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ABSTRACT

This paper deals with online onboard behavior optimizataran
autonomous mobile robot for autonomous online adaptatiani
unknown environment. The work presented here extends #1§{1
online algorithm, which was introduced in [3]. This algbri is a
variation of a famous Evolution Strategies [18] adaptedutm@o-
mous robots. In this paper, we address a limitation of tigerdhm
regarding the ability to perform global search whenevercallop-
timum is reached. A new implementation of the algorithmmted
(1+1)-restart-online algorithm, is described and implated wi-
thin the Symbrion robotic Cortex M3 microcontroller as wa$l
on a real mobile robot. Results from the experiments showttiga
new algorithm is able to escape local optima and, as a coeaequ
converge faster and provides a richer set of relevant cibentso

1. INTRODUCTION

Let’s imagine an autonomous mobile robot tailored for erqion
that could be dropped in a wide variety of unknown environtsen
from a dense tropical forest to an exhausted gold mine alveto
100 years ago. Even before starting to explore its envirowntieis
kind of robot would need to be able to adapt to its immediate su
rounding, that is figuring out what shape and/or what behdsio
most fitted to sustain its energy level. In this setup, thetabntrol
architecture would be preliminary driven by the specifiqnaulic-
table, properties of the environment.

This paper focuses on such a problem, that is the design efteoto
architecture for an autonomous mobile robot in an unknowi en
ronment. To do so, there exists a wide variety of approaceperd
ding on the problem to be solved, from hand-crafted reattilea-
vior [2] to optimal control approaches [7]. In the aformemtied
situation however, it is difficult, if not impossible, to agni specify
the environment and the task at hand, which implies that mbst
the existing approaches are not fitted. This is a typical lprokin
Robotics that may be addressed with learning and optinoiz0,
8]. Moreover, we address the problem where little is knowouab
the objective function. This means that the task is poorkcdbed
as a single efficiency measure (e.g. minimize energy consomp
maximize exploration, etc.), which is often delayed andsyoin
this scope, Evolutionary Robotics provides optimizatityoethms
based on Evolutionary Algorithms which are fitted to thissslaf
problems.

Evolutionary Robotics [15, 7] ("ER”) takes inspiration fronature
by combining two partly antagonist mechanisms. On the one ha

selectionof the most fitted individuals tends to ensure convergence

of the algorithm. On the other handariation over the properties
of selected individuals through mutation and recombimatends
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to provide new original solutions. The general frameworkhefse
algorithms, termed Evolutionary Algorithms ("EA”), is eft refer-
red to as stochastic population-based optimization glyos and
has been applied to a wide variety of problems [4].

In Autonomous Robotics, EA is often used as an optimizer for
Artificial Neural Network architectures to control autonons ro-
bots in a wide variety of control task, from navigation andno
linear control to swarm coordination and cooperation (S3ddr
examples of applications). The quality, fitnessof a given geno-
type is computed by creatingmhenotypdan artificial neural net-
work for robot control with optimized weights) amaluatedt in
the environment (assessing the performance of the regutiimot
behavior). Based on this evaluation methodologgopulationof
genotypess evaluated, from which the (usually) better genotypes
are selected and go through a variation process so as to theew
population. This process is then iterated until a termamatirite-
rion is matched (e.g. maximum number of evaluation, peréoroe,
etc.) and is usually referred to aff-line ER While off-line ER can
be used to address non-linear control problems or pooriyneefi
objective function, it fails to provide a continuous autoraus op-
timization process as control over the initial condition §@nome
evaluation is required, which often imply either costly faminter-
ventation or the use of simulation [12]. Moreover, evaloatdf a
genome requires reliability, ie. the fact that one evabrasession
must be relevant with regards to the problem at hand (ie.egminc
drift is not addressed).

