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Abstract: One has a large workload that is �divisible��its constituent work's
granularity can be adjusted arbitrarily�and one has access to p remote comput-
ers that can assist in computing the workload. How can one best utilize these
computers? Complicating this question is the fact that each remote computer
is subject to interruptions (of known likelihood) that kill all work in progress on
it. One wishes to orchestrate sharing the workload with the remote computers
in a way that maximizes the expected amount of work completed. Strategies
are presented for achieving this goal, by balancing the desire to checkpoint
often�thereby decreasing the amount of vulnerable work at any point�vs. the
desire to avoid the context-switching required to checkpoint. The current study
demonstrates the accessibility of strategies that provably maximize the expected
amount of work when there is only one remote computer (the casep = 1 ) and,
at least in an asymptotic sense, when there are two remote computers (the case
p = 2 ); but the study strongly suggests the intractability of exact maximiza-
tion for p � 2 computers. This study responds to that challenge by develop-
ing e�cient heuristics that employ both checkpointing and work replication as
mechanisms for decreasing the impact of work-killing interruptions. The quality
of these heuristics, in expected amount of work completed, is assessed through
exhaustive simulations that use both idealized models and actual trace data.

Key-words: Fault-tolerance, scheduling, divisible loads, probabilities



Stratégies statiques de répartition du travail
en présence d'interruptions dé�nitives

(version étendue)

Résumé : On dispose d'une large tâchedivisible et l'on a accès àp ordinateurs
distants pour traiter cette tâche. Comment utiliser au mieux ces ordinateurs
? Le problème est d'autant plus compliqué que chaque ordinateur est sujet à
des interruptions (de probabilité connue) tuant tout le travail qu'il est en train
d'e�ectuer. On souhaite orchestrer le traitement du travail par les ordinateurs
de manière à maximiser l'espérance de la quantité de travail complété. Des
stratégies pour atteindre ce but sont présentées. Ces stratégies sont des com-
promis entre l'envie d'e�ectuer souvent des sauvegardes (checkpoint) �ce qui
diminue à tout moment la quantité de travail qui risque d'être perdue� et le
désir d'éviter le coût des changements de contexte requis par ces sauvegardes.
Cette étude présente des stratégies qui maximisent l'espérance de la quantité
de travail fait quand il y a un seul ordinateur (cas p = 1 ) et, au moins d'un
point de vue asymptotique, quand il y a deux ordinateurs distants (casp = 2 ).
Mais cette étude suggère l'intractabilité de ce problème pourp > 2 ordinateurs.
Ce dé� est relevé par la dé�nition d'heuristiques e�caces qui emploient sauve-
gardes et réplications pour minimiser l'impact des interruptions destructrices
de travail. La qualité de ces heuristiques, en quantité de travail accompli, est
évaluée au moyen de simulations exhaustives utilisant d'une part des modèles
idéaux et d'autre part des traces.

Mots-clés : Tolérance aux pannes, ordonancement, tâches divisibles, proba-
bilités
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1 Introduction

Technological advances and economic constraints have engendered a variety of
modern computing platforms that allow a person who has a massive, compute-
intensive workload to enlist the help of others' computers in executing the work-
load. The resulting cooperating computers may belong to a nearby or remote
cluster (of �workstations�; cf. [29]), or they could be geographically dispersed
computers that are available under one of the increasingly many modalities of
Internet-based computing�such as Grid computing (cf. [14, 19, 18]), global com-
puting (cf. [16]), or volunteer computing (cf. [25]). In order to avoid unintended
connotations concerning the organization of the remote computers, we avoid
evocative terms such as �cluster� or �grid� in favor of the generic �assemblage.�
Advances in computing power never come without cost. These new platforms
add various types ofuncertainty to the list of concerns that must be addressed
when preparing one's computation for allocation to the available computers:
notably, computers can slow down unexpectedly, even failing ever to complete
allocated work. The current paper follows in the footsteps of sources such as
[5, 11, 13, 21, 27, 34], which present analytic studies of algorithmic techniques
for coping with uncertainty in computational settings. Whereas most of these
sources address the uncertainty of the computers in an assemblage one com-
puter at a time, we attempt here to view the assemblage as a �team� wherein
one computer's shortcomings can be compensated for by other computers, most
notably by judiciously replicating work, i.e., by allocating some work to more
than one computer. Such a team-oriented viewpoint has appeared mainly in
experimental studies (cf. [24]); ours is the �rst analytical study to adopt such a
point of view.

The problem . We have a large computational workload whose constituent
work is divisible in the sense that one can partition chuks of work into arbitrary
granularities (cf. [12]). We also have access top � 1 identical computers to help
us compute the workload via worksharing (wherein the owner of the workload
allocates work to remote computers that are idle; cf. [35]).

We study homogeneousassemblages in the current paper in order to
concentrate only on developing technical tools to cope with uncer-
tainty within an assemblage. We hope to focus in later work on the
added complexity of coping with uncertainty within a heterogeneous
assemblage, whose computers may di�er in power and speed.

We address here the most draconian type of uncertainty that can plague an
assemblage of computers, namely, vulnerability tounrecoverable interruptions
that cause us to lose all work currently in progress on the interrupted computer.
We wish to cope with such interruptions�whether they arise from hardware
failures or from a loaned/rented computer's being reclaimed by its owner, as
during an episode ofcycle-stealing (cf. [5, 13, 31, 32, 34]). The scheduling
tool that we employ to cope with these interruptions is work replication, the
allocation of chunks of work to more than one remote computer. The only
external resource to help us use this tool judiciously is our assumed access to
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6 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

a priori knowledge of the risk of a computer's having been interrupted�which
we assume is the same for all computers.1

The goal . Our goal is to maximize the expected amount of work that gets
computed by the assemblage of computers, no matter which, or how many com-
puters get interrupted. Therefore, we implicitly assume that we are dealing
with applications for which even partial output is meaningful, e.g., annotation
of metagenomics data. In metagenomics annotation, one has a large number
of DNA fragments to classify (as belonging to eukaryotes, prokaryotes, etc.);
one would rather have all the DNA fragments processed, but the result of the
classi�cation is nevertheless meaningful even if the annotation is fragmentary
(this just arti�cially raises the �unknown� category).

Three challenges . The challenges of scheduling our workload on interrupt-
ible remote computers can be described in terms of three dilemmas. The �rst
two apply even to each remote computer individually.2

1. If we send each remote computer a large amount of work with
each transmission,

then we both decrease the overhead of packaging work-containing
messages and maximize the opportunities for �parallelism�
within the assemblage of remote
computers,

but we thereby maximize our vulnerability to losing work
because of a remote computer's being interrupted.

On the other hand,
2. If we send each remote computer a small amount of work with

each transmission,
then we minimize our vulnerability to interruption-induced losses
but we thereby maximize message overhead and minimize the

opportunities for �parallelism� within the assemblage of
remote computers.

The third dilemma arises only when there are at least two remote comput-
ers.3

3. If we replicate work, by sending the same work to more than
one remote computer,

then we lessen our vulnerability to interruption-induced losses,
but we thereby minimize both the opportunities for

�parallelism� and the expected productivity advantage from
having access to the remote computers.

Approaches to the challenges . (1) �Chunking� our workload. We cope
with the �rst two dilemmas by sending work allocations to the remote comput-
ers as a sequence ofchunks4 rather than as a single block to each computer.
This approach, which is advocated in [13, 31, 32, 34], allows each computer
to checkpoint at various times and, thereby, to protect some of its work from
the threat of interruption. (2) Replicating work. We allocate some chunks to

1As in [13, 31, 34], our scheduling strategies can be adapted to use statistical, rather
than exact, knowledge of the risk of interruption�albeit at the cost of weakened performance
guarantees.

2We put �parallelism� in quotes when stating these dilemmas because remote computers
are (usually) not synchronized, so they do not truly operate in parallel .

3The pros and cons of work replication are discussed in [24].
4We use the generic �chunk� instead of �task� to emphasize tasks' divisibility: by de�nition,

divisible workloads do not have atomic tasks.
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more than one remote computer in order to enhance their chances of being com-
puted successfully. We use work replication judiciously, in deference to the third
dilemma.

Under our model, the risk of a computer's being interrupted in-
creases as the computer operates, whether it works on our com-
putation or not. This assumption models, e.g., interruptions from
hardware failures or from returning owners in cycle-stealing scenar-
ios. Thus, certain chunks of our workload are more vulnerable to
being interrupted than others. To wit, the �rst �round� of allocated
chunks involves our �rst use of the remote computers; hence, these
chunks are less likely to be interrupted than are the chunks that
are allocated in the second �round�: the remote computers will have
been operating longer by the time the second �round� occurs. In
this manner, the second-�round� chunks are less vulnerable than the
third-�round� chunks, and so on.

Because communication to remote computers is likely to be costly in time and
overhead, we limit such communication by orchestrating work replication in
an a priori, static manner, rather than dynamically, in response to observed
interruptions. While we thereby duplicate work unnecessarily when there are
few interruptions among the remote computers, we also thereby preventour
computer, which is the server in the studied scenario, from becoming a com-
munication bottleneck when there are many interruptions. Our cost concerns
are certainly justi�ed when we access remote computers over the Internet, but
also when accessing computers over a variety of common local-area networks
(LANs). Moreover, as noted earlier, we get a good �return� from our conserva-
tive work replication, by increasing the expected amount of work done by the
remote computers.

In summation, we assume: that we know the instantaneous probability that a
remote computer will have been interrupted by timet; that this probability is the
same for all remote computers; that the probability increases with the amount of
time that the computer has been available. These assumptions, which we share
with [13, 31, 34], seem to be necessary in order to derive scheduling strategies
that are provablyoptimal. As suggested in these sources (cf. footnote 1), one can
use approximate knowledge of these probabilities, obtained, say, via trace data,
but this will clearly weaken our performance claims for our schedules. Also as
noted earlier, the challenge of allowing individual computers to have di�erent
probabilities must await a sequel to the current study.

Related work . The literature contains relatively few rigorously analyzed
scheduling algorithms for interruptible �parallel� computing in assemblages of
computers. Among those we know of, only [5, 13, 31, 32, 34] deal with an
adversarial model of interruptible computing. One �nds in [5] a randomized
scheduling strategy which, with high probability, completes within a logarith-
mic factor of the optimal fraction of the initial workload. In [13, 31, 32, 34],
the scheduling problem is viewed as a game against a malicious adversary who
seeks to interrupt each remote computer in order to kill all work in progress.
Among the experimental sources, [39] studies the use of task replication on a
heterogeneous desktop grid whose constituent computers may become de�ni-
tively unavailable; the objective is to eventually process all work. In a similar
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context, [3] aims at minimizing both the completion time of applications and
the amount of resources used.

There is a very large literature on scheduling divisible workloads on assem-
blages of computers that are not vulnerable to interruption. We refer the reader
�rst to [12] and its myriad intellectual progeny; not all of these sources share the
current study's level of detailed argumentation. One �nds in [2], its precursor
[33], and its accompanying experimental study [1], an intriguing illustration of
the dramatic impact on the scheduling problem for heterogeneous assemblages
of having to account for the transmission of the output generated by the com-
putation; a di�erent aspect of the same observation is noted in [10]. Signi�cant
preliminary results about assemblages in which communication links, as well as
constituent computers, are heterogeneous appear in [10]. Several studies focus
on scheduling divisible computations but focus on algorithmically simpler com-
putations whose tasks produce no output. A near-optimal algorithm for such
scheduling appears in [40] under a simpli�ed model, in which equal-size chunks of
work are sent to remote computers at a frequency determined by the computers'
powers. The body of work exempli�ed by [36, 37, 12, 15, 17] and sources cited
therein allow heterogeneity in both communication links and computers, but
schedule outputless tasks, under a simple communication model. (It is worth
noting that one consequence of a linear, rather than a�ne communication cost
model is that it can be advantageous to distribute work in many small pieces,
rather than in a few large chunks; cf. [37, 40].) A signi�cant study that shares
our focus on tasks having equal sizes and complexities, but that allows work-
stations to redistribute allocated tasks, appears in [7, 9]. Under the assumption
of unit computation time per task, these sources craft linear-programming al-
gorithms that optimize the steady-state processing of tasks. The distribution
of inputs and subsequent collection of results form an integral part of [2, 10];
these problems are studied as independent topics in [8].

Even the subset of the divisible workload literature that focuses on collec-
tive communication in assemblages of computers is enormous. Algorithms for
various collective communication operations appear in [6, 22]. One �nds in [20]
approximation algorithms for a variant of broadcasting under which receipt of
the message �triggers� a �personal� computation whose cost is accounted for
within the algorithm.

We do not enumerate here the many studies of computation on assemblages
of remote computers, which focus either on systems that enable such compu-
tation or on speci�c algorithmic applications. However, we point to [26] as an
exemplar of the former type of study and to [38] as an exemplar of the latter.

2 The Technical Framework

We supply the technical details necessary to turn the informal discussion in the
Introduction into a framework in which we can develop and rigorously validate
scheduling guidelines.

2.1 The Computation and the Computers

We begin with W(ttl) units of divisible work that we wish to execute on an
assemblage ofp � 1 identical computers. Each computer is susceptible toun-
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recoverable interruptions that �kill� all work currently in progress on it. All
computers share the same instantaneous probability of being interrupted, and
this probability increases with the amount of time the computer has been oper-
ating (whether working on our computation or not). We know this probability
exactly.5

Because we deal with a single computational application and iden-
tical computers, we lose no generality by expressing our results in
terms of units of work, rather than the execution time of these units.
We paraphrase the following explanation from [2], which uses a sim-
ilar convention.

Our results rely only on the fact that all work units have the same
size and complexity: formally, there is a constantc > 0 such that
executing w units of work takes cw time units. The work units'
(common) complexity can be an arbitrary function of their (common)
size: c is simply the ratio of the �xed size of a work unit to the
complexity of executing that amount of work.

As discussed in the Introduction, the danger of losing work in progress
when an interruption incurs mandates that we not just divide our workload
into W(ttl) =p equal-size chunks and allocate one chunk to each computer in the
assemblage. Instead, we �protect� our workload as best we can, by:

ˆ partitioning it into chunks, the unit of work that we allocate to the com-
puters

ˆ prescribing a schedule for allocating chunks to computers
ˆ allocating some chunks to more than one computer, as a divisible-load

mode of work replication.

As noted in the Introduction, we treat intercomputer communication as a re-
source to be used very conservatively�which is certainly justi�ed when com-
munication is over the Internet, and often when communication is over common
local-area networks (LANs). Speci�cally, we try to avoid having our computer
become a communication bottleneck by orchestrating chunk replications in an
a priori, static manner�even though this leads to duplicated work when there
are few or no interruptions�rather than dynamically, in response to observed
interruptions.

2.2 Modeling Interruptions and Expected Work

2.2.1 The interruption model

Within our model, all computers share the samerisk function , i.e., the same
instantaneous probability, P r (w), of having been interrupted by the end of �the
�rst w time units.�

Recall that we measure time in terms of work units thatcould have
been executed �successfully,� i.e., with no interruption. In other
words �the �rst w time units� is the amount of time that a computer

5As stated earlier, our analyses can be modi�ed to accommodate probabilities that are
known only statistically.
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10 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

would have neededto computew work units if it had started working
on them when the entire worksharing episode began.

This time scale is shared by all computers in our homogeneous set-
ting.

Of course,P r (w) increases withw; we assume that we know its value exactly:
see, however, footnote 1.

It is useful in our study to generalize our measure of risk by allowing one
to consider many baseline moments. We denote byP r (s; w) the probability
that a computer has not been interrupted during the �rst s �time units� but
has been interrupted by �time� s + w. Thus, P r (w) = P r (0; w) and Pr (s; w) =
P r (s + w) � P r (s).

We let6 � 2 (0; 1] be a constant that weights our probabilities. We illustrate
the role of � as we introduce two speci�c common risk functionsP r , the �rst of
which is our focus in the current study.

Linearly increasing risk . The risk function that will be the main focus
of our study is P r (w) = �w . It is the most natural model in the absence of
further information: the failure risk grows linearly, in proportion to the time
spent, or equivalently to the amount of work done. This linear model covers
a wide range of cycle-stealing scenarios, but also situations when interruptions
are due to hardware failures.

In this case, we have the density function

dPr =
�

�dt for t 2 [0; 1=� ]
0 otherwise

so that

P r (s; w) = min
�

1;
Z s+ w

s
�dt

�
= min f 1; �w g (1)

The constant 1=� will recur repeatedly in our analyses, since it can be viewed
as the time by which an interruption is certain, i.e., will have occurred with
probability 1. To enhance legibility of the rather complicated expressions that
populate our analyses, we henceforth denote the quantity1=� by X .

Geometrically decaying lifespan . A commonly studied risk function,
which models a variety of common �failure� scenarios, isP r (w) = 1 � exp� �w ,
wherein the probability of a computer's surviving for one more �time step�
decays geometrically. More precisely,

P r (w; 1) = P r (w + 1) � P r (w) = (1 � exp� � (w+1) ) � (1 � exp� �w )

= (1 � exp� � ) exp� �w :

One might expect such a risk function, for instance, when interruptions are
due to someone's leaving work for the day; the longer s/he is absent, the more
likely it is that s/he is gone for the night.

