
HAL Id: inria-00412519
https://inria.hal.science/inria-00412519v2

Submitted on 6 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A polynomial algorithm for a simple scheduling problem
at cross docking terminals

Ruslan Sadykov

To cite this version:
Ruslan Sadykov. A polynomial algorithm for a simple scheduling problem at cross docking terminals.
[Research Report] Inria. 2009. �inria-00412519v2�

https://inria.hal.science/inria-00412519v2
https://hal.archives-ouvertes.fr

A polynomial algorithm for a simple scheduling

problem at cross docking terminals

Ruslan Sadykov∗

INRIA Research Report

October 6, 2009

Abstract

At cross docking terminals, products from incoming trucks are sorted
according to their destinations and transferred to outgoing trucks using
a small temporary storage. Such terminals allow companies to reduce
storage and transportation costs in supply chain. This paper focuses on
the operational activities at cross docking terminals.

We consider the trucks scheduling problem with the objective to min-
imise the storage usage during the product transfer. We show that a
simplification of this NP-hard problem in which the arrival sequences of
incoming and outgoing trucks are fixed is polynomially solvable and pro-
pose a dynamic programming algorithm for it.

1 Introduction

Cross docking terminal is a distribution center carrying a considerably reduced
amount of stock in contrast to traditional warehouses. Incoming shipments
delivered by incoming trucks are unloaded, sorted and loaded onto outgoing
trucks waiting at the dock, which forward the shipments to the respective loca-
tions within the distribution system. Compared to traditional warehousing, a
cost intensive storage and retrieval of goods is eliminated by a synchronization
of inbound and outbound flows. An additional advantage of cross docking is
efficient usage of truck capacity (i.e. full loads) and the implementation of a
good scheduling system [1].

In this paper, we consider a simplified cross docking terminal with one re-
ceiving, one shipping door and a storage. The incoming trucks fully loaded
by products of different types arrive at the receiving door where the products
are unloaded. Each truck leaves the platform when it is fully unloaded. Each
unloaded product is processed and transferred to the shipping door if the out-
going truck currently staying there demands the products of this type and does

∗INRIA Bordeaux — Sud-Ouest, France, e-mail: Ruslan.Sadykov@inria.fr

1

not yet have enough of them. Otherwise, the unloaded product is transferred
to the temporary storage. Each outgoing truck can leave the door only if it is
fully loaded by products moved either directly from incoming trucks or from
the storage. The objective is to find the best arrival (or departure) order for
the whole set of incoming and outgoing trucks to increase the efficiency of the
cross docking terminal.

There are several papers in the literature which dealt with this scheduling
problem. Yu and Egbelu [4] developed a model for scheduling incoming and
outgoing trucks to minimise the makespan (i.e. the maximum completion time)
and proposed several heuristic algorithms for it. A simpler but similar problem
was considered by Boysen, Fliedner and Scholl [2]. They have proposed some
lower bounds and an exact decomposition approach for it. Maknoon, Baptiste
and Kone [3] concentrated on the objective function which minimizes the storage
cost in a simplified setting in which the sequences of incoming and outgoing
trucks are fixed and any outgoing truck demands the products of only one type.

We now define the problem formally. The number of incoming and outgoing
trucks are, respectively, n and m. The number of different product types is T .
We will denote the i-th incoming truck as Ii and the o-th outgoing truck as
Oo. There are several types of products. Each incoming truck Ii supplies ait

products of type t. Each outgoing truck Oo demands bot products of type t.
Let also To be the set of product types demanded by Oo, i.e. To = {t : bot > 0}.
We suppose that each outgoing truck demands products of at most q different
types, i.e. q = max1≤o≤m | To |. Note that, for each type t, the total number
of supplied products of this type should be not less than the total number of
demanded products of this type, otherwise at least one outgoing truck would
not be able to depart fully loaded.

A product of type t can be moved directly from an incoming truck at the
receiving door to an outgoing truck Oo at the shipping door if the number
of products of type t which are already in Oo is less than bot. Otherwise the
product should be transferred to the temporary storage at a cost ct. One product
of type t occupies a volume dt in the storage. The total volume of products
in the storage should not exceed its total capacity which is D. The problem
consists in finding a policy for unloading and loading products such that the
total cost is minimized. For convenience, an equivalent objectif is used which
is the maximization of the total cost of the directly transferred products. This
problem is NP-hard in the strong sense even for a very restricted case, as shown
in Appendix A.

