pp.339-353, 2000.
DOI : 10.1109/10.277272

A. Ern and J. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

M. Ethier and Y. Bourgault, Semi-Implicit Time-Discretization Schemes for the Bidomain Model, SIAM Journal on Numerical Analysis, vol.46, issue.5, p.2443, 2008.
DOI : 10.1137/070680503

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-465, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

P. Frey, Yams: A fully automatic adaptive isotropic surface remeshing procedure, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00069922

P. L. George, F. Hecht, and E. Saltel, Fully automatic mesh generator for 3D domains of any shape, IMPACT of Computing in Science and Engineering, vol.2, issue.3, pp.187-218, 1990.
DOI : 10.1016/0899-8248(90)90012-Y

R. M. Gulrajani, Models of the electrical activity of the heart and computer simulation of the electrocardiogram, Crit. Rev. Biomed. Eng, vol.16, issue.1, pp.1-6, 1988.

J. G. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary Navier???Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization, SIAM Journal on Numerical Analysis, vol.27, issue.2, pp.353-384, 1990.
DOI : 10.1137/0727022

N. Hooke, C. S. Henriquez, P. Lanzkron, and D. Rose, Linear algebraic transformations of the bidomain equations: Implications for numerical methods, Mathematical Biosciences, vol.120, issue.2, pp.127-145, 1994.
DOI : 10.1016/0025-5564(94)90049-3

G. Huiskamp, Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle, IEEE Transactions on Biomedical Engineering, vol.45, issue.7, pp.847-855, 1998.
DOI : 10.1109/10.686792

J. P. Keener and K. Bogar, A numerical method for the solution of the bidomain equations in cardiac tissue, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.234-241, 1998.
DOI : 10.1063/1.166300

W. Krassowska and J. C. Neu, Effective boundary conditions for syncytial tissues, IEEE Transactions on Biomedical Engineering, vol.41, issue.2, pp.143-150, 1994.
DOI : 10.1109/10.284925

L. J. Leon and B. M. Horácek, Computer model of excitation and recovery in the anisotropic myocardium, Journal of Electrocardiology, vol.24, issue.1, pp.1-15, 1991.
DOI : 10.1016/0022-0736(91)90077-Y

G. T. Lines, M. L. Buist, P. Grottum, A. J. Pullan, J. Sundnes et al., Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, vol.5, issue.4, pp.215-239, 2003.
DOI : 10.1007/s00791-003-0101-4

G. T. Lines, P. Grøttum, and A. Tveito, Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso, Computing and Visualization in Science, vol.5, issue.4, pp.195-213, 2003.
DOI : 10.1007/s00791-003-0100-5

S. Linge, J. Sundnes, M. Hanslien, G. T. Lines, and A. Tveito, Numerical solution of the bidomain equations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.50, issue.4, pp.1931-1950, 1895.
DOI : 10.1109/TBME.2003.809505

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

M. Murillo and X. Cai, A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart, Numerical Linear Algebra with Applications, vol.11, issue.23, pp.261-277, 2004.
DOI : 10.1002/nla.381

J. S. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line stimulating nerve axon, Proc. IRE, pp.2061-2071, 1962.

M. Pennacchio and V. Simoncini, Efficient algebraic solution of reaction???diffusion systems for the cardiac excitation process, Journal of Computational and Applied Mathematics, vol.145, issue.1, pp.49-70, 2002.
DOI : 10.1016/S0377-0427(01)00535-0

M. Potse, B. Dubé, and M. Gulrajani, ECG simulations with realistic human membrane, heart, and torso models, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), pp.70-73, 2003.
DOI : 10.1109/IEMBS.2003.1279512

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.642.9507

M. Potse, B. Dube, J. Richer, A. Vinet, and R. M. Gulrajani, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2425-2435, 2006.
DOI : 10.1109/TBME.2006.880875

M. Potse, B. Dubé, and A. Vinet, Cardiac anisotropy in boundary-element models for the electrocardiogram, Medical & Biological Engineering & Computing, vol.3, issue.4, pp.719-729, 2009.
DOI : 10.1007/s11517-009-0472-x

A. J. Pullan, M. L. Buist, and L. K. Cheng, Mathematically modelling the electrical activity of the heart: From cell to body surface and back again, Pte. Ltd, 2005.
DOI : 10.1142/5859

N. Skouibine, K. Trayanova, and P. Moore, A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium, Mathematical Biosciences, vol.166, issue.1, pp.85-100, 2000.
DOI : 10.1016/S0025-5564(00)00019-5

R. A. Stephenson, On the uniqueness of the square-root of a symmetric, positive-definite tensor, J. Elasticity, vol.10, issue.2, pp.213-214, 1980.

H. J. Stetter, The defect correction principle and discretization methods, Numerische Mathematik, vol.11, issue.4, pp.425-443, 1978.
DOI : 10.1007/BF01432879

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. Mardal et al., Computing the electrical activity in the heart, 2006.

J. Sundnes, G. T. Lines, and A. Tveito, Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells, Mathematical Biosciences, vol.172, issue.2, pp.55-72, 2001.
DOI : 10.1016/S0025-5564(01)00069-4

J. Sundnes, G. T. Lines, and A. Tveito, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Mathematical Biosciences, vol.194, issue.2, pp.233-248, 2005.
DOI : 10.1016/j.mbs.2005.01.001

V. Thomée, Galerkin finite element methods for parabolic problems, of Springer Series in Computational Mathematics, 2006.
DOI : 10.1007/978-3-662-03359-3

L. Tung, A bi-domain model for describing ischemic myocardial D?C potentials, 1978.

M. Veneroni, Reaction???diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Analysis: Real World Applications, vol.10, issue.2, pp.849-868, 2009.
DOI : 10.1016/j.nonrwa.2007.11.008

E. J. Vigmond, R. Weber-dos-santos, A. J. Prassl, G. Deo, and . Plank, Solvers for the cardiac bidomain equations, Progress in Biophysics and Molecular Biology, vol.96, issue.1-3, pp.1-33, 2008.
DOI : 10.1016/j.pbiomolbio.2007.07.012

.. Mono-dimensional-study, 15 5.1.1 Simulation data, Heart-torso coupling, p.16

.. Three-dimensional-study, 18 5.2.1 Simulation data, p.20

I. Unité-de-recherche and . Lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche, 2004.

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399