In this case, we have the density functiondPr = � exp� �t dt, so that

P r (s; w) =
Z s+ w

s
� exp� �t dt = exp � �s (1 � exp� �w ):

6As usual, (a; b] (resp., [a; b]) denotes the real interval f x j a < x � bg (resp., f x j a � x �
bg).
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Static Strategies for Worksharing with Unrecoverable Interruptions 11

2.2.2 Expected work production

Risk functions help us �nding an e�cient way to chunk work for, and allocate
work to, the remote computers, in order to maximize the expected work pro-
duction of the assemblage. To this end, we focus on a workload consisting of
W(ttl) work units, and we let W(cmp) be the random variable whose value is the
number of work units that the assemblage executes successfully under a given
scheduling regimen. Stated formally, we are striving to maximize the expected
value (or, expectation) of W(cmp) .

We perform our study under two models, which play di�erent roles as one
contemplates the problem of scheduling a large workload. The models di�er
in the way chunk execution times relate to chunk sizes. The actual time for
processing a chunk of work has several components:

ˆ There is the overhead for transmitting the chunk to the remote computer.
This may be a trivial amount of actual time if one must merely set up the
communication, or it may be a quite signi�cant amount if one must, say,
encode the chunk before transmitting it. In the latter case, the overhead
can be proportional to the chunk size.

ˆ There is the time to actually transmitting the chunk, which is proportional
to the chunk size.

ˆ There is the actual time that the remote computer spends executing the
chunk, which, by assumption, is proportional to the chunk size.

ˆ There is the time that the remote computer spends checkpointing after
computing a chunk. This may be a trivial amount of actual time�
essentially just a context switch�if the chunk creates little output (per-
haps just a YES/NO decision), or it may be a quite signi�cant amount if
the chunk creates a sizable output (e.g., a matrix inversion).

In short, there are two classes of time-costs, those that are proportional to the
size of a chunk and those that are �xed constants. It simpli�es our formal
analyses to fold the �rst class of time-costs into a single quantity that is propor-
tional to the size of a chunk and to combine the second class into a single �xed
constant. When chunks are large, the second cost will be minuscule compared
to the �rst. This suggests that the �xed costs can be ignored, but one must
be careful: if one ignores the �xed costs, then there is no disincentive to, say,
deploying the workload to the remote computers inn + 1 chunks, rather than
n. Of course, increasing the number of chunks tends to make chunks smaller�
which increases the signi�cance of the second cost! One could, in fact, strive
for adaptive schedules that change their strategies depending on the changing
ratios between chunk sizes and �xed costs. However, for the reasons discussed
earlier, we prefer to seekstatic scheduling strategies, at least until we have a
well-understood arsenal of tools for scheduling interruptible divisible workloads.
Therefore, we perform the current study with two �xed cost models, striving
for optimal schedules under each. (1) Thefree-initiation model is characterized
by not charging the owner of the workload a per-chunk �xed cost. This model
focuses on situations wherein the �xed costs are negligible compared to the
chunk-size-dependent costs. (2) Thecharged-initiation model, which more ac-
curately re�ects the costs incurred with real computing systems, is characterized
by accounting for both the �xed and chunk-size-dependent costs.

The free-initiation model . This model, which assesses no per-chunk cost,
is much the easier of our two models to analyze. The results obtained using this
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12 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

model approximate reality well when one knowsa priori that chunks must be
large. One situation that mandates large chunks is when communication is over
the Internet, so that one must have every remote computer do a substantial
amount of the work in order to amortize the time-cost of message transmission
(cf. [25]). In such a situation, one will keep chunks large by placing a bound
on the number of scheduling �rounds,� which counteracts this model's tendency
to increase the number of �rounds� without bound. Importantly also: the free-
initiation model allows us to obtain predictably good boundson the expected
value of W(cmp) under the charged-initiation model, in situations where such
bounds are prohibitively hard to derive directly; cf. Theorem 1.

Under the free-initiation model, the expected value ofW(cmp) under a given
scheduling regimen� and for a workload W(ttl) , denoted E (f) (W(ttl) ; �) , the
superscript �f� denoting �free(-initiation),� is

E (f) (W(ttl) ; �) =
Z 1

0
Pr(W(cmp) � u under �) du:

Let us illustrate this model via three simple calculations of E (f) (W(ttl) ; �) . In
these calculations, the regimen� allocates the whole workload and deploys it
on a single computer. To enhance legibility, let the phrase �under� � within
� P r (W(cmp) � u under �) � be speci�ed implicitly by context.

Deploying the workload as a single chunk. Under regimen � 1 the whole
workload is deployed as a single chunk on a single computer. By de�nition,
E (f) (W(ttl) ; � 1) for an arbitrary risk function P r is given by

E (f) (W(ttl) ; � 1) = W(ttl)
�
1 � P r (W(ttl) )

�
: (2)

Deploying the workload in two chunks. Regimen � 2 speci�es how the work-
load is split into the two chunks of respective sizes! 1 > 0 and ! 2 > 0, where
! 1 + ! 2 = W(ttl) . The following derivation determines E (f) (W(ttl) ; � 2) for an
arbitrary risk function P r .

E (f) (W(ttl) ; � 2) =
Z ! 1

0
Pr(W(cmp) � u)du +

Z ! 1 + ! 2

! 1

Pr(W(cmp) � u)du

=
Z ! 1

0
Pr(W(cmp) � ! 1)du +

Z ! 1 + ! 2

! 1

Pr(W(cmp) � ! 1 + ! 2)du

= ! 1(1 � P r (! 1)) + ! 2(1 � P r (! 1 + ! 2)) : (3)

Deploying the workload inn chunks. Continuing the reasoning of the cases
n = 1 and n = 2 , we �nally obtain the following general expression for expecta-
tion E (f) (W(ttl) ; � n ) for an arbitrary risk function P r , when � n partitions the
whole workload into n chunks of respective sizes! 1 > 0, ! 2 > 0, . . . , ! n > 0
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Static Strategies for Worksharing with Unrecoverable Interruptions 13

such that ! 1 + � � � + ! n = W(ttl) .

E (f) (W(ttl) ; � n ) =
Z ! 1

0
Pr(W(cmp) � u)du +

Z ! 1 + ! 2

! 1

Pr(W(cmp) � u)du

+ � � � +
Z ! 1 + ��� + ! n � 1 + ! n

! 1 + ��� + ! n � 1

Pr(W(cmp) � u)du

=
Z ! 1

0
Pr(W(cmp) � ! 1)du

+
Z ! 1 + ! 2

! 1

Pr(W(cmp) � ! 1 + ! 2)du (4)

+ � � � +
Z ! 1 + ��� + ! n � 1 + ! n

! 1 + ��� + ! n � 1

Pr(W(cmp) � ! 1 + � � � + ! n )du

= ! 1(1 � P r (! 1)) + ! 2(1 � P r (! 1 + ! 2)) (5)

+ � � � + ! n (1 � P r (! 1 + � � � + ! n )) :

Optimizing expected work-production on one remote computer.One goal of
our study is to learn how to craft, for each integer n, a scheduling regimen�
that maximizes E (f) (W(ttl) ; �) . However, we have a more ambitious goal, which
is motivated by the following observation.

Many risk functions�such as the linear risk function�represent situations
wherein the remote computers arecertain to have been interrupted no later
than a known eventual time. In such a situation, one might get more work
done, in expectation, by not deploying the entire workload: one could increase
the expectation by making the last deployed chunk even a tiny bit smaller than
needed to deploy allW(ttl) units of work.

We shall see the preceding observation in operation in Theorem 2 for
the free-initiation model and in Theorem 3 for the charged-initiation
model.

Thus, our ultimate goal when considering a single remote computer (the case
p = 1 ), is to determine, for each integern:

ˆ how to select n chunk sizes that collectively sum toat most W(ttl) (rather
than to exactly W(ttl) as in the preceding paragraphs),

ˆ how to select n chunks of these sizes out of our workload,
ˆ how to schedule the deployment of these chunks

in a way that maximizes the expected amount of work that gets done. We
formalize this goal via the function E (f) (W(ttl) ; n):

E (f) (W(ttl) ; n) = max f ! 1(1 � P r (! 1)) + � � � + ! n (1 � P r (! 1 + � � � + ! n ))g;

where the maximization is over all n-tuples of positive chunk sizes that sum to
at most W(ttl) :

f ! 1 � 0; ! 2 � 0; : : : ; ! n � 0g such that ! 1 + ! 2 + � � � + ! n � W(ttl)

The charged-initiation model . This model is much harder to analyze
than the free-initiation model, even when there is only one remote computer.
In compensation, the charged-initiation model often allows one to determine
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analytically the best numbers of chunks and of �rounds�(when there are multiple
remote computers). Under this model, the overhead for each additional chunk
is a �xed cost�which, in common with time, we measure in units of work�that
is added to the cost of computing of each chunk; we denote this overhead by"
(for instance this may correspond to a checkpointing cost). Under this model,
the expected value ofW(cmp) under a given scheduling regimen� and for a
worload W(ttl) , denoted E (c) (W(ttl) ; �) , the superscript �c� denoting �charged(-
initiation)� is

E (c) (W(ttl) ; �) =
Z 1

0
Pr(W(cmp) � u + ") du:

We �nd that, when the whole workload is deployed as a single chunk,

E (c) (W(ttl) ; � 1) = W(ttl)
�
1 � P r (W(ttl) + ")

�
;

and when work is deployed as two chunks of respective sizes! 1 and ! 2,

E (c) (W(ttl) ; � 2) = ! 1(1 � P r (! 1 + ")) + ! 2(1 � P r (! 1 + ! 2 + 2")) :

Finally, we let E (c) (W(ttl) ; k) be the analogue for the charged-initiation model
of the parameterized free-initiation expectation E (f) (W(ttl) ; k)

Relating the two models . One can bound the work completed under the
charged-initiation model via the free-initiation model. This justi�es our primary
focus on the free-initiation model.

Theorem 1. (Charged-initiation output vs. Free-initiation output)
Let E (c) (W(ttl) ; n) and E (f) (W(ttl) ; n) denote, respectively, the optimaln-chunk
expected value ofW(cmp) under the charged-initiation model and under the free-
initiation model. Then:

E (f) (W(ttl) ; n) � E (c) (W(ttl) ; n) � E (f) (W(ttl) ; n) � n": (6)

Proof. The lefthand bound in (6) is obvious, because risk functions are non-
decreasing �so that, for any given scheduling regimen, the expected value of
W(cmp) under the charged-initiation model cannot exceed the expected value
under the free-initiation model.

To derive the righthand bound in (6), let us focus on any optimal scheduling
regimen� under the free-initiation model with p remote computers. � schedules
the load via n chunks W1, . . . , Wn of size ! 1 > 0, . . . , ! n > 0. We note
W(dpl) = [ n

i =1 Wi . For any j 2 [1; p], �( j; k ) denotes thek-th chunk executed on
computer j by schedule regimen� . In other words, computer j executes chunks
in the order �( j; 1), �( j; 2), . . . , �( j; n ).7

Note that, because we target here ap-computer schedule, two di�erent
chunks may contain some shared piece of work: whateveri and j in [1; n], we may
have i 6= j and Wi \ W j 6= ; . We then partition W(dpl) into X = fX 1; :::; Xm g
such that, for any partition-element Xi and any chunk Wj , either Xi is included
in Wj (Xi � W j ), or Xi and Wj have no elements in common (Xi \ W j = ; ).

7Without loss of generality we can assume that each computer executes the n chunks.
Indeed, we never decrease the expectation of a schedule by extending it so that each computer
attempts to execute each chunk.
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Static Strategies for Worksharing with Unrecoverable Interruptions 15

Then, under scheduling regimen� , any computer is attempting to process the
whole partition-element Xi or is not attempting to process any part of it. Then
� i is the subset of the computers on whichXi is scheduled under� . If j 2 � i ,
� (j; i ) is the rank of the �rst chunk scheduled on computer j and containing Xi ;
formally � (j; i ) = min f kjX i � �( j; k )g.

From schedule� we de�ne a new schedule� 0. For any i in [1; n], let ! 0
i =

maxf 0; ! i � "g, and let W 0
i be any subset of size! 0

i of Wi . � 0 denotes the
scheduling regimen that executes the chunksW 0

1, . . . , W 0
n on the p-computers

exactly as � executes the chunksW1, . . . , Wn on those same computers, except
that zero-length chunks are not executed but skipped (in order not to pay the
charged-initiation for nothing). We account for these zero-length chunks in the
following equations, via the function

1! 0
i

=
�

1 if ! 0
i 6= 0

0 if ! 0
i = 0 :

We then de�ne the objects X 0
i , � 0

i and � 0(j; i ) as we de�nedXi , � i and � (j; i )
except that we further impose that any partition-elements X 0

i be a subset of
some partition-element Xj (we thus subdivide the partition X to obtain the
partition X 0). Then, X� ( i ) is the element ofX containing X 0

i . Finally, let I 0 be
the largest subset ofX 0 satisfying the property:

8i 2 I 0; f j j X 0
i � W 0

j g = f j j X � ( i ) � W j g:

Informally speaking, the pieces of work in an element ofI 0 belong to the same
chunks under the two schedules� and � 0. If X 0

i does not belong toI 0, this
means that there exist some chunkWj such that some piece of work inX� ( i )

belongs to Wj but not to W 0
j . Then, X 0

i � W j n W0
j , [ i =2I 0X 0

i � [ n
i =1 Wi n W0

j
and:

X

i =2I 0

jX 0
i j =

�
�
�
�
�

[

i =2I 0

X 0
i

�
�
�
�
�

�

�
�
�
�
�

n[

i =1

Wi n W0
j

�
�
�
�
�

�
nX

i =1

jW i n W0
j j = n":

Since � 0 implicitly speci�es a scheduling regimen for the charged-initiation
model when using� n chunks, the expected value ofW(cmp) under � 0 obviously
cannot exceed the expected value under thebest scheduling regimen for the
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charged-initiation model when using� n chunks. Therefore,

E (c) (W(ttl) ; n) � E (c) (W(ttl) ; � 0)

=
m 0
X

i =1

jX 0
i j

0

@1 �
Y

j 2 � 0
i

Pr

0

@
� 0( j;i )X

k=1

(! 0
�( j;k ) + "1! 0

�( j;k )
)

1

A

1

A

=
m 0
X

i =1

jX 0
i j

0

@1 �
Y

j 2 � 0
i

Pr

0

@
� 0( j;i )X

k=1

1! 0
�( j;k )

(! 0
�( j;k ) + ")

1

A

1

A

=
m 0
X

i =1

jX 0
i j

0

@1 �
Y

j 2 � 0
i

Pr

0

@
� 0( j;i )X

k=1

1! 0
�( j;k )

! �( j;k )

1

A

1

A

�
m 0
X

i =1

jX 0
i j

0

@1 �
Y

j 2 � 0
i

Pr

0

@
� 0( j;i )X

k=1

! �( j;k )

1

A

1

A

�
X

i 2I 0

jX 0
i j

0

@1 �
Y

j 2 � 0
i

Pr

0

@
� 0( j;i )X

k=1

! �( j;k )

1

A

1

A

=
X

i 2I 0

jX 0
i j

0

@1 �
Y

j 2 � � ( i )

Pr

0

@
� ( j;� ( i ))X

k=1

! �( j;k )

1

A

1

A

= E (f) (W(ttl) ; �) �
X

i =2I 0

jX 0
i j

0

@1 �
Y

j 2 � � ( i )

Pr

0

@
� ( j;� ( i ))X

k=1

! �( j;k )

1

A

1

A

� E (f) (W(ttl) ; �) �
X

i =2I 0

jX 0
i j

= E (f) (W(ttl) ; �) �

�
�
�
�
�

[

i =2I 0

X 0
i

�
�
�
�
�

� E (f) (W(ttl) ; n) � n"

which yields the righthand bound.

3 Scheduling for a Single Remote Computer

This section is devoted to studying how to schedule optimally when there is
only a single remote computer that is subject to the linear risk of interruption:
P r (w) = min (1 ; �w ). Some of the results we derive bear a striking similarity
to their analogues in [13], despite certain substantive di�erences in models.

3.1 An Optimal Schedule under the Free-Initiation Model

We begin with a simple illustration of why the risk of losing work because of
an interruption must a�ect our scheduling strategy, even when there is only one
remote computer and even when dispatching a new chunk of work incurs no
cost, i.e., under the free-initiation model.
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Static Strategies for Worksharing with Unrecoverable Interruptions 17

When the amount of work W(ttl) is no larger than X (recall that � = 1=X
is the constant that accounts for the size of the work-unit), then instantiating
the linear risk function, P r (W(ttl) ) = �W (ttl) , in (2) shows that the expected
amount of work achieved when deploying the entire workload in a single chunk
is

E (f) (W(ttl) ; � 1) = W(ttl) � �W 2
(ttl) :

Similarly, instantiating this risk function in (3) shows that the expected amount
of work achieved when deploying the entire workload using two chunks, of re-
spective sizes! 1 > 0 and ! 2 > 0 is (recalling that ! 1 + ! 2 = W(ttl) )

E (f) (W(ttl) ; � 2) = ! 1(1 � ! 1� ) + ! 2(1 � (! 1 + ! 2)� ))

= W(ttl) � (! 2
1 + ! 1! 2 + ! 2

2)�

= W(ttl) � W 2
(ttl) � + ! 1! 2�:

We observe that

E (f) (W(ttl) ; � 2) � E (f) (W(ttl) ; � 1) = ! 1! 2� > 0:

Thus, as one would expect intuitively: For any �xed total workload, one in-
creases the expectation ofW(cmp) by deploying the workload as two chunks, rather
than one�no matter how one sizes the chunks.

