O. Devillers, P. Franco, and . Preparata, Evaluating the cylindricity of a nominally cylindrical point set, Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pp.518-527, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00412600

O. Devillers and P. Ramos, COMPUTING ROUNDNESS IS EASY IF THE SET IS ALMOST ROUND, International Journal of Computational Geometry & Applications, vol.12, issue.03, pp.229-248, 2002.
DOI : 10.1142/S0218195902000840

URL : https://hal.archives-ouvertes.fr/hal-00795064

H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science, vol.10, 1987.
DOI : 10.1007/978-3-642-61568-9

R. L. Graham, An efficient algorith for determining the convex hull of a finite planar set, Information Processing Letters, vol.1, issue.4, pp.132-133, 1972.
DOI : 10.1016/0020-0190(72)90045-2

T. J. Rivlin, Approximation durch Kreise, Computing, vol.9, issue.2, pp.93-104, 1979.
DOI : 10.1007/BF02253130

M. Sharir and E. Welzl, A combinatorial bound for linear programming and related problems, Proc. 9th Sympos
DOI : 10.1007/3-540-55210-3_213