Embodied ER, introduced in [6], is a sub-field of ER that el

addresses the problem of changing environments withowgtant

human manutention. In this setup, the Evolutionary Aldonitruns

within the robot (or group of robots), acting as an embedd#d o

mization algorithm. Embodied is defined as both online (ithepa

tation/learning process never stops) and onboard (thenggatiion
algorithm and evaluation process are part of the contrgh)lodo
date, only few, but promising, works have adressed thisct{3,
14,22,23,9, 13,5, 25, 16, 11, 19]. Despite strong advastaggr-
ding continuous adaptation and autonomy with regards taveahu
supervisor, running an embedded EA within a single robat eis-
phasizes some specific issues :

— Unknown fitness landscape : the typical fithess landscap&in
is both multi-modal (many local minima) and partly neutrabny
close genotype give perform in a similar way). One relialde a
sumption is that of strong causality[17], the fact that divalia-
tions in the genotypic space implies small variations irfitimess
value. A direct consequence is that any reliable algorithoukl
be able to perform both local search (to exploit this stroag-c
sality property) and global search (to avoid the pitfall afiltih



modality) ;

— Evaluation reliability : as the environmental conditicary over
time depending on the robot location, performance assegsme
(ie. fitness) of one genome might be completely differentrfro
one starting location to another (e.g. starting in a narradge
or starting in the middle of an empty arena). This is the probl
of noisy fitness evaluation, which requires a great numbén-of
dependant evaluation to assess for the "true” performahcee
genome;

The (1+1)-online adaptation algorithm described in [3] bagn

shown to address these issues and provide an efficient wagrto p

form continuous adaptation on a single e-puck robot in RI&yege,

running a Cortex M3 micro-controller. The (1+1)-online afighm

is described as a genetic algorithm based on the (1+1)ES{AiB]

only two genomes : a champion and a challenger, and somdispeci

properties so as to address online adaptation :

— Local and global search :A mutation operator is used to pro-
duce a child from a parent. This mutation operator is ableoto d
both local and global search. A gaussian distributfo, o) is
used. The switching between local and global search is dgne b
the value ob. If this value is low, few modifications will be done
to the genome, and the search will remain local. If the vafue o
is high, the genome will be strongly modified, and the redearc
will go global.

— Re-evaluation : Individuals may get lucky or unlucky during
evaluation depending on the envrionment at hand. This is a ty
pical problem related to fithess noise. An efficient solui®to
reevaluate individuals, as proposed by Beyer [10].Thealeav
ted fitness overwrite the fithess of the champion. This is done
promote individuals with a low variance in their performasac
One of the drawback of the overwriting method is that goodtind
viduals could be replaced by inferior but lucky individudfsan
individual is lucky during its first evaluation but has a lovean
fitness it will not survive next-reevaluations. As a consawe,
the evolutionary algorithm won't be stuck with bad indivads.

— Recovery : As this work assumes the evolutionary algorithm
should run without human intervention, it implies no repiosi
ning of the robot after each evaluation of one individualr Fo

example, a genome may be evaluated starting from completely

different initial conditions, such as in front of a wall orantight
corner. To avoid penalization of good genomesg@very per-
iod is introduced : during this time, the robot behavior is not
considered for evaluation (ie. "free of charge”), whichdevge-
nomes that display good performance whatever the starbng p
sition.
In this paper, we present an analysis of the global seardbréea
of this algorithm and identify a problem that negatively mapthe
search. The basic idea is that the previous implementafidheo
(1+1)-online algorithm implies a limitation in the efficienof glo-
bal search by restraining, possibly drastically, the deapace to
consider. This problem is described and a new algorithrmeer
(1+1)-restart-online is devised. Preliminary experirséntsimula-
tion are described and show that the new algorithm actuaty p
forms a larger global search, avoiding the pitfall of gegtituck in
a local optima for a long time. Moreover, this paper des&ithe
implementation and successful evaluation of this new #lgoron
a real robotic hardware setup, a four wheels Bioloid moluilzot,
in the real world.

