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Filtering Axiom Links for Proof

Nets

Richard Moot

Abstract
An important problem for proving statements in multimodal categorial

grammar is that even when using proof nets — which improve upon proof
search in natural deduction and sequent calculus by identifying all equivalent
proofs — the number of possible axiom links to consider is still enormous. We
will propose several efficient strategies to reduce the number of axiom links
and will evaluate the resulting combined strategy against a large number of
random, provable Lambek calculus statements and find that we eliminate
97.92% of the planar axiom links which do not correspond to any proof net.

Keywords categorial grammar, proof nets, proof search,

Lambek calculus

1.1 Introduction

The multimodal Lambek calculus (Moortgat, 1997) is a powerful and
flexible grammar framework. Unfortunately, it has some sublogics —
like the associative Lambek calculus L or the associative, commuta-
tive Lambek-Van Benthem calculus LP — which are known to be NP
complete (Pentus, 2006, Kanovich, 1991).

In this article we will look at proof nets for the multimodal Lam-
bek calculus and investigate ways to reduce the number of axiom links
we need to perform in order to decide whether a statement Γ ⊢ C is
derivable or not.

We will then evaluate the effect of these reductions on a large number
of randomly generated Lambek calculus sequents and find that the
combined filtering strategies filter our the large majority of the incorrect
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axiom links, that is, those axiom links which are not part of any proof
net, showing that — in spite of the theoretical complexity — in practice
we can parse Lambek grammar while making just a small percentage
of incorrect axiom links.

The rest of this paper is structured as follows. Section 1.2 will give
a short introduction to parsing statements of the multimodal Lambek
calculus using proof nets. Section 1.3 will discuss four strategies for
reducing the total number of axioms links. The first two: acyclicity
and connectedness (Section 1.3.1) and first-order approximation (Sec-
tion 1.3.2) are fairly well-known and I will touch upon them only briefly.
The final two strategies are new. We will show how to compute the rela-
tions between pairs of unary connectives using a context free grammar
in Section 1.3.3 and how to eliminate axiom links which cannot be part
of a total linking using methods from constraint logic programming in
Section 1.3.4. Section 1.4 will evaluate the combined algorithm against
a set of derivable Lambek calculus sequents.

1.2 Proof nets

We will follow Moot and Puite (2002) in our presentation of proof nets
in this section. Constructing a proof structure for a statement in the
multimodal Lambek calculus is done in three phases:

1. decompose the lexical formulas as well as the goal formula,

2. connect positive and negative atomic formulas,

3. decide whether the resulting proof structure is a proof net, using
a correctness criterion.

We will look at each of the three phases in turn. Decomposing the
lexical formulas is deterministic and linear in the number of connec-
tives in the statement. Depending on whether a complex formula is a
hypothesis (antecedent formula) or a conclusion (succedent formula),
only one link can apply and we can simply descend the formula tree
until we reach the leaves, which are the atomic formulas.

The full set of links is shown in Table 1. There are two links for
every connective: one for when it occurs as a hypothesis (portrayed
at the bottom; antecedents formulas start their unfolding here) and
one for when it occurs as a conclusion (portrayed at the top; the goal
formula starts its unfolding here).

The rule for B\iA as a hypothesis is simply the modus ponens rule,
saying it combines with a B on its left to form an A. The rule for B\iA
as a conclusion is its exact opposite: it allows us to use a B hypothesis
to prove an A. Of course, we’ll need to check that the B occurs as the
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TABLE 1 Logical links for the multimodal Lambek calculus

leftmost sister of the A node and this is where the contractions will
come in later.

Figure 1 shows an example unfolding of the sequent

np, (np\s)/np, ((np\s)/np)\(np\s) ⊢ s

which would be a lexical lookup for a sentence like ‘Robin wet him-
self’. The numbers on the atomic formulas are not a part of the proof
structure, they serve only to help us refer to the different formulas later.

This is a slightly simplified version of the abstract proof structures
of Moot and Puite (2002). We have suppressed as much information
as possible: the information on the internal nodes, the lexical formula
(both of them can be uniquely reconstructed from the unfolding) and
the premiss/conclusion distinction of the individual nodes in Figure 1
as well (since we need it only when there is just a single antecedent
formula).