Economically, the storage cost can be also interpreted as the difference be-
tween the time needed to transfer a product directly from an incoming to an
outgoing truck and via the intermediate storage. So, our objective function is
equivalent to the total processing cost. Although this objective is similar to the
makespan objective used in [2] and [4], the problems studied there are quite dif-
ferent. The main difference is that we do not allow any concurrent operations.
In contrast to this, for example in [4], on can at the same time discharge a prod-
uct from an incoming truck to the storage and load a product from the storage
onto an outgoing truck. As a result, transferring a product via the storage does

2

not always increase the objective function.
In the rest of the paper we concentrate on the problem in which the sequences

of incoming and outgoing trucks are fixed. Formally this means that, for each
i ∈ {1, . . . , n − 1}, the truck Ii departs before the arrival of Ii+1, and for each
o ∈ {1, . . . ,m− 1}, the truck Oo departs before the arrival of Oo+1.

Note that fixing sequences of incoming and outgoing trucks in problems
considered in [2] and [4] make them trivial, and thus polynomially solvable.
However, determining the computational complexity of our problem with fixed
sequences is not trivial at all. In [3], Maknoon at al. considered this problem
with some restrictions including q = 1, but left the complexity question open.

In this paper, we answer this question by presenting a polynomial dynamic
programming algorithm for the problem considered.

2 Preliminary observations

In the problem, we need to find an optimal policy which is characterized, among
others, by the departure order of trucks. Note that the departure order is fixed
within the set of incoming or outgoing trucks but not fixed within the set of all
trucks. A departure order of all trucks can be represented by a path in the graph
depicted in Figure 1. In this graph, each node (i, o) represents the situation in
which the trucks Ii and Oo are at the doors.

The path shown on this picture corresponds to the policy which is charac-
terized by the following departure order of trucks:

(I1, I2, I3,O1,O2, I4, I5,O3,O4, I6, . . . , In−1,O6, . . . ,Om−1, In,Om).

Some paths in the departure order graph are not feasible due to the following
storage constraints. First, for each t, the number of products of type t in the
storage should always be non-negative (all demanded products should be first
supplied). Second, the overall volume of products in the storage can never
exceed its capacity. We say the a node is infeasible if it does not belong to any
feasible path. Formally, a node (i, o) is infeasible if and only if

∃t :
i∑

k=1

akt <

o−1∑
p=1

bpt or
T∑

t=1

dt ·

(
max

{
0,

i−1∑
k=1

akt −
o∑

p=1

bpt

})
> D. (1)

From (1) it follows that

1. if two nodes (i′, o) and (i′′, o) such that i′ < i′′ are feasible then all nodes
(i, o) such that i′ ≤ i ≤ i′′ are feasible;

2. if two nodes (i, o′) and (i, o′′) such that o′ < o′′ are feasible then all nodes
(i, o) such that o′ ≤ o ≤ o′′ are feasible.

A possible situation of infeasible nodes (which are in black) is given in Fig-
ure 1. For a fixed o∗, we denote by fi(o∗) and li(o∗) the smallest and the largest

3

outgoing trucks

in
co

m
in

g
tr

uc
ks

1 2 3 4 5 6 · · · m

1

2

3

4

5

6

...

n

...
...

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

Figure 1: The departure order graph and an example of the path

values of i such that node (i, o∗) is feasible. In the same manner, for a fixed i∗,
we denote by fo(i∗) and lo(i∗) the smallest and the largest values of o such that
node (i∗, o) is feasible.

The next fact is very important and serves as the base for the algorithm.

Observation 1 There exists an optimal policy in which, each time trucks Ik

and Oj are at the doors, for each t, Ik transfers directly to Oj as many products
of type t as possible, i.e. the minimum between the number of products of type t
still available in Ik and the number of products of type t which are still demanded
by Oj.