Continuing with the preceding reasoning, we can actually characterize the
optimal�i.e., expectation-maximizing�schedule for any �xed number of chunks.
(We thereby also identify a weakness of the free-initiation model: increasing the
number of chunks always increases the expected amount of work done�so the
(unachievable) �optimal� strategy would deploy in�nitely many in�nitely small
chunks.)

Theorem 2. (One remote computer: free-initiation model)
Say that one wishes to deployW(ttl) 2 [0; X ] units of work to a single remote
computer in at most n chunks, for some positive integern. In order to maximize
the expectation ofW(cmp) , one should have alln chunks share the same size,
namely, Z=n units of work, where

Z = min
�

W(ttl) ;
n

n + 1
X

�
:

In expectation, this optimal schedule completes

E (f) (W(ttl) ; n) = Z �
n + 1

2n
Z 2�

units of work.

Note that for �xed W(ttl) , E (f) (W(ttl) ; n) increases withn.

Proof. Let us partition the W(ttl) -unit workload into n + 1 chunks, of respective
sizes! 1 � 0, . . . , ! n � 0, ! n +1 � 0, with the intention of deploying the �rst n
of these chunks.
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(a) Our assigning the �rst n chunksnonnegative,rather than positive
sizes a�ords us a convenient way to talk about �at most n chunks�
using only the single parametern. (b) By creating n+1 chunks rather
than n, we allow ourselves to hold back some work in order to avoid
what would be a certain interruption of the nth chunk. Formally,
exercising this option means making! n +1 positive; declining the
option�thereby deploying all W(ttl) units of work�means setting
! n +1 = 0 .

Each speci�c such partition speci�es an n-chunk schedule� n . Our challenge is
to choose the sizes of then +1 chunks in a way that maximizesE (f) (W(ttl) ; � n ).
To simplify notation, let Z = ! 1 + � � � + ! n denote the portion of the entire
workload that we actually deploy.

Extending the reasoning from the casesn = 1 and n = 2 , one obtains easily
from (5) the expression

E (f) (W(ttl) ; � n ) = ! 1(1 � ! 1� ) + ! 2(1 � (! 1 + ! 2)� ) + � � � +

+ � � � + ! n (1 � (! 1 + � � � + ! n )� ) (7)

= Z � Z 2� +

2

4
X

1� i<j � n

! i ! j

3

5 �: (8)

Standard arguments show that the bracketed sum in (8) is maximized when all
! i 's share the common valueZ=n, in which case, the sum achieves the value
1
n2

�
n
2

�
Z 2� . Since maximizing the sum also maximizesE (f) (W(ttl) ; � n ), simple

arithmetic yields:

E (f) (W(ttl) ; � n ) = Z �
n + 1

2n
Z 2�:

Viewing this expression forE (f) (W(ttl) ; � n ) as a function ofZ , we note that the

function is unimodal, increasing until Z =
n

(n + 1) �
and decreasing thereafter.

Setting this value for Z , gives us the maximum value forE (f) (W(ttl) ; � n ), i.e.,
the value of E (f) (W(ttl) ; n). The theorem follows.

3.2 An Optimal Schedule under the Charged-Initiation
Model

Under the charged-initiation model�i.e., on a computing platform wherein pro-
cessing a new chunk of work (for transmission or checkpointing)does incur a
cost (that we must account for)�deriving the optimal strategy becomes dra-
matically more di�cult, even when there is only one remote computer and even
when we knowa priori how many chunks we wish to employ.

Theorem 3. (One remote computer: charged-initiation model)
Say that one wishes to deployW(ttl) 2 [0; X ] units of work, where X � " , to

a single remote computer in at mostn chunks, for some positive integern. Let
n1 =

j
1
2

� p
1 + 8X=" � 1

�k
and n2 =

�
1
2

� p
1 + 8W(ttl) =" + 1

��
. The unique
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Static Strategies for Worksharing with Unrecoverable Interruptions 19

regimen for maximizing E (c) (W(ttl) ; n) speci�es m = min f n; n1; n2g chunks: the
�rst has size8

! 1;m =
W(dpl)

m
+

m � 1
2

"

where

W(dpl) = min
�

W(ttl) ;
m

m + 1
X �

m
2

"
�

; (9)

and the (i + 1) th chunk inductively has size

! i +1 ;m = ! i;m � ":

In expectation, this schedule completes

E (c) (W(ttl) ; n) =

W(dpl) �
m + 1

2m
W 2

(dpl) � �
m + 1

2
W(dpl) "� +

(m � 1)m(m + 1)
24

"2� (10)

units of work.

Note that E (c) (W(ttl) ; n) is maximal for any value of n no smaller than
minf n1; n2g.

Proof. We proceed by induction on the numbern of chunks we want to parti-
tion our W(ttl) units of work into. We denote by E(c)

opt (W(ttl) ; n) the maximum
expected amount of work that a schedule can complete under such a partition.

Focus �rst on the casen = 1 . When work is allocated in a single chunk, the
maximum expected amount of total work completed is, by de�nition:

E(c)
opt (W(ttl) ; 1) = max

0� ! 1; 1 � W (ttl)

E(c) (! 1;1) where

E(c) (! 1;1) = max
0� ! 1; 1 � W (ttl)

! 1;1(1 � (! 1;1 + ")� ):

We determine the optimal size of ! 1;1 by viewing this quantity as a variable
in the closed interval [0; W(ttl) ] and maximizing E(c) (! 1;1) symbolically. We
thereby �nd that E(c) (! 1;1) is maximized by setting

! 1;1 = min
�

W(ttl) ;
1

2�
�

"
2

�
;

so that

E(c)
opt (W(ttl) ; 1) =

8
><

>:

1
4�

�
"
2

+
"2

4
� if W(ttl) >

1
2�

�
"
2

;

W(ttl) � W 2
(ttl) � � W(ttl) "� otherwise.

(Note that ! 1;1 has a non-negative size because of the natural hypothesis that
X � " .)

We now proceed to general values ofn by induction. We begin by assuming
that the conclusions of the theorem have been established for the case when the

8The second subscript of ! reminds us how many chunks the workload is divided into.
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workload is split into n � 1 positive-size chunks. We also assume thatn is no
greater than minf n1; n2g. In other words, we assume that any optimal solution
with at most n chunks usedn positive-size chunks.

As our �rst step in analyzing how best to deploy n + 1 positive-size chunks,
we note that the only in�uence the �rst n chunks of work have on the probability
that the last chunk will be computed successfully is in terms of their cumulative
size.

Let us clarify this last point, which follows from the failure proba-
bility model. Denote by An the cumulative size of the �rst n chunks
of work in the expectation-maximizing (n + 1) -chunk scenario; i.e.,
An =

P n
i =1 ! i;n +1 . Once An is speci�ed, the probability that the

remote computer will be interrupted while working on the (n + 1) th
chunk depends only on the value ofAn , not on the way the An units
of work have been divided into chunks.

This fact means that once one has speci�ed the cumulative size of the workload
that comprises the �rst n chunks, the best way to partition this workload into
chunks is as though it were the only work in the system, i.e., as if there were
no (n + 1) th chunk to be allocated. Thus, one can expressEopt (W(ttl) ; n + 1) in
terms of An (whose value must, of course, be determined) andEopt (An ; n), via
the following maximization.

Eopt (W(ttl) ; n + 1) =

max
n

Eopt (An ; n) + ! n +1 ;n +1 (1 � (An + ! n +1 ;n +1 + ( n + 1) " ) � )
o

;

where the maximization is over all values forAn in which

An > 0 allowing for the n previous chunks
! n +1 ;n +1 � 0 allowing for an (n + 1) th chunk

An + ! n +1 ;n +1 � W(ttl) because the total workload has sizeW(ttl)

An + ! n +1 ;n +1 + ( n + 1) " � X re�ecting the risk and cost models

The last of these inequalities acknowledges that the remote computer is certain
to be interrupted (with probability 1) before it can complete the(n+1) th chunk
of work, if its overall workload is no smaller than X � (n + 1) " .

We now have two cases to consider, depending on the size ofAn .
Case 1: An <

n
n + 1

X �
n
2

" .

By assumption, the expectation-maximizing regimen deploysAn units of
work via its �rst n chunks. By induction, expression (10) tells us that the
expected amount of work completed by deploying theseAn units is

E(c)
opt (An ; n) = An �

n + 1
2n

A2
n � �

n + 1
2

An "� +
(n � 1)n(n + 1)

24
"2�:

Let W(dpl) denote the total work that is actually allocated: W(dpl) = An +
! n +1 ;n +1 . In the following calculations, we write ! n +1 ;n +1 as W(dpl) � An , in
order to represent the (n + 1) -chunk scenario entirely via quantities that arise
in the n-chunk scenario.
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We focus on

E(1) (An ; ! n +1 ;n +1 ) = Eopt (An ; n) + ( W(dpl) � An )
�
1 �

�
W(dpl) + ( n + 1) "

�
�

�

=
�

An �
n + 1

2n
A2

n � �
n + 1

2
An "� +

(n � 1)n(n + 1)
24

"2�
�

+ ( W(dpl) � An )
�
1 �

�
W(dpl) + ( n + 1) "

�
�

�

=
�

W(dpl) +
n + 1

2
"
�

An � �
n + 1

2n
A2

n �

+ W(dpl) (1 � (W(dpl) + ( n + 1) " )� ) +
(n � 1)n(n + 1)

24
"2�:

For a given value ofW(dpl) , we look for the best value forAn using the preceding
expression. We note �rst that

@E(1) (An ; ! n +1 ;n +1 )
@An

= �
n + 1

n
An � + W(dpl) � +

n + 1
2

"�:

We note next that, for �xed W(dpl) , the quantity E(1) (An ; ! n +1 ;n +1 ) begins to
increase with An and then decreases. The value forAn that maximizes this
expectation, which we denoteA (opt )

n , is

A (opt )
n = min

�
W(ttl) ;

n
n + 1

W(dpl) +
n
2

"
�

:

When W(ttl) � (n=(n + 1)) W(dpl) + 1
2 n" , A (opt )

n = W(ttl) , meaning that the
(n + 1) th chunk is empty, and the schedule doesnot optimize the expected
work. (In the charged-initiation model an empty chunk decreases the overall
probability). Consequently, we focusfor the moment on the case

A (opt )
n =

n
n + 1

W(dpl) +
n
2

" (11)

(thereby assuming that W(ttl) � (n=(n + 1)) W(dpl) + 1
2 n" ). Therefore, we have

E(1) (A (opt )
n ; ! n +1 ;n +1 ) =

�
n + 2

2(n + 1)
W 2

(dpl) � + W(dpl) �
n + 2

2
"W (dpl) � +

n(n + 1)( n + 2)
24

"2�:

We maximize E(1) (A (opt )
n ; ! n +1 ;n +1 ) via the preceding expression by viewing the

expectation as a function ofW(dpl) . We discover that E(1) (A (opt )
n ; ! n +1 ;n +1 ) is

maximized when

W(dpl) = Z (opt ) = min
�

n + 1
n + 2

X �
n + 1

2
"; W (ttl)

�
: (12)

For this case to be meaningful, the(n + 1) th chunk must be nonempty, so
that A (opt )

n < Z ; i.e., Z > 1
2 n(n + 1) " . Therefore, we must simultaneously have:

1. (n + 1) =(n + 2) X � 1
2 (n + 1) " > 1

2 n(n + 1) " , so that X > 1
2 (n + 1)( n + 2) " ,

which requires that n �
j

1
2

� p
1 + 8X=" � 3

�k
.
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2. W(ttl) > 1
2 n(n + 1) " , which requires that n �

�
1
2

� p
1 + 8W(ttl) =" � 1

��
.

We can now check the sanity of the result.

Z (opt ) + ( n + 1) " �
n + 1
n + 2

X �
n + 1

2
" + ( n + 1) " < X;

because of the just established condition1
2 (n + 1)( n + 2) " < X . We also have,

A (opt )
n =

n
n + 1

W(dpl) +
n
2

" �
n

n + 1

�
n + 1
n + 2

X �
n + 1

2
"
�

+
n
2

" =
n

n + 2
X

<
n

n + 1
X �

n
2

"

because1
2 (n + 1)( n + 2) " < X . Therefore, the solution is consistent with the

de�ning hypothesis for this case�namely, that An <
n

n + 1
X �

n
2

" .

Before moving on to case 2, we note that the value (11) does, indeed, extend
our inductive hypothesis. To wit, the optimal total amount of allocated work,
Z (opt ) , has precisely the predicted value, and the sizes of the �rstn chunks do
follow a decreasing arithmetic progression with common di�erence" (by using
the induction hypothesis). Finally, the last chunk has the claimed size:

! n +1 ;n +1 = Z (opt ) � A (opt )
n =

1
n + 1

Z (opt ) �
n
2

":

We turn now to our remaining chores. We must derive the expectation-
maximizing chunk sizes for the second case, whereinAn is �big.� And, we must
show that the maximal expected work completion in this second case is always
dominated by the solution of the �rst case�which will lead us to conclude that
the regimen of the theorem is, indeed, optimal.

Case 2: An �
n

n + 1
X �

n
2

" .

By (9), if the current case's restriction on An is an inequality, then An

cannot be an optimal cumulative n-chunk work allocation. We lose no generality,
therefore, by focusing only on the subcase when the de�ning restriction ofAn

is an equality:
An =

n
n + 1

X �
n
2

":

For this value of An , call it A?
n , we have

Eopt (W(ttl) ; n + 1) =

max
�

Eopt (A?
n ; n) + ! n +1 ;n +1 (1 � (A?

n + ! n +1 ;n +1 + ( n + 1) " ) � )
�

;

where the maximization is over all values of! n +1 ;n +1 in the closed interval
[0; W(ttl) � A?

n ].
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To determine a value of! n +1 ;n +1 that maximizes Eopt (W(ttl) ; n + 1) for A?
n ,

we focus on the function

E(2) (An ;! n +1 ;n +1 )

= Eopt (An ; n) + ! n +1 ;n +1 (1 � (An + ! n +1 ;n +1 + ( n + 1) " ) � )

=
�

An �
n + 1

2n
A2

n � �
n + 1

2
An "� +

(n � 1)n(n + 1)
24

"2�
�

+ ! n +1 ;n +1 (1 � (An + ! n +1 ;n +1 + ( n + 1) " ) � )

= � �! 2
n +1 ;n +1 +

�
�

n + 2
2

�" +
1

n + 1

�
! n +1 ;n +1

+
n

�
(n + 1) 2(n + 2) "2� 2 � 12(n + 1) "� + 12

�

24(n + 1) �
:

Easily,

@E(2) (An ; ! n +1 ;n +1 )
@!n +1 ;n +1

= � 2�! n +1 ;n +1 �
n + 2

2
�" +

1
n + 1

:

Knowing A?
n exactly, we infer that the value of ! n +1 ;n +1 that maximizes the

expectation E(2) (A?
n ; ! n +1 ;n +1 ) is

! n +1 ;n +1 = min
�

1
2(n + 1)

X �
1
4

(n + 2) "; W (ttl) �
n

n + 1
X �

n
2

"
�

:

The second term dominates this minimization whenever

W(ttl) �
2n + 1
2n + 2

X +
n � 2

4
" ;

therefore, if W(ttl) is large enough�as delimited by the preceding inequality�
then

E(2) (A?
n ; ! n +1 ;n +1 ) =

2n2 + 2n + 1
4(n + 1) 2 X �

2n2 + 3n + 2
4(n + 1)

" +
(n + 2)(2 n2 + 5n + 6

48
�" 2;

When W(ttl) does not achieve this threshold, then

E(2) (A?
n ; ! n +1 ;n +1 ) = � W 2

(ttl) � +
�

n � 2
2

�" +
2n + 1
n + 1

�
W(ttl)

+
(n2 + 3n + 14)n�" 2

24
�

n2

n + 1
" �

n
2(n + 1)

X:

For the found solution to be meaningful, the (n + 1) th chunk must be
nonempty, i.e., ! n +1 ;n +1 > 0. This has two implications.

1. X > (n +1)( n +2)
2 " , which is true as long asn �

j
1
2

� p
1 + 8X=" � 3

�k
.

2. W(ttl) � (n=(n + 1)) X � 1
2 n" > 0, which implies W(ttl) > 1

2 n(n + 1) "
becauseX � W(ttl) . This inequality on W(ttl) is true as long asn ��

1
2

� p
1 + 8W(ttl) =" � 1

��
.
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BecauseX > 1
2 (n + 1)( n + 2) " , we have

An + ! n +1 ;n +1 +( n+1) " �
n

n + 1
X �

n
2

" +
1

2(n + 1) �
�

1
4

(n+2) " +( n+1) " � X:

For both Case 1 and Case 2, if either condition
�
n �

�
1
2

� p
1 + 8X=" � 3

� ��
or

�
n �

�
1
2

� q
1 + 8W(ttl) =" � 1

� ��

does not hold, then there is no optimal schedule with(n + 1) nonempty chunks.
(We will come back later to the case where one of these conditions does not
hold.) If both conditions hold, then Case 1 always has an optimal schedule, but
Case 2 may not have one.

To complete the proof, we must verify that the optimal regimen always
corresponds to Case 1 (as suggested by the theorem), never to Case 2 (whenever
Case 2 de�nes a valid solution). We accomplish this by considering two cases,
depending on the sizeW(ttl) of the workload. We show that the expected work
completed under the regimen of Case 1 is never less than under the regimen of
Case 2.

Case A : W(ttl) �
n + 1
n + 2

X �
n + 1

2
" .