2. EXTENDING THE (1+1)-ONLINE EA

This section shed some light on an intrinsic limitation af ¢fh+1)-
online algorithm, which possibly dramatically slow dowraath-
tion under very specific conditions (multi-modal objectiuection

with few or no amount of noise). Then, an extension of theipres/
algorithm is described that makes it possible to both retarpro-
perties of the original algorithm as well as to address tlublem
identified.

2.1 Limits of the (1+1)-online

The (1+1)-online algorithm has been shown to be quite efficie
in [3]. One of its main properties is to rely on a tunable g&arss
mutation operator to switch between local and global sedrls

is achieved through a parameter, ternsedthe higher ther, the
more global the search. However, the current champion genom
is replaced if and only if the challenger genome performistsir
better. While this seems to be relevant in most case, thesselas

a major drawback as it limits the search regions to be coreide
only regions with better performing genomes can be consdler
Figure 1 illustrates this : the fithess values of all genoreeshown
(for the sake of simplicity, we assume this is a minimizatiask
for a one dimension only problem). In this example, the aurre
champion may be replaceazhly by a challenger which isinder
the dashed line, would it be during local or global searchthia
typical setup, this may not be a relevant strategy as theapitity

to randomly jump to the relevant region is very low compared t
the probability of picking a genome from which local searcéiym
slowly, but surely, lead to the best genome.

The modification ofr is a good candidate to find new individuals.
When it is increasing the search goes more global. But at some
point the search area is so constrained that it is more Btiage
to simply restart the whole optimization process in ordeolitain
an unconstrained global search. To some extent, this protiiay
not occur in all situations. Firstly, this problem would rewccur
when optimizing a convex objective function, which is undora-
tely quite scarce in this setup. Secondly, very noisy objedtinc-
tion may cope with this problem as any good performing irdirail
may eventually be re-evaluated with a low fitness value, and t
lead to considering the whole search space all over agais wHs
indeed the case in the experiments shown in [3].

Figure 1 : problematic fitness landscape (minimization task

A

fitness value

current
champion

fitness landscape (1D)

2.2 The (1+1)-restart-online algorithm

Escape from local minimum is a classical problem for the alob
search algorithms, and has been studied in different figlg@pu-
lar method is the restart strategy such as in [1]. In thispete
algorithm is restarted, either with similar or differentraaeters,
whenever the search is identified as stalled. This approastides
interesting results on multi-modal problems as it ensutebaj



convergence (ie. asymptotic exploration of the whole spmgea-
ranteed in the worst case as restarting alone is similar am@om
search).

In order to implement restart in the (1+1)-restart-onlifgoathm,
the restart criterion has to be considered, and candidegenastly
limited to the two following :

— Value of o : If o is at its maximal value, it means that a local

minimum has been reached and the search is going global. To b

sure that the algorithm will never be blocked in a local minim

it can be restarted as soon as sigma reaches its maximal value

— Number of champion reevaluations : If the champion isn’t re-
placed, itis the best in a certain area of the fithess lanés€hps,
surviving many re-evaluations assess for the robustnesiseof

champion with regards to both other challenger genomesand t

the environment. Therefore, a high number of re-evaluataam

be used to detect a good performing genome, but also thatsear

is stalled.

Using the value o to restart the algorithm is too constraining.
There is always a probability non-equal to zero thakaches its
maximal value without the champion being reevaluated. $wnwv

o is equal to its maximal value, the champion may still be unre-

liable. Moreover, even if this champion has been succdgses-
valuated whilec was increasing, it can still be improved by mu-
tations. On the contrary, if the champion survives many akm+
tions, itis a good and reliable individual that will be haodéplace.
That’s why the number of reevaluation is used as a restdd-cri
rion in the restart (1+1)-online algorithm described byoaidnm 1.
Hence, whenever restart is triggered, the current chamipioe-
corded in the hall-of-fame as a relevant genome and theitgigor
is re-initialized with the same parameters, but from a déffe: ran-
domly chosen genome (uniform sampling in the genotypicepac