It is easy to see that this observation is correct. Suppose, in an optimal policy,
Ik does not transfer to Oj z products of type t it can and “saves” them for
consequent outgoing truck(s). Then Oj is obliged to take these z products from
the storage. In the modified policy, these z products are transferred directly
from Ik to Oj , and products, transferred directly from Ik to consequent outgoing
truck(s) in the original policy, are taken from the storage. The cost of the
modified policy which comply with the observation do not increase.

We will call a policy which complies with Observation 1 direct first. Each
path in the departure order graph corresponds to exactly one direct first policy.

4

3 The algorithm

We now present a dynamic programming algorithm for the problem which finds
an optimal direct first policy.

Each state in our dynamic programming algorithm does not correspond to
a node in the departure order graph but to an edge, which a path can follow
just after “turning”. To clarify the presentation, we first present in Figure 2 the
underlying directed graph of the dynamic programming algorithm. For each
pair of incoming truck Ii and outgoing truck Oo, there is the “square node”
(i, o) and the “circle node” (i, o). Each node corresponds to a set of states of
the algorithm, each edge defines all possible moves between a state in the origin
of this edge and a state in the destination of this edge. The paths shown in
Figures 1 and 2 correspond to the same policy. Again, the infeasible nodes are
shown in black.

outgoing trucks

in
co

m
in

g
tr

uc
ks

1 2 3 4 5 6 · · · m

1

2

3

4

5

6

...

n

...
...

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

(1, 1)

(4, 1)

(4, 3)

(5, 3)

(5, 5)

(n, 6)

(n, m)

Figure 2: The underlying directed graph for the dynamic programming algo-
rithm

Each “square node” (i, o) in the graph in Figure 2 represents the situation

5

in which truck Ii has departed, truck Ii+1 is going to arrive, truck Oo is at the
shipping door, and Oo had arrived after the departure of the truck Ii−1. This
means that Oo could get products directly only from Ii.

In our dynamic programming algorithm, for each “square node” (i, o), we
define the states Sout(i, o, {ft}t∈To

), where ft is the number of products of type
t transferred directly by truck Ii to Oo.

Each “circle node” (i, o) represents the situation in which truck Oo has
departed, truck Oo+1 is going to arrive, truck Ii is at the shipping door, and
Ii had arrived after the departure of the truck Oo−1. This means that Ii could
ship products directly only to Oo.

In our dynamic programming algorithm, for each “circle node”, we define
the states Sinc(i, o, {ft}t∈To), where ft is the number of products of type t
transferred directly by truck Ii to Oo.

Now, every policy corresponds to exactly one sequence of states or a states
path. Therefore, in the following, we will use the same notation for a states path
and the corresponding policy. A path which corresponds to a direct first policy,
we will call a direct first path. For each state Sout(i, o, {ft}t∈To

) and Sinc(i, o,
{ft}t∈To), we keep and update the objective function value of the best path
to this state. Let V out(i, o, {ft}t∈To) and V inc(i, o, {ft}t∈To) be these values.
To solve the problem, we need to find the best path terminating at a state
Sout(n,m, {ft}t∈To

) or Sout(n,m, {ft}t∈To
).

To simplify the presentation, when there is no ambiguity, we will use the
shortened notations Sinc(i, o, f), Sout(i, o, f), V inc(i, o, f), and V out(i, o, f),
where f is a vector.

Note that, in the algorithm, we handle only the states belonging to at least
one direct first path. The total number of such states can be different even for
instances of the same size.

Suppose we are in a state Sinc(i, o, f). From this state it is only possible
to move to a state Sout(i, o′, f ′), where max{o + 1, fo(i + 1)} ≤ o′ ≤ lo(i) and
fo(n+ 1) = m. When we make such a move, truck Ii transfers directly to every
truck Oj , o < j ≤ o′, as much products as possible.

The formal procedure for making moves from a state Sinc(i, o, f) is presented
in Algorithm 1. The complexity of this procedure is O

(
m(q+ρ)

)
, where ρ is the

number of operations needed to check if a state has been already encountered
earlier in the algorithm. We will compute ρ later in the paper.

Suppose now we are in a state Sout(i, o, f). From this state it is only possible
to move to a state Sinc(i′, o, f ′), where max{i + 1, fi(o + 1)} ≤ i′ ≤ li(o), and
fi(m + 1) = n. When we make such a move, truck Oo receive directly from
every truck Ik, i < k ≤ i′, as much products as possible.