The second part of constructing a proof net is identifying the ax-
iomatic formulas: we select a positive and a negative atomic formula of
the same type and identify their vertices, thereby connecting different
parts of the graph. For this second step, there are potentially many
solutions and the main part of this paper will focus on strategies for
reducing these possibilities as much as possible.

Figure 1 shows the possibilities for the axioms links by portraying
them in a grid: every row represents the axiom link possibilities for
a negative formula, whereas every column represents the axiom link
possibilities for a positive formula. A full axiom linking corresponds to
putting exactly one mark in every row and column. In graph theory,
this is usually called a perfect matching.
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FIGURE 1 Formula unfolding and axiom link possibilities for
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The final step is checking if the resulting graph is a proof net, by
contracting all par links, drawn with the black center, as shown in
Table 2. When all par links have been contracted, the result will be a
tree with the lexical entries used as its leaves.

In case it is impossible to contract a par link, the proof structure we
are dealing with is not a proof net and therefore, we know there is no
proof of the corresponding sequent.

1.3 Filtering Axiom Links

Simple combinatorics shows that there are n! possible axiom linkings
for 2n atomic formulas. In Figure 1, there are therefore 2 possibilities
for s and 6 possibilities for np. This makes exhaustive search prohibitive
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FIGURE 2 Links excluded by the acyclicity and connectedness condition

for all but the most trivial statements.
However, there are several possibilities to rule out axiom links which

can never contribute to a contractible proof structure. We discuss some
known and some new strategies in the following sections.

1.3.1 Acyclicity and Connectedness

Danos and Regnier (1989) introduce the acyclicity and connectedness
criterion for proof nets of multiplicative linear logic. Give that the cat-
egorial logics we work with are all sublogics of multiplicative linear
logic (in the sense that any derivable sequent in multimodal catego-
rial grammar has a derivable image in multiplicative linear logic) we
can use the fact that anything underivable in MLL is underivable in
categorial grammar as well.

Moot (2004) shows how an adaptation of the Floyd-Warshall algo-
rithm can be used to select from the total set of possible axiom links
those that produce acyclic and connected proof structures. The com-
plexity of this application of the Floyd-Warshall algorithm is O(n4).

Figure 2 shows, in dark gray and black, the links which are excluded
when we use this condition. We remark that this leaves just one possi-
bility for linking the s formulas.

1.3.2 First-order Approximation and Word Order

Even though the acyclicity and connectedness check is an effective test,
it is based on the ‘worst case’ scenario of a fully associative and commu-
tative logic. A second strategy for removing axiom links which cannot
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contribute to constructing a proof net is to use first-order approxima-
tion to take constraints on word order into account. This has been used
at least since LLoré and Morrill (1995) (though in a slightly different
context).

Moot and Piazza (2001) propose an embedding of the Lambek cal-
culus using first-order quantifiers and show how several linguistic phe-
nomena like quantifier scope ambiguities, wh extraction and island con-
straints — for which there is no satisfactory treatment in the Lambek
calculus — can be given an analysis using first-order quantifiers as well.

As long as we make sure that the structural rules permit a subset
of the word order possibilities allowed by the first order variables, this
strategy is correct.

Figure 2 shows the first-order labels assigned to the atomic formulas
of our example sequent and — in light grey and black — the axiom
links which are excluded using the first order constraints for L, which
is justified given that we have a sequent which is derivable even in the
non-associative Lambek calculus. In the figure, the numbers 0, 1, . . .
correspond to constants referring to string positions, lower-case letters
c, d, . . . to constants introduced by the par links and upper-case letters
X, Y, . . . correspond to variables.

However, we can assign slightly more subtle first-order variables and
constants. An example for the treatment of extraction is shown in Fig-
ure 3. Here, we simply use the solution of Moot and Piazza (2001)
for wh words. The first-order variables indicate that the word ‘which’,
when it occurs between string positions 1 and 2, is looking for an n
starting at some position X directly to its left and an s ending at po-
sition Y directly to its right. Inside this s we can use an np which can
take up any position. The final result will then be an n between X (the
leftmost position of the n argument) and Y (the rightmost position of
the s argument). Note that we still need to add the appropriate struc-
tural rules to our grammar in order to derive medial extraction cases
(see Moortgat, 1997, for a solution).