Algorithm 1 The restart (1+1)oNLINE evolutionary algorithm.

for evaluation=0toN do
if random()< Preevaiuate then

if reevaluationcount < reevaluationma. then
Recover(Champion)
Fitnesschampion = RUNANdEvaluate(Champion)
reevaluationcount = reevaluationcount + 1

else
0 = Omin
Champion = RandomGenome()
Fitnesschampion =0
Challenger = RandomGenome()
Fitnesschallenger =0
reevaluationcount = 0

end if

else

Challenger = Champioa N (0, o) {Gaussian mutatign

Recover(Challenger)

Fitnesschatlenger = RUNANdEvValuate(Challenger)

if Fitnesschailenger > Fitnesschampion then
Champion = Challenger
Fitnesschampion = FitnessChallenge'r

0 = Omin
else
oc=0-2
end if
end if
end for

3. EXPERIMENTS AND RESULTS

In this section, an experimental setup is presented so astoate
the performance of the (1+1)-restart-online algorithmsiRis and

preliminary experiments are also described and discussed.

3.1 Hardware setup
The evaluation takes place in a setup featuring actual imbhatd-

ware, a Cortex M3 board with 256 kb memory. The Cortex board

runs a robot simulated by Symbricator3D. Symbricator3D fie-a
bot simulator developped within the Symbrion projeand based

physics-based simulations). Afté¢ time-steps, the evaluation of
the current controller is complete and the controller paatans are
replaced with values from a new genome, which is evaluatad fr
the location the previous controller left it in.

Figure 2 illustrates the experimental set-up with a Corteart
connected to the computer running the simulator based ¢a3iel
The simulated robot is equiped with two screws and 8 distaane
sors (two per side). Details of the shape of the robot can &e ise
figure 3. The maze environment is shown in figure 2.

Figure 2 : The experimental setup : the Cortex M3 board
connected to Symbricator3d. The numbers show the reference
starting positions for validating the Hall of Fame.

Figure 3 : Details of the Symbricator robot. (a) robot design(b)
position of distance sensors (from above)

(a) (b)

The robot is controlled by a simple perceptron with 9 inputnoes
(8 IR distance sensor values and one bias neuron) and 2 aput
rons (translational and rotational velocities, which avmbined to
give actual actuator values).

3.2 Experimental Setup

The objective function used is close to the one describetl5h:[

fitness(z) = Z Visk (1—V;) %4
t=0

1. http ://www.symbrion.eu/
2. http ://www.delta3d.org/

&on delta3d (An Open Source game engine which can be used for



whereV; is the speed factol/. is the rotation factor, and i the value
of the less active sensor, all values are normalized bet@eenl 1.

The (1+1)-restart-online algorithm has been evaluatetl wites-
tart parameter fixed at 7 reevaluations. In order to comperértie
performances of individuals obtained with (1+1)-onlinel &h+1)-
restart-online, two Hall-of-Fames are computed from thsults
of the simulations. One containing the best individuals 16f1()-
online, the other containing the best individuals of resta#1)-
online. The value for each individual in the Hall-of-Fameres-
ponds to the sum of the re-evaluated fitness obtained bynithig-
dual during the experiments.

While the adaptation process could go on forever, an arpitnam-
ber of evaluations is fixed by the supervisor. Afterwardsespe-
rimental protocol is used to compare the best individuaimfthe
Hall-of-Fame : every individuals from the Hall-of-Fameg @va-
luated from 6 reference starting positions shown in 2 dufigg
time step’. This validation protocol provides fair comparaison bet-
ween genomes.