The formal procedure for making moves from a state Sinc(i, o, f) is presented
in Algorithm 2. The complexity of this procedure is O

(
n(q + ρ)

)
.

In the full algorithm, presented as Algorithm 3, we look through all the
created states and make all possible moves from them as described above. To
obtain an optimal policy, it suffices to store, for each state, along the value V ,
the path which gives it. At the end of the algorithm, the best path stored for one
of the states Sout(n,m, f) and Sinc(n,m, f) corresponds to an optimal policy.

6

for t = 1 to T do r[t]← ait;1

for t ∈ To do r[t]← ait − ft;2

v← V inc(i, o, f);3

for j← o+ 1 to lo(i) do4

for t ∈ Tj do5

dt[t]← min{r[t], bjt};6

v← v + ct · dt[t];7

if state Sout(i, j, {dt[t]}t∈Tj
) does not exist then8

create it: V out(i, j, {dt[t]}t∈Tj
)← −∞;9

if j ≥ fo(i+ 1) and v > V out(i, j, {dt[t]}t∈Tj
) then10

V out(i, j, {dt[t]}t∈Tj
)← v;11

for t ∈ Tj do r[t]← r[t]− dt[t];12

Algorithm 1: Algorithm to make moves from a state Sinc(i, o, f).

for t ∈ To do r[t]← ft;1

v← V out(i, o, f);2

for k← i+ 1 to li(o) do3

for t ∈ To do4

dt[t]← min{bot − r[t], akt};5

v← v + ct · dt[t];6

if state Sinc(k, o, {dt[t]}t∈To
) does not exist then7

create it: V inc(k, o, {dt[t]}t∈To)← −∞;8

if k ≥ fi(o+ 1) and v > V inc(k, o, {dt[t]}t∈To) then9

V inc(k, o, {dt[t]}t∈To
)← v;10

for t ∈ To do r[t]← r[t] + dt[t];11

Algorithm 2: Algorithm to make moves from a state Sout(i, o, f).

7

for t ∈ T1 do dt[t]← min{a1t, b1t};1

v←
∑

t∈T1
ct · dt[t];2

V inc(1, 1, {dt[t]}t∈T1)← v;3

run Algorithm 1 for the state Sinc(1, 1, {dt[t]}t∈T1);4

V out(1, 1, {dt[t]}t∈T1)← v;5

run Algorithm 2 for the state Sout(1, 1, {dt[t]}t∈T1);6

for i← 1 to n do7

if i > 1 then8

for o← fo(i) to min{lo(i− 1), lo(i)− 1} do9

run Algorithm 1 for all created states Sinc(i, o, f);10

if i < n then11

for o← max{fo(i) + 1, fo(i + 1)} to lo(i) do12

run Algorithm 2 for all created states Sinc(i, o, f);13

return max
{
V out(n,m, f), V inc(n,m, f)

}
14

Algorithm 3: The full algorithm

We will now determine the complexity of the algorithm. The critical point
here is estimating the total number of created states in the algorithm.

To do it, we will need the following lemma. But first we introduce some
additional notations. Let Pout(i, o, f) and Pinc(i, o, f) be the sets of paths
which teminate at states Sout(i, o, f) and Sinc(i, o, f). Let also Pout(i, o, f, o′, f ′)
be the set of paths which terminate at state Sout(i, o, f) and contain state
Sinc(i, o′, f ′) such that o′ < o. Similarly, let Pinc(i, o, f, i′, f ′) be the set of
paths with terminate at state Sinc(i, o, f) and contains state Sout(i′, o, f ′) such
that i′ < i. Finally, for a path P , we will denote as P− its sub-path in which
the terminating state of P is excluded.

Lemma 1

1. For any two direct first paths P ′ ∈ Pout(i, o, f ′) and P ′′ ∈ Pout(i, o, f ′′),
f ′ 6= f ′′, if, for some type t′ ∈ To, f ′t′ < f ′′t′ , then f ′t ≤ f ′′t for all types
t ∈ To.

2. Analogously, for any two direct first paths P ′ ∈ Pinc(i, o, f ′) and P ′′ ∈
Pinc(i, o, f ′′), f ′ 6= f ′′, if, for some type t′ ∈ To, f ′t′ < f ′′t′ , then f ′t ≤ f ′′t
for all types t ∈ To.