Given that we can check the first order constraints simply by unifi-
cation of variables and constants, meaning O(1) per cell in the axiom
matrix, the total complexity of the first-order constraints is O(n2) for
2n atomic formulas.

1.3.3 The Unary Connectives

The unary connectives are a powerful addition to the multimodal Lam-
bek calculus. They can be used to license structural rules but the rela-
tions between the logical formulas they induce can be used to encode
linguistic features, as done, for example by Heylen (1999), or to restrict
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scope possibilities, as done, for example by Bernardi and Moot (2003).
In certain cases, we use the unary modalities just for the derivability

relations between the different types. Figure 4 summarizes the different
relations between unary prefixes of up to four. Note that 3232A and
2323A are not displayed, given that they are equivalent to 32A and
23A respectively1.

By extending the unary prefixes further we can generate an intricate
hierarchy of formulas, but for many applications the seven formula
recipes in Figure 4 suffice. However, even for the formulas we’ve shown
here it’s not directly clear which pairs of them are derivable.

Fortunately, there is a simply way to check the contractibility of a
sequence of unary formulas. First, we convert this sequence to a string
as follows (with ǫ being the empty string and . the concatenation op-
eration)

Definition 1 Let A and B be two formulas which are the identical up

1Technically the graph of Figure 4 is the transitive reduction of the derivability
relation where all equivalent formulas (which would correspond to cycles in the
unreduced graph) have been replaced by their smallest element.



June 29, 2007

8 / Richard Moot

to their unary prefixes. σ(A ⊢ B), the string corresponding to A ⊢ B,
is defined as ‖A‖−.‖B‖+, where the positive and negative formula are
translated as follows.

‖3B‖+ = ‖B‖+.m ‖3A‖− = l.‖A‖−

‖2B‖+ = ‖B‖+.r ‖2A‖− = m.‖A‖−

‖B‖+ = ǫ otherwise ‖A‖− = ǫ otherwise

The easiest way to see the correspondence between a sequence of
unary modes and a string is by turning a page with a formula unfolding
90 degrees to the right and realizing that every arrow pointing left will
produce an l, while every arrow pointing right will produce an r.

Now, given that we have produced a string corresponding to the two
sequences of unary connectives, we can check contractibility of these
unary modes using the following context free grammar.

S → ǫ (1)
| l S m S (2)
| m S r S (3)

Rule (1) corresponds to the fact that it is possible not to have any
unary connectives in front of a formula at all. Rule (2) corresponds to
the 3 contraction and rule (3) to the 2 contraction.

Proposition 1 A ⊢ B contracts to a single vertex using the unary

contractions iff S → σ(A ⊢ B).

Proof (sketch) ⇒ Induction on the number of contractions c. If c = 0
we use rule (1). If c > 0 there we look at the point where the first link
is contracted. In order for this contraction to be valid the links between
the two contracted links need to contract to a single node and in order
for the entire sequence to contract everything after the second link
needs to contract to a single node as well. Induction hypothesis allows
us to combine these smaller proof nets using either rule (2) or (3).

⇐ Induction on the length of the CFG derivation. 2

To give an illustration of how to use the context free grammar, we
show how the derivable sequent 3223A ⊢ 23A translates to lmmlmr,
which we can derive as shown below.

S → l S m S
→ l m S
→ l m m S r S
→ l m m S r
→ l m m l S m S r
→ l m m l m S r
→ l m m l m r

We can show the inverse statement 23A ⊢ 3223A which would
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correspond to mlmrrm is underivable simply because we cannot match
the final m: there is no r to its right and if we would match it to the
single l we would need to derive mrr, the symbols in between, but this
is impossible given that it has an odd number of symbols.

The context free grammar is easily extended to the multimodal case,
simply by adding different symbols li, mi and ri to the grammar and
adding two new grammar rules for each of the new symbols.

There are limitations to using this system, however. First of all, it
requires us to remove all unary branches from the final tree, though we
could overcome this limitation by adding the following rule

S → m S

to our grammar. Secondly, we cannot use this strategy if some of the
structural rules for the unary modes we’re interested in are incompat-
ible with the formula to string translation. Examples would be any
inclusion rules between unary modes (though adding grammar rules
would again be an option here) or structural rules which move unary
modes up or down the tree, like the K, K1 and K2 structural rules of
Moortgat (1997), which would require changing the translation func-
tion.