Under this hypothesis, and under Case 1, the workload that is actually
deployed has size

W(dpl) =
n + 1
n + 2

X �
n + 1

2
";

so that, in expectation,

E(1) (W(ttl) ; n + 1) = W(dpl) �
n + 1

2n
W 2

(dpl) � �
n + 1

2
W(dpl) "�

+
(n � 1)n(n + 1)

24
"2�

=
n + 1

2(n + 2)
X �

n + 1
2

" +
(n + 1)( n + 2)( n + 3)

24
"2�:

units of work are completed. Moreover, because

n + 1
n + 2

X �
n + 1

2
" �

2n + 1
2n + 2

X +
n � 2

4
";

the most favorable value forE(1) (W(ttl) ; n+1) under Case 2 lies within the range
of values for the current case. Because the value ofE(1) (W(ttl) ; n +1) is constant
whenever

W(ttl) �
n + 1
n + 2

X �
n + 1

2
";

we can reach the desired conclusion by just showing that this value is no smaller

than E(2)
�

2n + 1
2n + 2

X +
n � 2

4
"; n + 1

�
. Thus, we need only focus on the speci�c

value
W(ttl � lim) =

2n + 1
2n + 2

X +
n � 2

4
"
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for W(ttl) . For this value, we have:

E(2) (W(ttl � lim) ; n + 1) = � W 2
(ttl � lim) � +

�
n � 2

2
�" +

2n + 1
n + 1

�
W(ttl � lim)

+
(n2 + 3n + 14)n�" 2

24
�

n2

n + 1
" �

n
2(n + 1)

X

=
2n2 + 2n + 1

4(n + 1) 2 X �
2n2 + 3n + 2

4(n + 1)
"

+
(n + 2)(2 n2 + 5n + 6)

48
"2�:

By explicit calculation, we �nally see that

E(1) (W(ttl) ; n + 1) �E (2) (W(ttl � lim) ; n + 1)

=

�
4 + ( n4 + 6n3 + 13n2 + 12n + 4) � 2"2

�
n

16(n + 1) 2(n + 2) �

�
(4n2 + 12n + 8) �"n
16(n + 1) 2(n + 2) �

=

�
4 + ( n + 1) 2(n + 2) 2� 2"2 � 4(n + 1)( n + 2) �"

�
n

16(n + 1) 2(n + 2) �

=
((n + 1)( n + 2) �" � 2)2 n

16(n + 1) 2(n + 2) �

� 0:

Case B : W(ttl) �
n + 1
n + 2

X �
n + 1

2
" .

In this case, the regimen of Case 1 deploys allW(ttl) units of work, thereby
completing, in expectation,

E(1) (W(ttl) ; n + 1)

= W(ttl) �
n + 1

2n
W 2

(ttl) � �
n + 1

2
W(ttl) "� +

(n � 1)n(n + 1)
24

"2�:

units of work. Moreover,

n + 1
n + 2

X �
n + 1

2
" �

2n + 1
2n + 2

X +
n � 2

4
";

so that the regimen of Case 2 also deploys allW(ttl) units of work, thereby
completing, in expectation,

E(2) (W(ttl) ; n + 1) = � W 2
(ttl) � +

�
n � 2

2
�" +

2n + 1
n + 1

�
W(ttl)

+
(n2 + 3n + 14)n�" 2

24
�

n2

n + 1
" �

n
2(n + 1)

X:

units of work.
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Explicit calculation now shows that

E(1) (W(ttl) ; n + 1) �E (2) (W(ttl) ; n + 1)

=
n

2(n + 1)
W 2

(ttl) � �
n

n + 1
(1 + ( n + 1) "� )W(ttl)

+
n

2(n + 1)
(1 + 2n�" � (n + 1) � 2"2)X:

Viewed as a function ofW(ttl) , this di�erence is, thus, unimodal, decreasing up
to its global minimum, which occurs at W(ttl) = X + ( n + 1) " , and increasing
thereafter. The largest value ofW(ttl) allowed by the current case is

W(ttl � max) =
n + 1
n + 2

X �
n + 1

2
";

so this is also the value on which the di�erenceE(1) (W(ttl) ; n+1) �E (2) (W(ttl) ; n+
1) reaches its minimum within its domain of validity. Thus, we need only focus
on the behavior of the di�erence at the valueW(ttl) = W(ttl � max) . At this value,

E(1) (W(ttl � max) ; n + 1) �E (2) (W(ttl � max) ; n + 1)

=
n(5n + 1) "2�

8
+

(n � 1)n"
2(n + 1)( n + 2)

+
n

2(n + 1)( n + 2) 2�
:

This quantity is obviously positive, which means that E(1) (W(ttl � max) ; n + 1) >
E(2) (W(ttl � max) ; n + 1) .

We thus see that, for workloads of any sizeW(ttl) , one completes at least as
much expected work via the schedule of Case 1 as via the schedule of Case 2.

In summation, if

n � min
��

1
2

� p
1 + 8X=" � 3

� �
;

�
1
2

� q
1 + 8W(ttl) =" � 1

� ��
; (13)

then Case 1 speci�es the optimal schedule that uses no more thann + 1 chunks.
Of course, this inequality translates to the conditions of the theorem (where it
is written for n chunks instead ofn + 1 ).

Note that if n exceeds either quantity in the minimization of (13), then
one never improves the expected amount of work completed by deploying the
workload in more than n chunks. This is another consequence of our remark
about An at the beginning of this proof. If there exists a value ofm for which
there exists a scheduleS that uses � n + 1 nonempty chunks, then replacing
the �rst n + 1 chunks in this solution with the optimal solution for n chunks,
using a workload equal to the �rst n + 1 chunks of S, yields a schedule that, in
expectation, completes strictly more work than S.

4 Scheduling for Two Remote Computers

Before we approach the general case ofp remote computers, we study the case
of two remote computers, in order to adduce principles that will be useful in the
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general case. We �rst establish characteristics of optimal schedules under general
risk functions, then restrict attention to the linear risk model. Throughout this
section, we consider two remote computers,P1 and P2, under the free-initiation
model.

4.1 Two Remote Computers under General Risk

Focus on a distribution of work to P1 and P2 under which, for i = 1 ; 2, Pi

receivesni chunks to execute, call themWi; 1, . . . , Wi;n i , to be scheduled in
this order; as usual we denotejW i;j j by ! i;j . We do not assume anya priori
relation between the way P1 and P2 break their allocated work into chunks; in
particular, any work that is allocated to both P1 and P2 may be chunked quite
di�erently on the two machines.

Theorem 4. (Two remote computers: free-initiation model; general
risk)
Let � be a schedule for two remote computers,P1 and P2. Say that, for both
P1 and P2, the probability of being interrupted never decreases as a computer
processes more work. There exists a schedule� 0 for P1 and P2 that, in expec-
tation, completes as much work as does� and that satis�es the following three
properties; cf. Fig. 1.

Maximal work deployment. � 0 deploys as much of the overall workload as
possible. Therefore, the workloads it deploys toP1 and P2 can overlap only
if their union is the entire overall workload.

Local work priority. � 0 has P1 (resp., P2) process all of the allocated work
that it does not share with P2 (resp., P1) before it processes any shared
work.

Shared work �mirroring.� � 0 has P1 and P2 process their shared work �in
opposite orders.� Speci�cally, say that P1 chops its allocated work into
chunks W1;1; : : : ; W1;n 1 , while P2 chops its allocated work into chunks
W2;1; : : : ; W2;n 2 .

Say that there exist chunk-indicesa1, b1 > a 1 for P1, and a2, b2 > a 2

for P2 such that: chunksW1;a 1 and W2;a 2 both contain a shared �piece
of work� A, and chunksW1;b1 and W2;b2 both contain a shared �piece of
work� B .

Then if � 0 hasP1 executeA beforeB (i.e., P1 executes chunkW1;a 1 before
chunk W1;b1 ), then � 0 has P2 executeB beforeA (i.e., P2 executes chunk
W2;b2 before chunkW2;a 2 ).

Proof. The strategy. We devise a cut-and-paste argument for each of the the-
orem's three characteristics in turn. Each time, we begin with an arbitrary
schedule� that does not have that characteristic, and we show how to alter
� to a schedule� 0 that does have the characteristic and that, in expectation,
completes as much work as does� . In order to achieve the required alterations,
we must re�ne our description of workloads. Speci�cally, we now describe the
overall workload via a partition X = fX 1; : : : ; Xm g of pieces of work, that has
the following property. For j = 1 ; 2, each pieceXi 2 X is either included within
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W1;2 W1;3

W2;3 W2;2 W2;1

W1;1

Figure 1: The shape of an optimal schedule for two computers, as described in
Theorem 4; n1 = n2 = 3 . The top row displays P1 's chunks, the bottom row
P2 's. Vertically aligned parts of chunks correspond to shared work; shaded areas
depict unallocated work (e.g., none of the work inW2;1 is allocated to P1).

a chunk of Pj , or it is disjoint from each chunk of Pj . We de�ne, for j = 1 ; 2
and i = 1 ; : : : ; m, the indicator

� j (i ) =

8
>>>><

>>>>:

0 when Xi 2 X does not intersect
any chunk of Pj

1 when Xi is contained within a chunk
of Pj ; say, chunk � j (i )
� so that Xi � W j;� j ( i )

We now specify the expectation,E, of W(cmp) under this new speci�cation
of the deployment of chunks toP1 and P2. The probability that piece Xi 2 X
is computed successfully is:

ˆ 0 if Xi is not allocated to either P1 or P2;
ˆ 1 � P r

� P � k ( i )
j =1 ! k;j

�
if Xk is allocated only to Pk

i.e., if � k (i )(1 � � k 0(i )) = 1 , where f k; k0g = f 1; 2g;

ˆ 1� P r
� P � 1 ( i )

j =1 ! 1;j

�
P r

� P � 2 ( i )
j =1 ! 2;j

�
if Xi is allocated to both P1 and P2;

i.e., if � 1(i )� 2(i ) = 1 .
We thus have

E =
mX

i =1

jX i j � � i (14)

where

� i = � 1(i )� 2(i )

0

@1 � P r

0

@
� 1 ( i )X

j =1

! 1;j

1

A Pr

0

@
� 2 ( i )X

j =1

! 2;j

1

A

1

A

+ � 1(i )(1 � � 2(i ))

0

@1 � P r

0

@
� 1 ( i )X

j =1

! 1;j

1

A

1

A

+ (1 � � 1(i )) � 2(i )

0

@1 � P r

0

@
� 2 ( i )X

j =1

! 2;j

1

A

1

A :

The alterations. We now look at each of our three characteristics in turn, per-
forming the following process for each. We begin with a schedule� (0) that, in
expectation, completesE (0) units of work. Say, for induction, that we now have
a schedule� ( r ) that completes E ( r ) units of work. We describe how to alter
� ( r ) to obtain a schedule� ( r +1) that, in a sense, comes closer to enjoying the
current characteristic and that, in expectation, completes E ( r +1) � E ( r ) units
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of work. We prove that a �nite sequence of such alterations convert� (0) to a
schedule� that enjoys the characteristic.

Maximal work deployment. Say that schedule� deploys some portion of the
overall workload to both P1 and P2, while it leaves some other piece unallocated
to either:

ˆ the doubly allocated portion is a piece Xi 2 X ;
ˆ the unallocated work is a pieceXj 2 X .

To alter schedule � , we wish somehow to swap some doubly allocated work for
an equal amount of unallocated work. This is easy whenjX i j = jX j j. Otherwise,
we achieve this goal as follows.

1. If jX j j < jX i j, then we invoke divisibility to subdivide Xi into one piece,
A , of size jX j j and another of sizejX i j � jAj . We swap B = Xj for A in
the chunk of P1 that contains Xi .

2. If jX j j > jX i j, then we invoke divisibility to subdivide Xj into one piece,
B, of sizejX i j and another of sizejX j j � jBj . We swapB for A = Xi in the
relevant chunk of P1.

In case 1,� ( r +1) has no more unallocated work and the maximal deployment
rule is in force. In case 2,� ( r +1) has one fewer piece of doubly allocated work.
It follows that a �nite sequence of alterations convert � (0) into a schedule that
practices maximal work deployment. We henceforth assume that� practices
maximal work deployment.

Local-work prioritization. Assume that under optimal schedule� , there exist
Xi ; Xj 2 X such that:

1. � allocatesXi to P1 but not to P2; i.e., � 1(i )(1 � � 2(i )) = 1 ;
2. � allocatesXj to both P1 and P2; i.e., � 1(i )� 2(i ) = 1 ;
3. � attempts to execute Xj before Xi on P1: symbolically, � 1(i ) � � 1(j ).

We alter � to obtain a new schedule that comes closer to prioritizing local work.
And, we do so in a way that (a) at least matches� 's expected work production
and (b) guarantees that a �nite sequence of alterations produce a schedule that
practices local work prioritization. We proceed as follows.

We codify the set of violations of local work prioritization via the set V that
identi�es every triplet of chunks that violate local work prioritization.

V =

8
>><

>>:
(k; k0; l )

�
�
�
�
�
�
�
�

W1;k \ W 2;k 0 6= ; (replicated work)
W1;l n

S n 2
l 0=1 W2;l 0 6= ; (local work)

k < l (replicated starts before local)
k 2 [1; n1]; k0 2 [1; n2]; l 2 [1; n1]

9
>>=

>>;

To choose the alteration to apply to � at this step, we take any triplet (k; k0; l ) 2
V whose �rst component, k, is minimal among all the �rst components of ele-
ments of V, and whose third component,l , is maximal among all the third com-
ponents of elements ofV (one veri�es easily that such an element always exists).
From the perspective of P1, we thus focus on the earliest-scheduled replicated
chunk that is scheduled before the latest-scheduled unreplicated chunk.

(1) Say �rst that jW1;l n
S n 2

l 0=1 W2;l 0j � jW 1;k \ W 2;k 0j. In this case, we
alter � by swapping the piece of workA = W1;l n

S n 2
l 0=1 W2;l 0 from W1;l with

an arbitrarily chosen like-sized subsetB of W1;k \ W 2;k 0 in W1;k . After the
swap, V no longer contains any element of the form(�; �; l ), because chunk
W1;l now contains only replicated work. Furthermore, by choice ofk, chunks
W1;1 through W1;k � 1 contain only work for P1 that is not replicated on P2.
Thus, the swap reduces the number of violations.
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(2) Say alternatively that jW1;l n
S n 2

l 0=1 W2;l 0j > jW1;k \W 2;k 0j. In this case,
we alter � by swapping the piece of workB = W1;k \ W 2;k 0 from W1;k with an
arbitrarily chosen like-sized subsetA of W1;l n

S n 2
l 0=1 W2;l 0 in W1;l . After the

swap, V no longer contains any element of the form(k; k0; � ). Furthermore, by
de�nition of k, chunks W1;1 through W1;k � 1 contain only work for P1 that is
not replicated on P2. Thus, this swap also reduces the number of violations.

Clearly, at most jVj alterations are needed to convert� to a schedule that
practices local-work prioritization on computer P1. Because each alteration
a�ects only the scheduling on P1, we can now apply an analogous sequence of
alterations that focus on violations by computer P2. After this second round
of alterations, we have �nally converted � to a schedule that practices local
work prioritization on both computers. We henceforth assume that� practices
local-work prioritization.

�Mirroring� of replicated work . Say that, under schedule� , there are two
partition elements, Xi and Xj , such that:

1. � allocates both Xi and Xj to both P1 and P2; i.e.,
� 1(i )� 2(i ) = � 1(j )� 2(j ) = 1 ;

2. � attempts to execute Xi after Xj on both P1 and P2: symbolically,
[� 1(i ) � � 1(j )] and [� 2(i ) � � 2(j )].

We craft a sequence of alterations to� that produce a schedule that practices
the mirroring of replicated work. Essentially, at each step, we identify a pair
of pieces of work,A and B, that violate mirroring in the way just described.
We then swapB for A in chunk W1;� 1 (A ) and swapA for B in chunk W1;� 1 (B) ,
while leaving the schedule ofP2 unchanged.

How do we select the pieces to focus on at this step? Our job is somewhat
simpli�ed by our ability to focus entirely on replicated pieces of work�because
of our assumption that � practices both maximal work deployment and local-
work prioritization. We employ the following inductive process to choose the
pieces from among pieces of replicated work that violate mirroring. Say, for
induction, that we have times�so that the k pieces of replicated work thatP1

is scheduled to (attempt to) execute�rst are the k pieces of replicated work that
P2 is scheduled to (attempt to) executelast, and that these pieces are executed
in reverse orders onP1 and P2. We now select the(k + 1) th piece of replicated
work that P1 is scheduled to (attempt to) execute, call it Xi , and the kth from
last piece of replicated work that P2 is scheduled to (attempt to) execute, call
it Xj .

