Convex Tours of Bounded Curvature.
Abstract
We consider the motion planning problem for a point constrained to move along a smooth closed convex path of bounded curvature. The workspace of the moving point is bounded by a convex polygon with m vertices, containing an obstacle in a form of a simple polygon with n vertices. We present an O(m+n) time algorithm finding the path, going around the obstacle, whose curvature is the smallest possible.
Origin : Files produced by the author(s)