Given that parsing a context free grammar is O(n3) and we would
have to perform this calculation for all n2 possible axiom links, the
total O(n5) complexity is somewhat high. So for grammars which use
the unary connectives extensively, it can be beneficial to pre-compute
the relations between all sequences of unary connectives occurring in
the grammar, after which we can do a simple table lookup to see if con-
traction is possible. This would reduce the total complexity to O(n2).

1.3.4 Régin’s Algorithm

Even with all the previous constraints on axiom links in place, we some-
times fail to exclude some axiom links which cannot belong to a total
matching. This is in part because an axiom link is regarded more or
less in isolation, meaning that we don’t exploit the fact the we need to
find a total matching.

Régin (1994) proposes an algorithm for the slightly more general
problem of finding solutions for ‘all different’ constraints in constraint
logic programming. His algorithm separates the possible axiom links
(in our case) into three categories: those which must be a part of any
linking, those who are only part of some linkings and those which do
not belong to any linking.

As an trivial example of Régin’s algorithm, it would reduce a graph
as shown in Figure 5 on the left (which we would obtain using the
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FIGURE 5 A trivial application of Régins algorithm

acyclicity and connectedness constraint after linking both s formulas
of Figure 2) to the more logical structure on the right, simply because
the unique solution left for np6 would prevent np1 from being used for
any other axiom links.

Even though a smart axiom linking strategy (like always linking the
atomic formula with the least possibilities first) would not benefit a lot
from the reduction in this example, there are cases where it will exploit
information like the absence of a total matching to fail directly.

The total complexity for Régin’s algorithm is O(s2d2) where s is the
number of source nodes and d is the number of destination nodes. Given
that in our application both of these are n (for 2n atomic formulas), the
complexity will be O(n4) which means the total complexity for filtering
all constraints is O(n4) as well.

1.4 Evaluation

In order to evaluate the combined filtering strategies, we have tested
the axiom constraints on randomly generated derivable statements of
the Lambek calculus. These statements have been generated using the
inductive definition of Lambek calculus proof nets where all duplicate
statements have been removed. To make the task as difficult as pos-
sible, only a single atomic formula a without unary prefixes has been
used. Unfortunately, underivable statements don’t have such an easy
inductive characterization.

Figure 6 shows the amount of statements by the number of atomic
formulas per sequent in the sample set, as well as the number of se-
quents by the number of connectives.

Out of 15.946 possible planar axiom links and 61.524 total possible
axiom links, 2.546 correspond to different proofs. Therefore, there are
13.400 planar axioms links and 58.978 total axiom links which do not
belong to any proof. Of these, the combined filtering algorithm excludes
all but 279, for a total of 2.825 axiom links performed.

This means we eliminated 97.92% of the incorrect planar axiom links
and 99.53% of the total number of incorrect axiom links. From the
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FIGURE 6 The distribution of the total number of atomic formulas and the
total number of connectives in the randomly generated derivable statements

perspective of the correct axiom links, we perform only 10.96% more
links than a ‘perfect’ linking strategy — which through some unknown
method would only find links corresponding to proofs in an NP com-
plete logic.

1.5 Conclusions and Future Work

We have seen that in spite of the computational complexity of comput-
ing all axiom links for a given statement, a combination of constraints
on the possible axiom links can reduce the total number of axiom links
to just a bit over the optimal number of axiom links to be performed.

Some important questions remain unresolved. For example, are there
conditions where the filtered axiom links correspond exactly to the
axiom links which belong to a proof net? This would mean that after
the filtering algorithm has done its job, the resulting axiom matrix
would contain all and only those links which would be used for a proof
net. In that case, the axiom possibilities would form a sort of shared
representation of all proofs for a statement and moreover, it would be
computed in O(n4) time. However, analyzing the incorrect axiom links
of our experiment doesn’t seem to give an easily identifiable handle
on the subclasses of multimodal categorial grammar which would have
this property.

Another interesting line of research would be to evaluate the current
algorithms against a large corpus of categorial grammar sentences, such
as those of Hockenmaier (2003) and Moot (2007) and see how well the
proposed linking strategy scales up to real-world applications.
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