(1) If Xi = Xj , then there is no violation to undo.
(2) If Xi 6= Xj , then we select the pieces,A and B, to swap in the (k + 1) th

alteration of � , in the following manner. (a) If jX j j � jX i j, then we haveXi play
the role of A , and we select asB any size-jAj subset ofXj . After the swap, B is
scheduled as the(k+1) th piece of replicated work forP1 to (attempt to) execute
and (in deference to mirroring) as thekth from last piece of replicated work for
P2 to (attempt to) execute. None of the �rst k pieces of replicated work forP1

nor any of the last k pieces of replicated work forP2 were a�ected by the swap.
To conclude that the inductive process eventually terminates (successfully!) we
�rst consider the number of chunks of P1 (respectively P2) that include only
work from the �rst (resp. last) k pieces of replicated work. As the alterations
progress, the numbers of such pieces never decrease. If an alteration does not
increase either of these numbers, then we focus on the set of early chunks of
P2 that contain work that is replicated in the chunk of P1 that we are working

INRIA



Static Strategies for Worksharing with Unrecoverable Interruptions 31

with:
V2 =

�
l < � 2(Xj ) j W1;� 1 (X i ) \ W 2;l 6= ;

	
;

and the symmetrical set of chunks forP1:

V1 =
�

l > � 1(Xi ) j W1;l \ W 2;� 2 (X j ) 6= ;
	

:

If we assume�as we may with no loss of generality�that we are working with
a partition made of maximal elements, then the alteration decreases the setV2

by one element (namely,W2;� 2 (X i ) ) and does not modify the setV1. (b) The
case whenjX j 0j < jX i 0j is symmetric with case (a), hence is left to the reader.
We note only that, in that case, the alteration does not modify the set V2, and
it decreases the setV1 by one element (namely,W1;� 1 (X j ) )

Validating the alterations. To complete the proof, we need only verify that each
of the schedule alterations we have described cannot produce a schedule that
completes less work than schedule� does. Rather similar arguments verify this
work preservation for each of the three characteristic. An important feature of
our alterations that greatly simpli�es these veri�cations is that, in each case,
the relevant alteration a�ects only the terms in expression (14) that mention
the pieces involved in the alteration.

Maximal work deployment. Recall that our alteration of schedule � in this
case substituted pieceB for piece A in chunk W1;� 1 (A ) . Now, before this sub-
stitution, the total contribution to the expectation E of these pieces was:

jAj �

0

@1 � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A Pr

0

@
� 2 (A )X

k=1

! 2;k

1

A

1

A + jBj � 0:

After the substitution, this contribution becomes:

jAj �

0

@1 � P r

0

@
� 2 (A )X

k=1

! 2;k

1

A

1

A + jBj �

0

@1 � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A

1

A :

BecausejAj = jBj , the latter contribution is never less than the former, di�ering
from it by the quantity

jAj �

0

@1 � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A

1

A �

0

@1 � P r

0

@
� 2 (A )X

k=1

! 2;k

1

A

1

A ;

whose nonnegativity implies that the altered schedule completes at least as much
work, in expectation, as does schedule� .

Local work prioritization . Recall that our alteration of schedule � in this
case substituted a piece of local workA from W1;� 1 (A ) with a piece of replicated
work B of W1;� 1 (B) . Now, before this substitution, the total contribution to the
expectation E of these pieces was:

jAj �

0

@1 � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A

1

A + jBj �

0

@1 � P r

0

@
� 1 (B)X

k=1

! 1;k

1

A Pr

0

@
� 2 (B)X

k=1

! 2;k

1

A

1

A :
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After the substitution, the contribution becomes

jAj �

0

@1 � P r

0

@
� 1 (B)X

k=1

! 1;k

1

A

1

A + jBj �

0

@1 � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A Pr

0

@
� 2 (B)X

k=1

! 2;k

1

A

1

A :

BecausejAj = jBj , we see that the substitution increases the overall expectation
by the quantity

jAj �

0

@Pr

0

@
� 1 (A )X

k=1

! 1;k

1

A � P r

0

@
� 1 (B)X

k=1

! 1;k

1

A

1

A �

0

@1 � P r

0

@
� 2 (B)X

k=1

! 2;k

1

A

1

A ;

This quantity is nonnegative because
ˆ the probability P r (w) is nondecreasing inw;
ˆ

P � 1 (A )
k=1 ! 1;k �

P � 1 (B)
k=1 ! 1;k , because� 1(A ) � � 1(B).

The altered schedule completes, in expectation, at least as much work as� .
Shared work �mirroring.� Recall that our alteration of schedule� in this case

swappedB for A in chunk W1;� 1 (A ) and swappedA for B in chunk W1;� 1 (B) ,
while leaving the schedule ofP2 unchanged. Now, before this substitution, the
total contribution to the expectation E of these pieces was:

jAj �

0

@1 � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A Pr

0

@
� 2 (A )X

k=1

! 2;k

1

A

1

A

+ jBj �

0

@1 � P r

0

@
� 1 (B)X

k=1

! 1;k

1

A Pr

0

@
� 2 (B)X

k=1

! 2;k

1

A

1

A :

After the substitution, their contribution becomes:

jAj �

0

@1 � P r

0

@
� 1 (B)X

k=1

! 1;k

1

A Pr

0

@
� 2 (A )X

k=1

! 2;k

1

A

1

A

+ jBj �

0

@1 � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A Pr

0

@
� 2 (B)X

k=1

! 2;k

1

A

1

A :

BecausejAj = jBj , the substitutions have increased the overall expectation by
the quantity:

jAj�

0

@Pr

0

@
� 1 (B)X

k=1

! 1;k

1

A � P r

0

@
� 1 (A )X

k=1

! 1;k

1

A

1

A

0

@Pr

0

@
� 2 (B)X

k=1

! 2;k

1

A � P r

0

@
� 2 (A )X

k=1

! 2;k

1

A

1

A :

This quantity is nonnegative becauseA and B are processed in the same order
on P1 and on P2. The altered schedule thus completes, in expectation, at least
as much work as� .
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4.2 Two Remote Computers under Linear Risk

4.2.1 Allocating work in a single chunk

We now specialize from general risk functions to the linear risk function. We
�rst consider the case wherein each computer processes its allocated work as
a single chunk. Even this simple case turns out to be surprisingly di�cult to
schedule optimally when there is more than one remote computer. Indeed, our
experience with this case has led us to abandon the quest for exactly optimal
schedules, in favor of the more easily accessedasymptotically optimal schedules.

�Asymptotically optimal� here means that the expected amount of
work completed by these schedules deviates from exact maximality
by an amount that shrinks as the size of the workload grows without
bound.

To render the single-chunk scheduling problem tractable, we restrict atten-
tion to schedules that are symmetric, in the sense that they allocate the same
amount of work to each remote computer. It seems intuitive that there is always
a symmetric schedule among the optimal single-chunk schedules, but we have
yet to verify this.

Say that our workload consists of W(ttl) units of work that we somehow
order linearly. We denote by ha; bi the sub-workload obtained by eliminating:
the initial a units of work and all work beyond the initial b units. For instance,
h0; W(ttl) i denotes the entire workload,h0; 1

2 W(ttl) i denotes the �rst half of the
workload, and h1

2 W(ttl) ; W(ttl) i denotes the last half of the workload.

Theorem 5. (Two remote computers: linear risk; single chunk alloca-
tion)
Say that we wish to deployW(ttl) units of work on two computers, deploying a
single chunk per computer. The following symmetric schedule� completes, in
expectation, a maximum amount of work.

ˆ If W(ttl) � 1
2 X , then � deploys the entire workload on both remote com-

puters; symbolically,W1;1 = W2;1 = h0; W(ttl) i ;

ˆ if 1
2 X < W (ttl) � X , then � deploys the �rst half of the workload on

one computer and the second half on the other; symbolically,W1;1 =
h0; 1

2 W(ttl) i , and W2;1 = h1
2 W(ttl) ; W(ttl) i ;

ˆ if X < W (ttl) , then � deploys onlyX units of the workload, allocating the
�rst half to one computer and the second half to the other; symbolically,
W1;1 = h0; 1

2 X i , and W2;1 = h1
2 X; X i .

Proof. Our derivation of the optimal schedule builds on the following principle
(which we have encountered before). When we deploy work as a single chunk, we
never make that chunk as large asX , for then we risk certain interruption, hence,
in expectation, completes no work. In order to see how to optimally deploy
work as a single chunk, we consider separately schedules that allow overlapping
deployments to the two computers and those that do not.

Disjoint allocations . Focus �rst on schedules that deploy non-overlapping
workloads to the two remote computers. These two workloads,W1;1 and W2;1,
are independent, so we can invoke Theorem 2 to discover their optimal sizes.
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We see that the optimal strategy is to deploy W(dpl) = min f W(ttl) ; X g units of
work in total. We determine the optimal allocation of this work to the remote
computers, in respective chunk sizes! 1;1 and ! 2;1 = Z � ! 1;1, by considering
the expectation of W(cmp) .

E = ! 1;1
�
(1 � ! 1;1� ) + ( W(dpl) � ! 1;1)(1 � (W(dpl) � ! 1;1)� )

�

= � 2! 2
1;1� + 2 ! 1;1Z� + Z � Z 2�:

Easily, E is maximized when! 1;1 = ! 2;1 = 1
2 W(dpl) . The optimal value of E is,

then, E = W(ttl) � 1
2 W 2

(dpl) � . (Note that we did not need to assumethat the
optimal schedule is symmetric in this case; we actually proved that it should
be.)

Overlapping allocations to the two computers . The principle enunci-
ated at the beginning of this proof implies that an optimal schedule that deploys
overlapping workloads to the two remote computers never allocates a fullX units
of work to either computer. We can, therefore, simplify our calculations by re-
stricting attention henceforth to the case W(ttl) < 2X . Since we consider only
symmetric schedules, the common sizes of the allocations to both computers
satis�es s � W (ttl)

2 , by Theorem 4. We thus obtain the following expression for
the expectation of W(cmp) as a function of s.

E(s) = 2( W(ttl) � s)(1 � s� ) + (2 s � W(ttl) )(1 � s2� 2)

= � 2s3� 2 + (2 + W(ttl) � )s2� � 2sW(ttl) � + W(ttl) :

We seek the maximizing value ofs.

E0(s) =
d
ds

E(s) = 2[ � 3s2� + (2 + W(ttl) � )s � W(ttl) ]�:

The discriminant of the bracketed quadratic polynomial is

� = W 2
(ttl) � 2 � 8W(ttl) � +4 =

�
W(ttl) � � 2

�
2 +

p
3
�� �

W(ttl) � � 2
�

2 �
p

3
��

:

BecauseW(ttl) < 2X we have,W(ttl) � < 2(2 +
p

3). We branch on the relative
sizes ofW(ttl) and 2(2 �

p
3)X :

W(ttl) > 2(2 �
p

3)X . In this case, � < 0, so the polynomial has no real

roots, and E(s) is decreasing withs. Becauses 2 [ 1
2 W(ttl) ; W(ttl) ], E(s) is maxi-

mized whens = W(ttl) =2.
W(ttl) � 2(2 �

p
3)X . This case is far more complicated than its predecessor.

Let us denote the two roots of our quadratic polynomial bys� and s+ , as follows:

s� =
2 + W(ttl) � �

q
W 2

(ttl) � 2 � 8W(ttl) � + 4

6�
and

s+ =
2 + W(ttl) � +

q
W 2

(ttl) � 2 � 8W(ttl) � + 4

6�
:

One sees thatE(s) decreases ass progresses from�1 to s� , then increases as
s progresses froms� to s+ , then decreases once more ass increases beyonds+ .
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We must determine how these three intervals overlapE's domain of validity,
viz., s 2 [ 1

2 W(ttl) ; W(ttl) ].
We note �rst that 1

2 W(ttl) � s� . Indeed:

W(ttl) =2 � s�

just when W(ttl) =2 �
2 + W(ttl) � �

q
W 2

(ttl) � 2 � 8W(ttl) � + 4

6�

just when
q

W 2
(ttl) � 2 � 8W(ttl) � + 4 � 2(1 � W(ttl) � )

only if 0 � 3W 2
(ttl) � 2:

We invoke here the fact that W(ttl) � � 1, becauseW(ttl) � 2(2 �
p

3)X � X .
We remark next that E0(W(ttl) ) = 2 W(ttl) � (1 � 2W(ttl) � ), so that E0(W(ttl) ) � 0
and W(ttl) 2 [s� ; s+ ] when W(ttl) � X

2 ; moreover, W(ttl) > s + when W(ttl) >
1
2 X . Indeed, if we assume that1

2 X < W (ttl) � s+ (the lower bound implying
5W(ttl) � � 2 � 0), then we reach a contradiction:

W(ttl) � s+

just when W(ttl) �
2 + W(ttl) � +

q
W 2

(ttl) � 2 � 8W(ttl) � + 4

6�

just when 5W(ttl) � � 2 �
q

W 2
(ttl) � 2 � 8W(ttl) � + 4

only if 2W(ttl) � � 1:

So, once again we have two cases to consider:
W(ttl) � X=2. In this case, we haveW(ttl) 2 [s� ; s+ ], so that E(s)

achieves its maximum either whens = 1
2 W(ttl) or when s = W(ttl) . Hence

E(s)'s maximum is either

E(W(ttl) =2) = W(ttl) �
1
2

W 2
(ttl) � or E(W(ttl) ) = W(ttl) � W 3

(ttl) � 2:

When W(ttl) � 1
2 X , which is the case here, the latter value dominates, so the

optimal deployment is ! 1;1 = ! 2;1 = W(ttl) .
W(ttl) > X= 2. In this case, W(ttl) > s + , so that E(s) achieves its maxi-

mum either when s = W(ttl) =2 or when s = s+ . We compare the values at these
points by computing both E(s+ ) and E(s+ ) � E (W(ttl) =2). We �nd that

E(s+ ) =
(W 2

(ttl) � 2 � 8W(ttl) � + 4)
3
2 + W 3

(ttl) � 3 � 12W 2
(ttl) � 2 + 30W(ttl) � + 8

54�

and

E(s+ ) � E (W(ttl) =2) =

[W 2
(ttl) � 2 � 8W(ttl) � + 4] 3=2 + [ W 3

(ttl) � 3 + 15W 2
(ttl) � 2 � 24W(ttl) � + 8]

54�
: (15)

Easily, both of the bracketed polynomials in (15) decreaseas W(ttl) progresses
along its current hypothesized interval, from 1

2 X through 2(2�
p

3)X ; therefore,
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the di�erence E(s+ ) � E (W(ttl) =2) decreases asW(ttl) proceeds along the same
interval. Since the di�erence vanishes at the point W(ttl) = 1

2 X , we conclude
that the optimal deployment in this case is ! 1;1 = ! 2;1 = 1

2 W(ttl) .

Moving beyond Theorem 5 . The preceding analysis determines the opti-
mal schedule for only two remote computers that each process their allocations
as single chunks. The complexity of even this simple case has led us to abandon
our focus onexactlyoptimal schedules in the sequel, in favor of a hopefully more
tractable search for schedules that areasymptotically optimal.

Since one can view schedules under the free-initiation model as
�asymptotic versions� of schedules under the charged-initiation model
�cf. Theorem 1�our shift in focus is not a drastic one.

This shift in focus notwithstanding, it is worth seeking signi�cant restricted
situations wherein one can tractably discover exactly optimal schedules. One
obvious candidate for special consideration is the family of schedules that allo-
cate the entire workload to each remote computer�which seems to be desirable
whenW(ttl) � is small enough. We conjecture that, for such schedules, an optimal
strategy would have the two computers chop the workload into chunks of the
same size and then process these chunks in �opposite orders� (as de�ned in the
third property of Theorem 4). When all remote computers chop the workload
into n chunks, this scheduling strategy completes, in expectation,

E = W(ttl) �
W 3

(ttl) � 2

6

�
1 +

3
n

+
2
n2

�

units of work (cf. Theorem 6 below). Extensive numerical simulations suggest
that such a scheduling strategy is, indeed, optimal as long asn � 3. However,
we know that the strategy is suboptimalonce one allowsn to exceed3. Indeed,
for n = 4 , the strategy completes, in expectation,W(ttl) � 5

16 W 3
(ttl) � 2 units of

work, which is strictly less than the W(ttl) � 757� 73
p

73
432 W 3

(ttl) � 2 units completed,
in expectation, by the strategy speci�ed schematically in Fig. 2 (with m = 1
and � =

p
73� 7
6 W(ttl) ).

The boxes in Figs. 2 and 3 contain chunk sizes. In Fig. 2, for instance,
each computer usesm chunks of size� , two chunks of size 1

4 (W �
m� ), and one chunk of size1

2 (W � m� ).

Furthermore, the schedule in Fig. 2 is suboptimal as soon as we allow com-
puters to chop work into eight chunks. To wit, Fig. 3 presents an 8-chunk
schedule that completes, in expectation,W(ttl) � 229� 44

p
22

98 W 3
(ttl) � 2 � W(ttl) �

0:230834W 3
(ttl) � 2 units of work, when � = 4

p
22� 17
14 W(ttl) , while the sched-

ule of Fig. 2, using 8 chunks per computer (speci�cally, m = 5 and � =
19�

p
193

42 W(ttl) ) completes, in expectation, W(ttl) � 18293� 965
p

193
21168 W 3

(ttl) � 2 �
W(ttl) � 0:230857W 3

(ttl) � 2 units of work. (The schedule of Fig. 3 is not even
optimal for 8 chunks, but the best schedule we found numerically was almost
identical but slightly less regular.)

The increasing complexities of the preceding �counterexample� schedules
suggest how hard it will be to search for, and characterize, exactly optimal
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m � �

W(ttl) � m�
4

W(ttl) � m�
2

W(ttl) � m�
4

Figure 2: Counterexample to the
optimality of schedules that employ
equal-size chunks.

W(ttl) � 2�
8

W(ttl) � 2�
8

W(ttl) � 2�
8

W(ttl) � 2�
8

W(ttl) � 2�
8

W(ttl) � 2�
8

W(ttl) � 2�
8

W(ttl) � 2�
8

� �

Figure 3: Counterexample to the op-
timality of the schedule of Fig. 2.

schedules�even in the presence of simplifying assumptions, such as that the
whole workload is distributed to each computer. Since our simulations suggest
that simple regular solutions often complete, in expectation, almost as much
work as do complex exactly optimal schedules, we henceforth aim for simply
structured asymptotically optimal schedules.