Proof. We will prove this lemma by induction.
Suppose that the claim 2 is true for i ≤ i∗ and o < o∗. We will prove the claim

1 for i = i∗ and o = o∗. Without loss of generality, let P ′ ∈ Pout(i∗, o∗, f ′, o′, f̄ ′)
and P ′′ ∈ Pout(i∗, o∗, f ′′, o′′, f̄ ′′), f ′ 6= f ′′. As f ′t′ < f ′′t′ , truck Oo∗ receives less
products of type t′ from Ii∗ in policy P ′ than in policy P ′′. Therefore, Ii∗

transfers to trucks Oo, o′ ≤ o < o∗ more products of type t′ in policy P ′ than to

8

all trucks Oo, o′′ ≤ o < o∗, in policy P ′′. As P ′ and P ′′ are direct first policies,
there are two possible cases:

• o′ = o′′ and f̄ ′t′ > f̄ ′′t′ . Then, as P ′− ∈ Pinc(i∗, o′, f̄ ′) and P ′′− ∈ Pinc(i∗, o′, f̄ ′′),
by claim 2, f̄ ′t ≥ f̄ ′′t for all types t ∈ To′ .

• o′ < o′′.

In both cases, as P ′ and P ′′ are direct first policies, for every t, truck Ii∗

does not transfer more products of type t to all trucks Oo, o′′ ≤ o < o∗ in policy
P ′ than to all trucks Oo, o′′ ≤ o < o∗, in policy P ′′, and f ′t ≤ f ′′t for all types
t ∈ To∗ .

Analogously, if we suppose that claim 1 is true for i < i∗ and o ≤ o∗, we can
prove the claim 2 for i = i∗ and o = o∗.

As the base of the reduction for the claim 1, we can take the case i = 2. In
this case, we can only have o′ < o′′, as, for any fixed o∗, there is only one path
which terminates at a state Sinc(2, o∗, f).

Analogously, as the base of the reduction of the claim 2, we can take the
case o = 2.

Proposition 1 The total number of created states in Algorithm 3 is O(qnm2).

Proof. In the following, when a path contains a state Sout(i, o, f) or a state
Sinc(i, o, f), we will say that, for each type t,

• if t ∈ To, the path contains triple (i, o, f)out
t or (i, o, f)inc

t ;

• if t 6∈ To, the path contains triple (i, o, 0)out
t or (i, o, 0)inc

t .

Let now fix type t∗. We will call triples (i, o, 0)out
t∗ , (i, o, bot∗)out

t∗ , (i, o, ait∗)inc
t∗ ,

and (i, o, 0)inc
t∗ t∗-canonical. There are O(nm) such triples in total.

Consider a direct first path P ′ which contains a triple (i′, o′, f ′)out
t∗ . In the

corresponding policy, truck Oo′ receives directly from every truck Ii, i′ < i ≤ i′′,
νout

i′io′t∗(f
′) products of type t∗, where

νout
i′io′t∗(f

′) = max

{
0,min

{
ait∗ , bo′t∗ − f ′ −

i−1∑
k=i′+1

akt∗

}}
.

Therefore, path P contains a triple (i′′, o′, νout
i′io′t∗(f

′))inc
t∗ , where i′′ > i′. An

important observation is that there is at most one value i′′ for which such triple
is not t∗-canonical. We can say that any triple (i′, o′, f ′)out

t∗ “generates” at most
one triple (i′′, o′, f ′′)inc

t∗ such that i′′ > i′ which is not t∗-canonical.
Consider now a direct first path P ′ which contains a triple (i′, o′, f ′)inc

t∗ . In
the corresponding policy, truck Ii′ transfers directly to every truck Oo, o′ < o ≤
o′′, νinc

i′o′ot∗(f
′) products of type t∗, where

νinc
i′o′ot∗(f

′) = max

0,min

bot∗ , ai′t∗ − f ′ −
o−1∑

j=o′+1

bjt∗


 .