3.3 Experimental Results

Figure 4 shows evolution dynamics of a critical run of the (t+
online algorithm. Evaluations are denoted on the x-axig yHaxis

is divided in two parts. The top half shows the fitness of theent
champion in green dashed line. The bottom half shows the aumb
of re-evaluations of the current champion (downwards ; tuveet
the line, the higher the number of re-evaluations). The bueat
tical markers near the x-axis indicate whenever a new champi
is adopted, i.e., when the challenger outperforms the oticleam-
pion. During this run a good champion has been found at etratua
180, and hasn’t been replaced until evaluation 538 afteleéa-
luation. This problem is detected in our work and not in [Jdgse
the robot and the simulator are different, especially wéidpards to
noise between evaluations. This is a typical illustratibthe pro-
blem identified in this paper with the original (1+1)-onlia&gyo-
rithm : a less noisy setup is prooved to be more deceitful Her t
original algorithm.

Figure 5 shows of a run of the (1+1)-restart-online algonitin this
run one can think that the algorithm was restarted arounida&tian
132, but in this case it is the reevaluation procedure tikat péace.
Indeed, alucky individual has been found at evaluation &48é,has
been reevaluated at evaluation 132. This shows that thaltegion
mechanism is still useful to detect lucky individuals. Insthun
the restart procedure is used at evaluation 368, to replachust
champion. According to preliminary experiments, it seehad the
champion of evaluation 368 could still be improved, whichyma
imply that the restart strategy could be triggered later.

3.4 Hall-of-Fame analysis

As described in section IV.B, two Hall-of-Fames were magddu-
ring the course of the experiments, with each Hall-of-Gaomepmu-
ted out of 14 independant runs of 600 evaluations. There@9#& 1
individuals in the Hall-of-Fame obtained by running the 1}-+
online algorithm, and 2158 individuals in the Hall-of-Faotatai-
ned by running the (1+1)-restart-online algorithm. Thiedence
is a desired effect of the (1+1)-restart-online algorithsrtize res-
tart feature favors exploration by saving unnecessaryataations

Figure 4 : Evolution dynamics of a critical run of the (1+1)-
online algorithm

Evolution of a zsingls robot with a (1+13-E3 adapted for online-evolition
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Figure 5 : Evolution dynamics of a run of the (1+1)-restart-
online algorithm
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of champions whenever the algorithm is stalled.

Then, performances of the best individuals generated bfithE)-
restart-online algorithm and by the (1+1)-online algarithre com-
pared. As described in section IV.B, every individuals frtime
Hall-of-Fames are evaluated from six pre-defined posifisnsas
to provide comparable figures. For each individual the mean p
formance obtained from those 6 positions has been complited.
figure 6 displays the fitness density for this validation. Kkexis
shows the different fithess obtained during the validaticthe 628
best individuals of each Hall-of-Fame. The y-axis showsrtine-
ber of individuals with the same fitness. It is clear that ¢hierno
loss of efficiency with the (1+1)-restart-online algorithm

From the two previous considerations, it should be notetthde
the number of evaluations in the experiments shown hereqesv
enough individuals to get similar results, the (1+1)-respaline

3. The starting position number 4 is an extreme case where thealgorithm is faster - which is a key feature to provide manydia

robot is tested in a hard environment never seen before.

dates whenever ressources are limited.



Figure 6 : Fitness density of the best individuals produced ¥
the (1+1)-online algorithm, and the (1+1)-restart-onlinealgo-
rithm
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

3.5 Real robot experiment

The (1+1)-restart-online has been tested on an autononoaus f
wheels Bioloid robot. The Bioloid kit provides robotic parnd
an ATmegal28 microcontroller with 128Kb of memory. Figure 7
shows the robot used in this work. It is equiped with 4 motans| 7
distance sensors. The 7 red arrows in figure 7 shows the atiiemns
of the distance sensors. The controller of the robot is aféeadrd
neural network with 8 inputs (7 distance sensors and 1 biasPa
outputs (left and right motor velocities). The two left sidbeel ve-
locities are controled by the same neuron, and the two ridgjtetalv
velocities by the other one. The fitness function used is #mees
as the one described in section 3.2. Each individual is erioy
during 60 time steps (7 seconds) and is evaluated duringl&f fo
wing time steps (7 seconds). As in section 3.2 the restaeskiuld
is fixed to 7 re-evaluations. The experiment lasted 1 hourldhd
minutes during which the robot was completely autonomous.