4.2.2 Asymptotically optimal schedules

This section is devoted to Algorithm 1, whose prescribed schedules for two
remote computers branch on the value ofW(ttl) � . We show in Theorem 6 that
the proposed schedules are all asymptotically optimal; they are exactly optimal
when W(ttl) � � 2.

Algorithm 1 : Scheduling for 2 computers using at mostn chunks per
computer

if W(ttl) � 2X then1

8i 2 [1; n], W1;i  
�

i � 1
n

�
n

n + 1
X;

i
n

�
n

n + 1
X

�

2

8i 2 [1; n], W2;i  
�

W(ttl) �
i
n

�
n

n + 1
X; W (ttl) �

i � 1
n

�
n

n + 1
X

�

3

if W(ttl) � X then4

8i 2 [1; n], W1;i = W2;n � i +1  
�

i � 1
n

W(ttl) ;
i
n

W(ttl)

�

5

if X < W (ttl) < 2X then6

`  b n=3c7

8i 2 [1; `], W1;i  
�

i � 1
`

(W(ttl) � X );
i
`
(W(ttl) � X )

�

8

8i 2 [1; `],9

W2;i  
�

W(ttl) �
i
`
(W(ttl) � X ); W(ttl) �

i � 1
`

(W(ttl) � X )
�

8i 2 [1; 2l ], W1;l + i = W2;3l � i +1  10 �
(W(ttl) � X )+

i � 1
2`

(2X � W(ttl) ); (W(ttl) � X )+
i

2`
(2X � W(ttl) )

�

Theorem 6. The schedules speci�ed by Algorithm 1 are:

1. optimal when W(ttl) � 2X ;
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In expectation, the schedules complete

E (f ;2) (W(ttl) ; Algorithm 1(n)) =
n � 1

n
X

units of work, which tends to9 X ;

2. asymptotically optimal whenW(ttl) � X ;

In expectation, the schedules complete

E (f ;2) (W(ttl) ; Algorithm 1(n)) = W(ttl) �
1
6

W 3
(ttl) � 2

�
1 +

3
n

+
2
n2

�

units of work, which tends toW(ttl) � 1
6 W 3

(ttl) � 2;

3. asymptotically optimal whenX < W (ttl) < 2X .

Letting ` = bn=3c, in expectation, the schedules complete

E (f ;2) (W(ttl) ; Algorithm 1(n)) = 2 W(ttl) �
1
3

X � W 2
(ttl) � +

1
6

W 3
(ttl) � 2

+
1
`

��
1 +

1
`

�
W(ttl) �

�
1 +

2
3`

�
X �

1
2`

W 2
(ttl) � �

1
4

�
1 �

1
3`

�
W 3

(ttl) � 2
�

units of work, which tends to2W(ttl) � 1
3 X � W 2

(ttl) � + 1
6 W 3

(ttl) � 2.

Proof. We prove the theorem's three assertions in turn.
1. Case: W(ttl) � 2X .

By de�nition, a computer is certain to be interrupted when processing a work-
load of size� X . Therefore, whenW(ttl) � 2X , Theorem 4 tells us that the two
remote computers are working on disjoint subsets of the workload. In this case,
then, Theorem 2: (a) de�nes the sizes of these workloads and the way they are
partitioned into chunks; ( b) gives us the expectation ofW(cmp) .

2. Case: W(ttl) � X . We must prove that the proposed schedule is asymp-
totically optimal, and we must evaluate the resulting expected work production.
Focus on an arbitrary positive integern. Clearly, the expected work produced by
Algorithm 1 when each remote computer's workload is partitioned inton chunks
cannot exceed the analogous quantity for the optimal schedule; symbolically,

E (f ;2) (W(ttl) ; n) � E (f ;2) (W(ttl) ; Algorithm 1 (n)) :

We now invoke the series of transformations illustrated in Fig. 4 to show that
the expected work production of the optimal schedule that partitions each com-
puter's workload into n chunks is no greater than the expected work production
of Algorithm 1 that partitions each computer's workload into 2n + 1 chunks.
Each of these transformations can not decrease the expected work production.

We begin�see Fig. 4(a)�with an optimal schedule � that processes work
in n chunks and that satis�es the three properties of Theorem 4. First�see
Fig. 4(b)�we transform � to schedule� 1, by adding a possibly empty(n +1) th
chunk to the workload of each computer so that each computer processes the
entire workload. Clearly, this transformation cannot decrease expected work

9 �tends to� means �as n grows without bound.�
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W1;2 W1;3

W2;3 W2;2 W2;1

W1;1

(a) Optimal schedule � with n chunks.

W1;2 W1;3

W2;3 W2;2 W2;1

W1;1

W2;4

W1;4

(b) Schedule � 1 : � augmented with an (n +
1)th chunk for each computer.

(c) Schedule � 2 : � 1 with chunks subdivided
so that chunk boundaries coincide.

(d) Schedule � 3 : � 2 via Algorithm 1 with
2n + 1 chunks.

Figure 4: Schedule transformations that prove the asymptotic optimality of
Algorithm 1 when W(ttl) � X .

production. Next�see Fig. 4(c)�we transform � 1 to schedule� 2 by subdivid-
ing chunks so that both computers' chunk boundaries coincide. Formally, letB1

(resp., B2) be the set of the �places� in the workload at which there is the bound-

ary of a chunk of computerP1 (resp., of computerP2): B1 =
S n +1

i =0

nP i
j =1 ! 1;j

o

(resp., B2 =
S n +1

i =0

n
W(ttl) �

P i
j =1 ! 2;j

o
). We take the union of these two sets

and order the resulting set's elements:

B1 [ B 2 = f b1; : : : ; bl g with 0 = b0 < b1 < b2 < ::: < b l � 1 < b l = W(ttl) :

Finally, we specify the new chunks by partitioning the entire workload into l
chunks such that:

W 0
1;i = W 0

2;l � i +1 ; where ! 0
1;i = bi � bi � 1:

We then remark that l � 2n+1 . Indeed, each of computersP1 and P2 creates at
most n chunk boundaries, which are strictly between0 and W(ttl) . Therefore, in
the new schedule, there are at most2n chunk boundaries, each strictly between
0 and W(ttl) . This leaves us with at most 2n + 1 chunks, with the boundaries
of the whole workload. Finally, we remark that subdividing chunks does not
decrease the overall expected work production.

To move closer to the schedule produced by Algorithm 1, we replace thel
chunks we just created byl equal-size chunks:

(8i 2 [1; l ]) W 00
1;i = W 00

2;l � i +1 =
�
(i � 1)

W(ttl)

l
; i

W(ttl)

l

�
:

We prove that this indeed gives us a better solution by proving a more general
result.

Consider the following schedule-optimization problem for two computers,P1

and P2. For i = 1 ; 2, computer Pi executesl i chunks of possibly di�erent sizes;
speci�cally, it executes chunks Vi; 1, . . . , Vi;l i , in that order. Suppose that P1

and P2 have two consecutive chunks in common; i.e., for somei 2 [1; l1 � 1]
and j 2 [1; l2 � 1], V1;i = V2;j +1 and V1;i +1 = V2;j .10 What should the relative

10 Theorem 4 tells us that P1 and P2 should execute these chunks in opposite orders.
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sizes ofV1;i (= V2;j +1 ) and V1;i +1 (= V2;j ) be? To answer this question, we
begin with the indicated schedules ofP1 and P2, and we consider the impact on
the overall work expectation of possibly redistributing between the chunks the
jV1;i j + jV1;i +1 j units of work allocated to chunks V1;i and V1;i +1 .

E = jV1;i j

 

1 �

 
iX

k=1

jV1;k j�

!  
j +1X

k=1

jV2;k j�

!!

+ jV1;i +1 j

 

1 �

 
i +1X

k=1

jV1;k j�

!  
jX

k=1

jV2;k j�

!!

:

To simplify formulas, we use the following abbreviations: V1 =
P i � 1

k=1 jV1;k j,
V2 =

P j � 1
k=1 jV2;k j, and L = jV1;i j + jV1;i +1 j. Then,

E = jV1;i j (1 � (V1 + jV1;i j)� (V2 + L)� )

+ ( L � jV 1;i j) (1 � (V1 + L)� (V2 + L � jV 1;i j)� ) :

Therefore, the contribution of these two chunks to the expectation is given by:

E = � (V1+ V2+2L)� 2jV1;i j2+( V1+ V2+2L)L� 2jV1;i j+ L (1� (V1+ L)(V2+ L)� 2):

This expression is maximized by settingjV1;i j = 1
2 L, that is, by making both

chunks have the same size.
Proceeding by induction, we thus see that replacingl coinciding chunks by

l equal-size chunks does not decrease the expectation.
Finally, to obtain a well de�ned bound using the schedule of Algorithm 1, we

enlarge the number of (equal-size) chunks, going froml to 2n +1 . To prove that
this last transformation does not decrease the overall expectation, we explicitly
calculate the expectation of a solution with n equal-size chunks per computer
and show that this expectation is nondecreasing inn.

E (f ;2) (W(ttl) ; Algorithm 1 (n)) =
nX

i =1

W(ttl)

n

0

@1 �
iX

j =1

W(ttl)

n
�

n � i +1X

j =1

W(ttl)

n
�

1

A

= W(ttl) �
W 3

(ttl)

n3 � 2
nX

i =1

(i (n + 1 � i ))

= W(ttl) �
W 3

(ttl) � 2

6

�
1 +

3
n

+
2
n2

�
:

The last expression is obviously nondecreasing inn.
We have thus proved that, for any positive n:

E (f ;2) (W(ttl) ; Algorithm 1 (2n + 1)) � E (f ;2) (W(ttl) ; n)

� E (f ;2) (W(ttl) ; Algorithm 1 (n)) :

The optimal expectation is obviously a nondecreasing function bounded above
by W(ttl) , so that the process converges. Because of the preceding inequality, the
optimal expectation has the same limit as does the expectation of Algorithm 1.
The latter expectation is thus asymptotically optimal.
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W(ttl) � X X W (ttl)

(a) Optimal scheduling with n chunks.

W(ttl) � X X W (ttl)

(b) Each workload is extended up to a size X
with an (n + 1) -th chunk.

W(ttl) � X X W (ttl)

(c) Dividing chunks for chunk boundaries to
coincide.

W(ttl) � X X W (ttl)

(d) In each of the three main parts, equalizing
the size of chunks.

W(ttl) � X X W (ttl)

(e) Solution of Algorithm 1 with 3(n + 1)
chunks.

Figure 5: Series of schedule transformations to prove the asymptotic optimality
of Algorithm 1 when X < W (ttl) < 2X .

3. Case: X < W (ttl) < 2X .
As for the previous case, we must prove two things: that the proposed

schedule is asymptotically optimal and that its expectation for W(cmp) is what
we claim it is. Let us take any positive integer n. Then, the expectation of
W(cmp) under Algorithm 1 is no greater than this expectation under the optimal
scheduling:

E (f ;2) (W(ttl) ; n) � E (f ;2) (W(ttl) ; Algorithm 1 (n)) :

Following the series of transformations illustrated by Figure 5, we show
that the optimal scheduling with n chunks is not a better expectation than
the solution of Algorithm 1 with 3(n +1) chunks. Each transformation is a non-
decreasing transformation from the point of view of the expectation ofW(cmp) .

We start from an optimal scheduling for n chunks satisfying Theorem 4 (see
Figure 5(a)). By de�nition of X any computer-workload no smaller than X is
obviously strictly suboptimal. In the �rst transformation (see Figure 5(b)) we
add a (n + 1) -th chunk to the workload of each computer for each computer-
workload to be exactly equal to X . Obviously, this transformation does not
change the expectation. Then, we subdivide the chunks so that the boundaries
of the chunks of a computer coincide with the boundaries of the chunks of the
other computer (see Figure 5(c)). For a formal description of this process, see
the proof of the caseW(ttl) � X . Subdividing chunks does not decrease the
expectation. We must still count how many chunks we may have in each of
the three main parts of the workload, that is, in the intervals [0; W(ttl) � X ],
[W(ttl) � X; X ], and [X; W (ttl) ]. Note that each of the interval bounds is a
chunk boundary. The chunk boundaries in [0; W(ttl) � X ] can only come from
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original chunks of P1 and from the bound of the (n + 1) -th chunk we added to
P2 (which gives a bound at W(ttl) � X ). Therefore, there are at most n + 1
chunks in [0; W(ttl) � X ]. The same is true for [X; W (ttl) ]. Now, looking at the
interval [W(ttl) � X; X ], all the boundaries of the chunksW1;2, ..., W1;n could
lie strictly in this interval. The same thing is true for the chunks W2;2, ...,
W2;n . Therefore, in the worst case, there can be2n chunk boundaries strictly
betweenW(ttl) � X and X . This gives us at most2n + 1 chunks in the interval
[W(ttl) � X; X ]. Algorithm 1(3(n+1)) builds a solution with n + 1 chunks in the
interval [0; W(ttl) � X ], 2n + 2 chunks in the interval [W(ttl) � X; X ], and n + 1
chunks in the interval [X; W (ttl) ]. Therefore, in none of the three main parts of
the schedule does it have fewer chunks than the solution we just built.

The third transformation is done interval per interval. In each of the intervals
[0; W(ttl) � X ], [W(ttl) � X; X ], and [X; W (ttl) ] we distribute the interval workload
equally among the chunks (see Figure 5(d)). From the proof of the caseW(ttl) �
X we know that this transformation does not decrease the expectation when it
is solely applied to the interval [W(ttl) � X; X ]. Therefore, what only remains to
prove is that this transformation when solely applied to the interval [0; W(ttl) � X ]
does not decrease the expectation (the fact that the di�erent intervals do not
impact each other is due to our failure model and to the fact that no chunk
simultaneously strictly belongs to two intervals). To establish the desired result
we only consider two consecutive chunks ofP1, V1;i and V1;i +1 belonging in the
interval [0; W(ttl) � X ] (and thus which do not intersect the workload of P2).
The contribution of these two chunks to the expectation is:

E = jV1;i j

0

@1 �
iX

j =1

jV1;j j�

1

A + jV1;i +1 j

0

@1 �
i +1X

j =1

jV1;j j�

1

A :

Using the notations L = jV1;i j + jV1;i +1 j and V =
P i � 1

j =1 V1;j , we have:

E = jV1;i j (1 � (V + jV1;i j)� ) + ( L � jV 1;i j) (1 � (V + L)� )
= �jV 1;i j2� + L jV1;i j� + L (1 � (V + L)� ):

This last expression is obviously maximized whenjV1;i j = L
2 , that is, when the

two consecutive chunks have the same size.
The last transformation increases the number of same-size jobs in each of

the three phases of the scheduling for these numbers to respectively ben + 1 ,
2(n + 1) , and n + 1 (see Figure 5(b)). We already know, from the study of the
caseW(ttl) � X , that this is not decreasing the expectation for the chunks in
the interval [W(ttl) � X; X ]. We now show that this is also the case for chunks
in the interval [0; W(ttl) � X ]. The cumulative expectation for the m equal-size
chunks of the interval [0; W(ttl) � X ] is:

E =
mX

i =1

W(ttl) � X
m

0

@1 �
iX

j =1

W(ttl) � X
m

�

1

A

= ( W(ttl) � X ) �
(W(ttl) � X )2�

m2

mX

i =1

i

= ( W(ttl) � X ) �
�

1
2

+
1

2m

�
(W(ttl) � X )2�
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which is obviously increasing with m.
The expectation of W(cmp) , with l =

�
n
3

�
, for the scheduling of Algo-

rithm 1( n) is then equal to:

E =
lX

i =1

W(ttl) � X
l

�
1 � i

W(ttl) � X
l

�
�

+
2lX

i =1

2X � W(ttl)

2l

�
1 �

�
W(ttl) � X + i

2X � W(ttl)

2l

�
�

�
�

X � (i � 1)
2X � W(ttl)

2l

�
�

�

+
lX

i =1

W(ttl) � X
l

�
1 � i

W(ttl) � X
l

�
�

= 2W(ttl) �
1
3

X � W 2
(ttl) � +

W 3
(ttl) � 2

6

+
1
l

��
1 +

1
l

�
W(ttl) �

�
1 +

2
3l

�
X �

1
2l

W 2
(ttl) �

�
1
4

�
1 �

1
3l

�
W 3

(ttl) � 2
�

:

5 Scheduling for p Remote Computers

We �nally turn to the general case, wherein there arep remote computers. We
have discovered this case of generalp to be much more di�cult than the already
challenging casep = 2 , so we devote our e�orts here to searching fore�cient
heuristic schedules.

In order to appreciate how hard it is to extend the casep = 2 even
to p = 3 , the reader is invited to seek an analogue of Theorem 4
for p = 3 . As one example, we have not discovered a3-computer
analogue of �mirroring,� and our attempts to do so have all fallen to
unobvious schedules such as those discussed after Theorem 5.

Because of the di�culty of the general scheduling problem, we adopt a prag-
matic approach, by focusing only on the linear risk model, and by restricting
attention to �well-structured� schedules that employ same size chunks.

Our restriction to same-size chunks has two major antecedents. (1)
The optimal schedules for the casep = 1 and the asymptotically op-
timal schedules for the casep = 2 mandate using same-size chunks.
This suggests that such chunking may be computationally bene�cial.
(2) This restriction greatly simpli�es the speci�cation and implemen-
tation of schedules for the case of generalp, by imposing simplifying
structure on this extremely hard scheduling problem.