9

Therefore, path P contains a triple (i′, o′′, νinc
i′o′ot∗(f

′))out
t∗ , where o′′ > o′. Again,

an important observation is that there is at most one value o′′ for which such
triple is not t∗-canonical. We can say that any triple (i′, o′, f ′)inc

t∗ “generates”
at most one triple (i′, o′′, f ′)out

t∗ such that o′′ > o′ which is not t∗-canonical.
We now fix a value o∗. From the above analysis, it follows that every t∗-

canonical triple (i, o, f)inc
t∗ or (i, o, f)out

t∗ such that o ≤ o∗ “generates” at most one
non-t∗-canonical triple (i′, o∗, f ′)inc

t∗ or (i′, o∗, f ′)out
t∗ such that i′ > i. Therefore,

the total number of different triples (i, o∗, f)inc
t∗ or (i, o∗, f)out

t∗ contained in paths
in Pinc(i, o∗, f) and Pout(i, o∗, f) is O(nm).

A straightforward analysis now indicates that the total number of states in
the algorithm does not exceed O((nm2)q). However, it is possible to get rid of
the exponent q by the following reasoning.

We fix values i∗ and o∗, and define a complete lexicographic order for states
Sout(i∗, o∗, f). A state Sout(i∗, o∗, f ′) is lexicographically smaller than a state
Sout(i∗, o∗, f ′′), f ′′ 6= f ′, if and only if f ′t ≤ f ′′t for all t ∈ To. It is always
possible to compare in this way two such states, as we cannot have f ′t′ < f ′′t′
and f ′t′′ > f ′′t′′ for any two types t′, t′′ ∈ To∗ by Lemma 1. Now, the total
number of states Sout(i∗, o∗, f) is equal to the sum, for every type t ∈ To∗ , of
different triples (i∗, o∗, f)out

t , as, in order to pass from a state Sout(i∗, o∗, f) to
the lexicographically next state, at least one of the values ft, t ∈ To∗ should be
increased. Analogously, the total number of states Sinc(i∗, o∗, f) is equal to the
sum, for every type t ∈ To∗ , of different triples (i∗, o∗, f)inc

t .
Consequently, for every fixed value o∗, the total number of states Sout(i, o∗, f)

and Sinc(i, o∗, f) is equal to O(qnm). From this, we conclude that the total num-
ber of states is O(qnm2).

We now return to the question of estimation of ρ, which is the number
of operations needed to check whether a state Sout(i, o, f) or Sinc(i, o, f) has
been already created. From the proof of Proposition 1, remember that, given
fixed values i∗ and o∗, the number of different states Sout(i∗, o∗, f) is not more
than O(qnm). As these states can be lexicographically ordered, the storage
and the search of these states can be done using a binary tree. Therefore,
to check whether a state Sout(i, o, f) or, analogously, a state Sinc(i, o, f), has
been already created and retrieve the value V out(i, o, f) or V inc(i, o, f) we need
O
(

log(qnm)
)

operations. This concludes the estimation of the complexity of
the algorithm.

Proposition 2 The complexity of the dynamic programming algorithm is
O
(
qnm2(n+m)(q + logm+ log n)

)
.

4 Conclusion

In this paper, we presented a polynomial dynamic programming algorithm for
a scheduling problem with fixed sequences of incoming and outgoing trucks to

10

minimise the storage cost in cross docking terminal. This algorithm allows to
determine the computational complexity of the problem for the first time.

Although polynomial, the complexity of the algorithm is high. However, a
theoretical estimation of the number of created states can be much higher than
what we have in reality. Therefore, we hope that the algorithm may be used in
practice especially when coupled with some bounding procedure and when q is
small. As an indirect evidence of this, we can mention good experimental results
reported in [3] for an algorithm proposed for the case q = 1 of our problem.

One interesting direction for a future research is to try to find a linear pro-
gramming formulation for the problem, since it was shown to be polynomially
solvable. Such a formulation would help a lot in developing methods for solving
more practical generalisation of the problem in which the truck sequences are
not fixed.

References

[1] U. M. Apte and S. Viswanathan. Effective cross dockng for improving dis-
tribution efficiencies. International Journal of Logistics Research and Appli-
cations, 3:291–302, 2000.

[2] N. Boysen, M. Fliender, and A. Scholl. Scheduling inbound and outbound
trucks at cross docking terminals. OR Spectrum, page to appear, 2008.