Figure 7 : (a) The robot and the directions of the 7 distance
sensors, (b) the environment

Figure 7 (b) shows the experimental setup.

The algorithm provides similar figures to what has been djrea
shown in the previous experiment and the traces of the fisbigt
evolved controllers from the Hall-of-Fame are illustrabedigures

8 and 9. These two control architectures efficiently avoitl wih
simple yet efficient behaviors. The best controller (figurés8as-
ter when moving in straight line, and displays sharper tuajet-
tories. Other genomes have been empirically evaluatedsfratn
here) and display mostly the same kind of behaviors as thase t
but with minor differences (sharper turn, slower/fastajectories,

etc.).

Figure 8 : Example of behavior for the best evolved controlle

[

[

) 2

from 1 to 24 seconds from 1 to 72 seconds from 1 to 120 seconds from 1 to 168 seconds

Figure 9 : Example of behavior for the 2nd best evolved contrb
ler.

from 1 to 168 seconds

from 1 to 120 seconds

from 1 to 24 seconds from 1 to 72 seconds

An interesting remark about this experiment is that relytimg on-
line adaptation algorithm considered makes it straight+éod to
address an important issue in Evolutionary Robotics, thifierea-
lity gap[12]. Indeed, the algorithm needed exactly the sameunt

of work from the experimenter in simulation and reality avaither
human interventiomor external remote control was ever needed
during the whole experiment with the real robot. Of courbis &s-
sumption must be taken with care as the fithess consideredser
a rather simple one and was chosen so that it was possible to fo
cus on the validation of the algorithm features rather tharthe
algorithm’s ability to solve a complex problem.

4. CONCLUSION AND PERSPECTIVES

In this paper, the problem of online onboard behavior adiapta
for a single autonomous mobile robot has been adressedsé&lyec
the (1+1)-online adaptation algorithm from [3] is studiedia li-
mitation of this algorithm is identified and analysed regagdts
ability to perform global search in the space of possibletsmhs.
A new algorithm is described, termed (1+1)-restart-onlared was
shown to efficiently address the trade-off between localglabdal
search by relying on a restart procedure whenever the tigois
stuck in a local optima. This restart procedure makes itiplesto
address a previous design flaw by relaxing some constragmttbg
search space to be considered.

This algorithm has been evaluated both within a real micnatioller
connected to a Symbricator Robot running in simulation and w
thin a real mobile robot with four wheels and 7 proximity sen-
sors. Results have shown that this new algorithm is actwdilg

to provide wider exploration of the search space, potdntiab-
king it possible to visit many more local optima that the poes
implementation, and possibly increasing the probabilitgnd up

in a global optima. Moreover, this algorithm has been shawipet
straight-forwardly use within a real robot platform in a quete
autonomous fashion, which makes it possible to naturaltiress
the reality gap issue.

On-going work focus on evaluating precisely the advanta§éss
new algorithmn in particular focusing on the distributidrtee per-
formance from all individuals in the Hall-of-Fame. Moregvthe



new restart feature in the algorithm is being carefully &ddas
there exists a possible trade-off in balancing the previglobal
search strategy and the new restart strategy. Indeed, iokdost-
ween the two strategies clearly depends on both the shape fif-t
ness landscape and actual local minimum as this tradeofieae-
formulated as favoring global search over avoiding re-eogence
towards already visited local optima.

Future works will address the problem of noisy fithess evalna
by extending th&1 + 1) stragegy into g + 1) strategy, which
roughly means that a reservoir, or a distribution, of chamme-

nomes will be considered rather than only a single champen g

nome. Also, the extension towards multi-robots is ratheaigit
forward as one can consider the current adaptation algotitract
within one island of a distributed evolutionary algorithm.this
setup, each robot/island runs an embedded adaptationitaigor

where best genomes may be exchanged from one island to gnothe

as in the well-known GA island model[21].
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