All of the schedules we develop here operate as follows.

1. They partition the total workload into (disjoint) slices that they assign
to�and replicate on�disjoint subsets ( coteries) of remote computers.
(Each computer partitions each slice intosame-sizechunks.)
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2. They orchestrate the processing of the slices on each coterie of remote
computers.

5.1 The Partitioning Phase

We begin with some simple partitioning heuristics that are tailored to the linear
risk function�but we suggest how they can be adapted to other risk functions.
We partition our scheduling problem into three subproblems, based on the size
of the workload we wish to schedule. This partition�which acknowledges the
futility of deploying a workslice of size > X on any computer, in the light of
our interruption model�gives us one easy subproblem and two challenging ones
that will occupy the rest of our attention.

W(ttl) is �very large.� When W(ttl) � pX , we deploy p slices of common
size X , to be processed independently on the remote computers. We abandon
the remaining W � pX units of work, in acknowledgment of our interruption
model. (We assume here that work is not prioritized, so we do not carewhich
pX units we deploy.) We then reuse on each computer the results of Section 3.

W(ttl) is �very small.� When W(ttl) � X , we deploy the entire workload
in a single slice, which we replicate on allp computers. The partitioning phase
is therefore obvious; all the scheduling work is done in the orchestration phase.

W(ttl) is of �intermediate� size. The caseX < W (ttl) < pX is the in-
teresting challenge, as there is no compelling scheduling strategy. There is no
point of deploying more than X units of work on a single computer. Therefore,
we decide to deployW(dpl) = min( W(ttl) ; pX ) units of work in to the p remote
computers. Thep computers enable to replicate each �piece of work�pX=W(dpl)

times on average. For the sake of simplicity, we have disjoint coteries of com-
puters working on independent slices of work. Ideally, we would like to have
p= pX

W (dpl)
= W(dpl) � coteries. As we must have an integer number of computers

in each coterie, we partition the work into q = dZ� e slices. We balance com-
puting resources as much as possible, by replicating each slice on eitherbp=qc
or dp=qe remote computers. To balance the load among the coteries, a coterie
with bp=qc computers will work on a slice of sizesl� = bp=qc Z

p , and a coterie

with dp=qe computers will work on a slice of sizesl+ = dp=qe Z
p .

Among the ways in which we have tailored the preceding scenario
to the linear risk function is by demanding that the load of a single
computer has a size� X . For general risk functions, we would
introduce a parameter � that speci�es the maximum probability of
interruption that the user would allow for the work allocated to a
computer. For linear risk functions we used� = 1 , but this choice
would be impractical, for instance, for heavy tailed distributions.
Hence the need for the� parameter. We would then use� to compute
the maximum work maxsl allocatable to a computer by insisting
that P r (maxsl) = � . For instance if � = 1=2, then with the linear
risk function we would set maxsl= 1

2 X , while with the exponential
risk function we would set maxsl = (ln 2) X . The amount of work
we actually deploy would now beW(dpl) = min( W(ttl) ; p � maxsl).
This would mandate using q = dZ=maxsle slices, of sizes de�ned as
previously.
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We now specify the partition procedure, Algorithm 2, which takes three
inputs: the total amount of work W(ttl) , the number p of computers, and the
maximum allowable risk � . The algorithm returns the number of slices, their
sizes, and the number of remote computers that each slice is deployed to.

Algorithm 2 : The partitioning algorithm for p computers.

procedurePartition( W(ttl) ; p; � )1

begin2

/*Determine maxslsuch that P r (maxsl) = � */3

W(dpl)  min(W(ttl) ; p � maxsl)4

q  d Z=maxsle5

sl�  
�

p
q

�
Z
p

, sl+  
�

p
q

�
Z
p6

r  p mod q; s  q � r7

Partition the computers into:8

r coteries of cardinality bp=qc + 1 each and working on slices of size9

sl+ , and
s coteries of cardinality bp=qc each and working on slices of sizesl� .10

end11

5.2 The Orchestration Phase

The partition phase has left us with independent slices of work that will be
executed by disjoint coteries of computers. A slice, of sizesl, will be partitioned
into n chunks of common size! = sl=n, where the �checkpointing granularity� n
is supposed to be given to us (cf. Section 5.3). For each coterie� of computers,
each chunk assigned to coterie� will be executed by all g� 2 fb p=qc; 1+ bp=qcg
computers in the coterie. Our challenge is to determine how to orchestrate the
g� executions of each chunk�i.e., to determine when (at which time step) and
where (on which computer) to execute which chunk�in a way that maximizes
the expected amount of work completed by the total assemblage ofp computers.
The remainder of our study is dedicated to this orchestration phase.

5.2.1 General schedules

Let us motivate our approach to the orchestration problem via the following
example, wherein each slice is partitioned inton = 12 chunks, and each coterie
contains g = 4 computers. Since each coterie of computers operates indepen-
dently of all others, we can specify the overall schedule coterie by coterie. For
each coterie� and its associated slice, we represent a possible schedule for� 's
executing the slice via a table such as Table 1; we call these tablesexecution
charts. Rows in these charts enumerate the computers in the associated co-
terie � , and columns enumerate the indices of the chunks into which coterie� 's
slice is chopped. Chart-entryCi;j is the step at which chunk j is processed by
computer Pi .

Any g � n integer matrix whose rows are permutations of[1::n] can be used
as the execution chart for a valid schedule for the slice, under which eachPi

executes once each chunkj (speci�cally, at step Ci;j ). One can use such a chart
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` ` ` ` ` ` ` ` ` ` ` `Computer
Chunk

1 2 3 4 5 6 7 8 9 10 11 12

P1 1 6 9 12 2 5 8 11 3 4 7 10
P2 12 1 6 9 11 2 5 8 10 3 4 7
P3 9 12 1 6 8 11 2 5 7 10 3 4
P4 6 9 12 1 5 8 11 2 4 7 10 3

Table 1: An execution chart for a coterie of four computers. In this example,
chunk 5 is executed byP2 at step C2;5 = 11.

to calculate the expected amount of work completed under the schedule that
the chart speci�es. To wit, chunk j will not be executed under a schedule only
if all g computers in the coterie are interrupted before they complete the chunk.
This occurs with probability

gY

i =1

Pr(Ci;j ! ) =
gY

i =1

Pr (Ci;j sl=n) ;

so the expectation of the total work completed from the slice is

E(sl; n) = ( sl=n)
nX

j =1

 

1 �
gY

i =1

Pr (Ci;j sl=n)

!

= sl

0

@1 �
1
n

�
sl�
n

� g nX

j =1

gY

i =1

Ci;j

1

A : (16)

The last expression, (16), is speci�c to the linear-risk model and assume that
Ci;j !� � 1 or, equivalently, that P r (Ci;j ! ) = Ci;j !� . We will make this as-
sumption in the remaining of this section, each time we will write an expectation.
11 We can, therefore, derive the following upper bound:

Proposition 1.

E(sl; n) � Emax = sl �

 

1 �
�

sl � �
(n!)1=n

n

� g!

:

Proof. Let cpj =
Q g

i =1 Ci;j be the j -th column product in the chart. From the
expression ofE(sl; n), we see that it is maximum when the sum of then column
products is minimum. But the product of the column products is constant,
because each row is a permutation of[1::n]: we have

Q n
j =1 cpj = ( n!)g. The sum

is minimum when all products are equal (to (n!)
g
n ), whence the result.

Stirling's formula gives a useful approximation of the upper bound whenn
is large:

Emax � sl �
�

1 �
�

sl:�
e

� g�
:

11 Under our partitioning scheme, this assumption is true for any coterie except the 2-
computer coteries when X < W (ttl) < 2X . Taking this case into account, however, would con-
siderably complicate all the expectation formulas and would forbid us to make any conclusion
when comparing heuristics. Furthermore, the conclusions we reach using this assumption�
mainly those derived from Table 6�are backed by the experiments of Section 6 which consider
all cases. These experiments provide an a posteriori justi�cation for our simplifying assump-
tion.
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5.2.2 Group schedules: introduction

Referring back to Table 1, we observe that chunks1, 2, 3, and 4 are always
executed at the same steps, by di�erent computers; the same is true for chunks
5; 6; 7; 8 as a group, and for chunks9; 10; 11; 12 as a group. The twelve chunks of
the slice thus partition naturally into three groups. By respecifying the schedule

Group 1 Group 2 Group 3
chunks 1�4 chunks 5�8 chunks 9�12

1 2 3
6 5 4
9 8 7
12 11 10

Table 2: Execution chart for a group-oriented schedule. Rows represent time
steps for the �rst computer in each group associated with each column; the
remaining computers' schedules are obtained by cyclic downward permutations
of the rows.

of Table 1 as thegroup(-oriented) schedule of Table 2, we signi�cantly simplify
the speci�cation. Note that the meanings of rows and columns have changed
in this re-orientation: compare Tables 1 and 2 as we describe the changes. In
the group(-oriented) execution chart of Table 2, each column corresponds to
a group of chunks; entry (i; j ) of the chart speci�es the step at which each
computer executes itsi th chunk within group j . The schedule for computerPj ,
wherej 2 f 2; 3; 4g, is obtained by cyclically permuting (downward) the schedule
for P1 j � 1 times. The important feature here is that this orchestration has
each computer attempt to execute each chunk exactly once.

We generalize this description. Whenn is a multiple of g, we can sometimes
convert the full g � n execution chart C, as exempli�ed by Table 1, to the
g � n=g group(-oriented) execution chart bC exempli�ed by Table 2. There are
n=g groups, each of sizeg, and chart-entry bCi;j denotes the step at which group
j of chunks is executed for thei th time. It is tacitly assumed that chunk-indices
within each group are cyclically permuted (downward) at each step, so that each
chunk ends up being processed by each computer. Thus, in order for a chartbC
to specify a valid group schedule, its total set of entries must be a permutation
of [1::n]. When bC does specify a valid group schedule, the expected amount of
work it completes, under the linear risk model, is:

E (sl; n) = sl

0

@1 �
g
n

�
sl � �

n

� g n=gX

j =1

gY

i =1

bCi;j

1

A : (17)

The preceding expression exposes the importance of the constant

K(�) =
n=gX

j =1

gY

i =1

bC(�)
i;j

as a measure of a group schedule� 's performance; to wit,

E (sl; n; �) = sl � K(�) �
g
�

�
sl�
n

� g+1

: (18)
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Thus: A smaller value of K(�) corresponds to a larger value ofE(sl; n; �) .
Group schedules are very natural, because they aresymmetric: all comput-

ers play the same role as the work is processed, di�ering only in the times at
which they process di�erent chunks. Intuition suggests that the most productive
schedules are symmetric: why should some of the identical computers be treated
di�erently by �nature� than others? Indeed, the following upper bound on the
expected work production of group schedules�which is the best we have been
able to prove�does not distinguish symmetric schedules from general ones�but
we have not yet been able to prove that no di�erence exists.

Proposition 2. For any group schedule� ,

E (sl; n; �) � Emax = sl �
slg+1 � g(n!)g=n

ng :

Proof. Let cpj =
Q g

i =1 Gi;j be the j -th column product. As before, E (sl; n) is
maximum when the sum of the n

g column products is minimum. The product of
these column products is equal to a constant(n!). The sum is minimum when
all products are equal to (n!)

g
n , hence the same result as for Proposition 1.

Note that Proposition 2 a�ords us an easy lower bound,Kmin on the K value
of any group schedule with the parametersg and n:

Kmin =
�

n
g

(n!)g=n
�

:

5.2.3 Group schedules: speci�c schedules

Our group schedules strive to maximize expected work completion by having
every computer attempt to compute every chunk. Of course, there are many
ways to achieve this coverage, and the form of the risk function will make some
ways more advantageous than others with respect to maximizing expected work
completion. As an extreme example, in the casep = 2 , for every risk function,
it is advantageous to have the remote computers process the work they share �in
opposite orders� (Theorem 4). We now specify and compare the performance of
six group schedules whose chunk-scheduling regimens seem to be a good match
for the way the linear risk function �predicts� interruptions. We specify each
schedule� via its group execution chart bC(�) �see Fig. 6�and we represent
the performance of each schedule� via its performance constant K(�) . The
bene�cent structures of these schedules is evidenced by our ability to present
explicit symbolic expressions for theirK constants.

Cyclic scheduling (Fig. 6(a)). Under this simplest scheduling regimen,� cyclic,
groups are executed sequentially, in a round-robin fashion. Speci�cally, the
chunks of groupj are executed at stepsj , j + n=g, j + 2n=g, and so on. We �nd
that

K(� cyclic) =
n=gX

j =1

g� 1Y

k=0

(j + kn=g) :

The weakness of� cyclic is that chunks in low-index groups have a higher prob-
ability of being completed successfully than do chunks in high-index groups�
because chunks remain in the same relative order throughout the computation.
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Group 1 Group 2 Group 3
1 2 3
4 5 6
7 8 9
10 11 12

(a) Cyclic: K = 3104
Group 1 Group 2 Group 3

1 2 3
6 5 4
9 8 7
12 11 10

(b) Reverse: K = 2368

Group 1 Group 2 Group 3
1 2 3
4 5 6
9 8 7
12 11 10

(c) Mirror: K = 2572
Group 1 Group 2 Group 3

1 2 3
6 5 4
7 8 9
12 11 10

(d) Snake: K = 2464
Group 1 Group 2 Group 3

1 2 3
8 6 4
9 7 5
10 11 12

(e) Fat snake: K = 2364

Figure 6: Five group schedules with their associatedK values. For this instance,
Kmin = 2348.
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The remaining schedules that we consider aim to compensate for this imbalance
via di�erent intuitively motivated strategies.

Reverse scheduling (Fig. 6(b)). A schedule � reverse produced under this
regimen executes the chunks in each group once in the initially-speci�ed order,
and then executes them in thereverseorder n=g� 1 times. The schedule thereby
strives to compensate for the imbalance in chunks' likelihoods of being completed
created by their initial order of processing. (� reverse is the schedule speci�ed in
Table 2.) Under � reverse, the chunks in group j are executed at stepj , and
thereafter at steps 2n=g � j + 1 , 3n=g � j + 1 , 4n=g � j + 1 , and so on. We �nd
that

K(� reverse) =
n=gX

j =1

j �
g� 1Y

k=1

((k + 1) n=g � j + 1) :

Mirror scheduling (Fig. 6(c)). The mirror schedule � mirror , which is de�ned
only when g is even, represents a compromise between the cyclic and reverse
scheduling strategies. � mirror compensates for the imbalance in likelihood of
completion only during the second half of the computation. Speci�cally, � mirror

mimics � cyclic for the �rst g=2 phases of processing a group, and it mimics� reverse

for the secondg=2 phases. We �nd that

K(� mirror ) =
n=gX

j =1

1
2 g� 1Y

k=0

(j + kn=g) (( p � k)n=g � j + 1) :

Snake-like scheduling (Fig. 6(d)). Our fourth schedule, � snake, compen-
sates for the imbalance of the cyclic schedule by mimicking� cyclic at every odd-
numbered step and mimicking � reverse at every even-numbered step, thereby
lending a snake-like structure to the execution chart bC(� snake) . We �nd that

K(� snake) =
n=gX

j =1

1
2 g� 1Y

k=0

(j + 2kn=g) (2(k + 1) n=g � j + 1) :

Fat snake-like scheduling (Fig. 6(e)). Our �nal, �fth schedule, � fat � snake,
qualitatively adopts the same strategy as does� snake, but it slows down the
return phase of the latter schedule. Consider, for illustration, three consecutive
rows of bC(� fat � snake) . The �rst row is identical to its shape in bC(� cyclic) . The return
phase of Fat snake distributes elements of the two remaining rows in the reverse
order, two elements at a time. The motivating intuition is that the slower return
would further compensate for the imbalance in� cyclic. We �nd that

K(� fat � snake) =

n=g� 1X

j =0

1
3 g� 1Y

k=0

(1 + j + 3kn=g) (3(k + 1) n=g � 2j � 1) (3(k + 1) n=g � 2j ) :

We derive the following performance bounds for these �ve schedules
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Proposition 3. The values ofK(�) for our �ve scheduling algorithms satisfy
the following lower and upper bounds:

1
n

�
K(� cyclic)

g! (n=g)g+1 � 1

1
2g

�
K(� reverse)

g! (n=g)g+1 � 1
2 (n + g)

1
n

�
K(� mirror )

g! (n=g)g+1 � 1

g
n2 �

K(� snake)

g! (n=g)g+1 � 1

1
(g � 1)n

�
K(� fat � snake)

g! (n=g)g+1 � g

Proof. The calculations are straightforward. For the Cyclic schedule, we have

Kcyclic =

n
gX

j =1

g� 1Y

k=0

�
j + k

n
g

�
:

We derive the lower bound by replacing indexj by 0 in the summation (except
in the term k = 0 where we replacej by 1):

Kcyclic �
n
g

 
g� 1Y

k=1

k
n
g

!

= ( g � 1)!
�

n
g

� g

=
1
n

g!
�

n
g

� g+1

:

Similarly, we let j = n
g in each term of the summation to get the upper bound.

We proceed in a similar way for the other three variants.
We explicit the computations for Fat snake, as they are a bit less obvious.