[3] M.Y. Maknoon, P. Baptiste, and O. Kone. Optimal loading and unloading
policy in cross docking platform. In Proceedings of 13th IFAC Symposium on
Information Control Problems in Manufacturing, pages 1263–1268, Moscow,
Russia, June 2009.

[4] W. Yu and P. J. Egbelu. Scheduling of inbound and outbound tracks in cross
docking systems with temporary storage. European Journal of Operations
Research, 184:377–396, 2008.

Appendix A NP-hardness proof

Here we consider the general problem in which the sequences of trucks are not
fixed. We show the this problem is NP-hard in the strong sense even for the
case in which each incoming truck supplies products of at most two types, each
outgoing truck demands products of at most one type, all the storage costs and
product volumes are unitary, and the storage capacity is unlimited. We will
perform a reduction from the 3-partition problem.

Remember that, in the 3-partition problem, we are given an integer B and
a set of 3n integers r1, r2, . . . , r3n such that

∑3n
i=1 ri = Bn and B/4 < ri < B/2

for each i. We need to decide whether there exists a partition of the set of
indexes {1, 2, . . . , 3n} into n sets {A1, A2, . . . , An} such that

∑
i∈Aj

ri = B,
∀j = 1, . . . , n. Note that, if such a partition exists, each subset Aj contains
exactly 3 indexes.

11

Given an instances of the 3-partition problem, we now define the correspond-
ing instance of our cross docking problem. There are 3n incoming, 4n outgoing
trucks (3n of the first type, n of the second type) and two types of products.
The supplies and demands are the following:

ai1 = 1, i = 1, . . . , 3n,
ai2 = 2n+ ri, i = 1, . . . , 3n,
bi1 = 1, i = 1, . . . , 3n,
bi2 = 0, i = 1, . . . , 3n,
bi1 = 0, i = 3n+ 1, . . . , 4n,
bi2 = 6n+B, i = 3n+ 1, . . . , 4n.

We claim that there exists a 3-partition if and only if at most n products
are transferred via the storage.

Suppose that there exists a 3-partition {A1, A2, . . . , An}, whereAj = {ij1, ij2, ij3}.
Then, the trucks are sequenced in n groups. Group j, 1 ≤ j ≤ n, includes set Aj

of incoming trucks and outgoing trucks O2j−1, O2j and O3n+j . The departure
order of group j is the following

O2j−1, Iij1 , Iij2 ,O3n+j , Iij3 ,O2j .

As rij1 + rij2 + rij3 = B, the incoming trucks transfer 6n+B products of type
2 directly to truck O3n+j , Iij1 transfers 1 product of type 1 directly to O2j−1,
and Iij3 transfers 1 product of type 1 directly to O2j . Only 1 product of type 1
is transferred to the storage from Iij2 . These transfers are depicted in Figure 3.
As there are n groups, n products in total are transferred to the storage and
then put to the outgoing trucks O2n+1, . . . ,O3n, which are sequenced at the
end.

Iij2 Iij3Iij1

storage

O3n+jO2j−1 O2j

1 1

1

r
i
j1 +

2n

r
i
j
2

+
2
n

r i j3
+

2n

Figure 3: Product transfers within a group j of trucks

Suppose now there is a sequence of trucks such that at most n products
are transferred through the storage. Then, every outgoing truck Oi, i =
3n + 1, . . . , 4n must receive products directly from at least 3 incoming trucks.

12

Otherwise it would receive from the storage at least 2n products of type 2.
Therefore, at least 1 product of type 1 goes to the storage while each such truck
Oi is supplied, and the total number of products of type 1 transferred through
the storage is at least n, meaning that all products of type 2 should be trans-
ferred directly. Then, each incoming truck can transfer directly products of
type 2 to exactly one outgoing truck. Otherwise, between two outgoing trucks
of type 2, only one outgoing truck can receive a product of type 1 directly, and
the total number of products of type 1 transferred through the storage would
exceed n. We conclude that there should exist a partition of incoming trucks
into triples {A1, A2, . . . , An} such that

∑
i∈Aj

ri = B. Otherwise there would
exist a triple Aj such that rij1 +rij2 +rij3 < B, and the outgoing truck which is
supplied by the incoming trucks in Aj would need to take at least one product
of type 2 from the storage.

13