For the lower bound we have:

Kfat � snake =

n
g � 1X

j =0

g
3 � 1Y

k=0

�
1 + j + 3k

n
g

��
3(k + 1)

n
g

� 2j � 1
��

3(k + 1)
n
g

� 2j
�

�

n
g � 1X

j =0

g
3 � 1Y

k=0

�
1 + 3k

n
g

��
3(k + 1)

n
g

� 2
n
g

+ 1
��

3(k + 1)
n
g

� 2
n
g

+ 2
�

� n
g

Q g
3 � 1
k=0

�
1 + 3k n

g

� �
(3k + 1) n

g

� �
(3k + 1) n

g

�

�
�

n
g

� 3 Q g
3 � 1
k=1

�
3k n

g

� �
(3k + 1) n

g

� �
(3k + 1) n

g

�

�
�

n
g

� 3 Q g
3 � 1
k=1

�
(3k � 1) n

g

� �
3k n

g

� �
(3k + 1) n

g

�

=
�

n
g

� g
(g � 2)!

RR n° 7029



52 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

For the upper bound we derive:

Kfat � snake =

n
g � 1X

j =0

g
3 � 1Y

k=0

�
1 + j + 3k

n
g

��
3(k + 1)

n
g

� 2j � 1
��

3(k + 1)
n
g

� 2j
�

�

n
g � 1X

j =0

g
3 � 1Y

k=0

�
n
g

+ 3k
n
g

� �
3(k + 1)

n
g

� �
3(k + 1)

n
g

�

�
n
g

g
3 � 1Y

k=0

�
(3k + 1)

n
g

� �
(3k + 3)

n
g

� �
(3k + 3)

n
g

�

�
�

n
g

� g+1
0

@

g
3 � 2Y

k=0

(3k + 2)(3 k + 3)(3 k + 4)

1

A (g � 2)g2

=
�

n
g

� g+1

(g � 2)!(g � 2)g2 �
�

n
g

� g+1

(g)!g

From the size of its bounds onK(� snake) , Proposition 3 suggests that schedule
� snake may be the most e�cient of the �ve group-scheduling algorithms we
have considered, especially when we checkpoint often, i.e., whenn is large. We
will evaluate this possibility via the experiments reported at the end of this
subsection. While still focusing on mathematical analyses of our schedules,
though, we use Stirling's formula to derive more evocative bounds onK(� snake) :
Kmin � K(� snake) � Kupper, where

Kmin �
e
g

�
n
g

� g+1

and Kupper = g!
�

n
g

� g+1

�
e
p

2�
p

g

� n
e

� g+1
:

We conclude this subsection by adding a last element to our set of group
schedules. The resulting �greedy� procedure strives to iteratively balance the
probability of success for each group of chunks. As we do not get any asymptotic
estimation for Greedy, we content ourselves with a numerical estimate.

Greedy scheduling (Table 3). The greedy scheduling algorithm, � greedy,
iteratively assigns a step to each group of chunks so as to balance the current
success probabilities as much as possible. At each step,� greedy constructs one
new row of the execution chart bC(greedy) . Remember that, after k steps, the
probability that a chunk in group j will be interrupted is proportional to the
product �

k

i =1
bC(greedy)

ij of the entries in column j of the chart. The idea is to
sort current column products and to assign the smallest time-step to the largest
product, and so on. Table 3 illustrates a computation with n = 12 and g = 4 . In
this example, � greedy is identical to � reverse, hence achieves the same performance
constant K(� greedy) = K(� reverse) = 2368.

For the record, and for the curious reader: Table 4 provides an example for
which none of our group schedules is optimal, and Table 5 shows an example
for which � greedy di�ers from, and outperforms, � reverse.
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Step 1 1 2 3
CCP 1 2 3

Step 2 6 5 4
CCP 6 10 12

Step 3 9 8 7
CCP 54 80 84

Step 4 12 11 10
CCP 6 880 12

Table 3: A computation by � greedy. CCP denotes theCurrent Column Product.

1 2 3
4 5 6
7 8 9

1 2 3
6 5 4
7 8 9

1 2 3
6 5 4
9 8 7

1 2 3
8 6 4
9 7 5

1 2 3
8 5 4
9 7 6

K(� cyclic) = 270 K(� snake) = 230 K(� reverse) = K(� greedy) = 218 K(� fat snake) = 216 Koptimal = Kmin = 214

Table 4: Comparing group schedules forn = 9 and g = 3 . (� mirror is missing
becauseg is odd). Here � reverse and � greedy are identical. The optimal schedule
achieves the boundKmin .

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
6 7 8 9 10
15 14 13 12 11
20 19 18 17 16

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 17 16

K(� cyclic) = 34104 K(� mirror ) = 27284 K(� reverse) = 24396

1 2 3 4 5
10 9 8 7 6
11 12 13 14 15
20 19 18 17 16

1 2 3 4 5
14 12 10 8 6
15 13 11 9 7
16 17 18 19 20

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 16 17

K(� snake) = 25784 K(� fat � snake) = 24276 K(� greedy) = 24390

1 2 3 4 5
13 10 6 9 7
18 15 14 11 8
20 16 19 12 17

K(� Optimal ) = 23780

Table 5: Comparing group schedules forn = 20 and g = 4 . Here the most
e�cient group schedules are � fat � snake, � greedy, and � reverse (in this order). The
lower bound, Kmin = 23780, is reached on this example.

Numerical evaluation. We ran all six of our scheduling heuristics on all
problems whereg 2 [2; 100], n 2 [2 � g;1000], and g divides n; altogether, this
corresponds to 4032 instances. We report in Table 6 two series of statistics.
In the Relative series, we form the ratio of the K value of a given heuristic
on a given instance over the lowestK value found for that instance among all
the tested heuristics. For the Absolute series, we form the ratio with Kmin . In
Table 6 we also report thebest-of heuristic that, on each instance, runs the six
other algorithms and picks the best answer.
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Relative Absolute Success rate
min max avg. stdv. min max avg. stdv.

Cyclic 1.1 3.786 2.143 0.664 1.1 3.786 2.239 0.592 00.00%
Reverse 1 1.295 1.055 0.065 1 1.295 1.117 0.061 12.42%
Mirror 1 2.468 1.504 0.393 1 2.468 1.575 0.338 12.37%
Snake 1 1.199 1.127 0.059 1 1.291 1.193 0.059 12.34%
Greedy 1 1.055 1.005 0.015 1 1.224 1.067 0.074 83.01%
Fat snake 1 1.442 1.123 0.115 1 1.530 1.192 0.143 17.07%
Best-of 1 1 1 0 1 1.224 1.061 0.069 100.00%

Table 6: Statistics on the K value of all heuristics for 2 � g � 100 and 2g �
n � 1000(minimum, maximum, average value and standard deviation over the
4032 instances).

� greedy is clearly the best heuristic: it �nds the best schedule for 83% of
the instances, and its solutions are never more than 6% worse than the best
solution found. More importantly, its performance constant is never more than
23% larger than the lower boundKmin , and, on average, it is less than 7% larger
than this bound. In fact, only � fat � snake happens sometimes to �nd better
solutions than � greedy; however, these improvements are marginal, as one can
see by comparing the absolute performance of� greedy and best-of.

5.3 Choosing the Optimal Number of Chunks

To this point, we have assumed that the numbern of chunks per computer was
given to us. In fact, we show now that (happily) one does not have to guess at
this value. We begin to �esh out this remark by noting that we can easily obtain
an explicit expression for the expected work completed by any group schedule
under the charged-initiation model, from that schedule's analogous expectation
under the free-initiation model.

Theorem 7. ( p remote computers: charged-initiation model)
Let C be a group schedule de�ned by the execution chart

Ci;j
�
�
i 2f 1;:::; gg;j 2f 1;:::; n=gg :

Then, whatever the (non-decreasing) risk function, we have:

E (c;n) (sl(c) ; C) =
sl(c)

sl(c) + n"
E ( f; n) (sl(c) + n"; C):
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Proof. To establish the result, we only need to explicit the expectation ofW(cmp)

under the charged-initiation model:

E (c;n) (sl(c) ; C) =
nX

j =1

sl(c)

n

 

1 �
gY

i =1

Pr (c)

 

Ci;j
sl(c)

n

!!

=
nX

j =1

sl(c)

n

 

1 �
gY

i =1

Pr ( f )

 

Ci;j

 
sl(c)

n
+ "

!!!

=
sl(c)

sl(c) + n"

nX

j =1

 
sl(c)

n
+ "

! 

1�
gY

i =1

Pr ( f )

 

Ci;j

 
sl(c)

n
+ "

!!!

=
sl(c)

sl(c) + n"
E ( f; n) (sl(c) + n"; C):

Now we can determine the value ofn, making only the assumption that
the expectation of the group schedule within the charged-initiation model is a
unimodal function of n. (It is quite natural to assume that this expectation
is non-decreasing withn under the free-initiation model.) We can, then, use a
binary search to seek the optimum value ofn. Speci�cally, for each tested value
m we compare the values of the expectation form and m +1 to determine if the
expectation is still increasing inm, in which casem is smaller than the optimum
n. The binary search can be safely performed in the interval[1::X=" ].

6 Experiments

We have performed a suite of simulation experiments in order to gain insight
into the performance of the group heuristics on simulated platforms that are
subject to unrecoverable interruptions. We report only on the observed behav-
ior of � greedy for two reasons, �rst because of its preeminence in the experiment
reported in Table 6 and, second, because our simulations show only small dif-
ferences among our six heuristics. The source code for all six group heuristics
can be found athttp://graal.ens-lyon.fr/~abenoit/code/failure.c .

6.1 The Experimental Plan

We use randomly generated platforms made ofp computers. In all experiments,
we set � = 1 , and we choose the times for interruptions randomly between0
and 1, following a uniform distribution. The size of the workload, W(ttl) , varies
between 1 and p. W(ttl) = 1 represents the case in which all computers can
potentially do all the work before being interrupted; W(ttl) = p represents the
case in which we can do no better than deploy one di�erent slice of size1 on each
computer (which will then compute until it is interrupted), using no replication
at all.

The key parameters in our experiment are: the number of computers,p; the
total amount of work, W(ttl) ; the number of chunks per unit of work, n; and the
start-up cost, " . In the �rst four series of experiments, three of these parameters
are �xed while the fourth one varies. When �xed, these parameters take the
following values:
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ˆ p = 5 ; 10; 25; 50, or 100;
ˆ W(ttl) = 0 :3p or 0:7p;
ˆ n = 47; 97; 147, or 197;
ˆ " = 0 :1000; 0:0100; 0:0010, or 0:0001.

These parameters are de�ned over large ranges of values in order to assess the
heuristics in very di�erent con�gurations, even very unfavorable ones.

We compare several heuristics:

� brute � This brute replication heuristic replicates the entire workload onto all
computers. Each computer executes work in the order of receipt, starting
from the �rst chunk, until it is interrupted.

� no-rep� This no replication heuristic distributes the work in a round-robin fash-
ion, with no replication. Thus, each computer is allocatedW(ttl) =p units
of work (rounded by the chunk size).

� cyclic-rep� This cyclic replication heuristic distributes the work in a round-robin
fashion, as does� no-rep, but it keeps distributing chunks, starting from
chunk 1 again, until each computer has a total (local) workload of1. Note
that when the number of chunks is a multiple ofp, this heuristic is identical
to � no-rep, since the chunks assigned to a computer during the replication
phase were already assigned to it previously.

� random-rep� This random replication heuristic distributes a total workload of 1
to each computer, but it chooses the chunks and their order randomly,
while ensuring that all chunks deployed on the same computer are distinct.
However, the same chunk can be assigned to several computers.

� greedy� This group greedy heuristicis the schedule� greedy of Section 5.2.2. Since
our number of chunksn may not be a multiple of g, the last group of com-
puters may not have a full g chunks to process. The scheduling heuristic
works as if the last group contained g chunks, hence potentially inserting
idle time-slots in the schedule. During the schedule execution these idle
time-slots are obviously skipped (a computer is not kept idle when it still
has work to process).

The values for n where picked so has not to favor the group-heuristics by
almost certainly ensuring that the last group of computers never has a full
g chunks to process.

� omniscient� This last omniscient heuristic is an idealized static heuristic that
knows exactly when each computer is interrupted. This idealized knowl-
edge obviates replication: each computer is statically allocated a single
chunk whose length, plus the length of the start-up cost" is exactly equal
to the time before failure of the computer. Therefore, this heuristic returns
the maximal work that could be done, knowing the failure times.

We do not report the absolute amount of work done by the heuristics as this
would be meaningless, as the amount of work distributed, and the amount of
work that can be processed before all computers fail, both vary vastly between
experiments. We therefore consider, on each instance and for each heuristic, the
ratio between the work completed by that heuristic and the work completed by
� omniscient. With our measure, � omniscient always achieves a performance of 1 and
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we do not display it on �gures. (In the cases where� omniscient does not complete
any work�namely, cases where all computers fail at times smaller than the
start-up costs�the performance of all heuristics is set to 1.)

6.2 Experimental Results

For each considered set of parameters,100 di�erent failure-con�gurations were
randomly built (computer failure times). We report the average of these results.

6.2.1 Experiment (E1): Fixed p, n, and "

In this �rst experiment, we analyse the impact of the workload on the heuristics.
The total amount of work W(ttl) varies between1 and the number of computers
p, which are the two extreme cases. The other parameters are �xed.

Figure 7 presents some representative results. (All graphs are presented in
the appendix on Figures 14 through 23.)

When W(ttl) = 1 , opportunities for replication are maximum. As anyone
could have foreseen, in this case� random-rep often dominates � no-rep. Replica-
tion is therefore worth considering in the general case. Replication, however,
should be done in a meaningful way: � brute almost always achieve very poor
performance.

Another obvious conclusion is that when W(ttl) = p, there is no room for
replication and � no-rep is equivalent to � cyclic-rep and � greedy.

In all cases,� cyclic-rep achieves better performance than� no-rep. This is sig-
ni�cant when W(ttl) is small with respect to pX . These two heuristics are equiv-
alent when the total number of chunks is a multiple of the number of computers.
On each instance the best performance is always achieved by� greedy.

When there is very little room for replication, i.e., W(ttl) is close top, � no-rep,
� cyclic-rep, and � greedy achieve similar performance.

This experiment was not supposed to focus on the in�uence of" or of the
number of chunks. However, one can easily see that the performance is always
bad when the number of chunks is too large considering the start-up costs (for
instance, when" = 0 :01, with 47 chunks the start-up cost accounts for roughly
a third of the size of each chunk).

6.2.2 Experiment (E2): Fixed W(ttl) , cs, and "

In this second experiment, we study the behavior of the heuristics when the
number of computers varies, from 1 up to100. For the comparison to be fair and
di�erent from (E1), the total amount of work W(ttl) is always kept proportional
to the number p of computers (either W(ttl) = 0 :3p or W(ttl) = 0 :7p).

Figure 8 presents a representative excerpt of the experiments. (All results
are presented in the appendix, on Figures 24 through 27).

Heuristic � brute sees its relative performance dramatically drop when the
number of computers grows. Otherwise, the only other heuristic impacted by the
number of computers is� cyclic-rep whose performance increases when, roughly,
there are more than 10 computers. Otherwise, the conclusions are mainly the
same than for experiments (E1): whenW (ttl)

p is small � greedy and � cyclic-rep out-

perform � no-rep; when W (ttl)

p is large the three heuristics have similar performance
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

(a) 5 computers, " = 0 :0100, 47 chunks.
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(b) 5 computers, " = 0 :0100, 97 chunks.
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(c) 25 computers, " = 0 :0010, 147 chunks.
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(d) 25 computers, " = 0 :0001, 197 chunks.
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(e) 100 computers, " = 0 :0001, 147 chunks.
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(f) 100 computers, " = 0 :0001, 197 chunks.

Figure 7: (E1): representative sampling of studied con�gurations.
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(a) W(ttl) = 30 , " = 0 :1000, and 97 chunks.
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(b) W(ttl) = 70 , " = 0 :1000, and 97 chunks.
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(c) W(ttl) = 30 , " = 0 :0100, and 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

(d) W(ttl) = 70 , " = 0 :0100, and 97 chunks.
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(e) W(ttl) = 30 , " = 0 :0010, and 97 chunks.
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(f) W(ttl) = 70 , " = 0 :0010, and 97 chunks.

Figure 8: (E2): representative sampling of studied con�gurations (p = 100).

but � greedy is always the best heuristic;� random-rep has a signi�cantly lower per-
formance. A new conclusion is that, whenW (ttl)

p is larger, there is less room
for replication, e�cient use of resources is more complicated, and the heuristics
have overall worse performance.

The main conclusion of this experiment is that the performance of the heuris-
tics scale very well to large platforms.
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6.2.3 Experiment (E3): Fixed W(ttl) , p, and "

In this experiment the only varying parameter is the number of chunks per unit
of work, which takes any odd values less than 200.

Figure 9 presents a representative excerpt of the experiments. (All results
are presented in the appendix, on Figures 28 through 32).

When the start-up cost is negligible, one should use a large number of chunks,
since having small chunks reduces the loss occurred when a computer fails.
However, when the start-up cost increases, one should be more cautious because
the start-up cost then impacts negatively the performance of the solution. For
large start-up costs, the decrease of performance is dramatic. This is less obvious
in the intermediate case of" = 0 :001 but, even in this case, after reaching a
maximum, the performance decreases when the number of chunks increases.
The general shape of the curves corroborate the unimodal assumption proposed
at the end of Section 5.3.

Of course, special care should be taken about the exact number of chunks if
using � cyclic-rep whose performance �uctuates, depending on whether the number
of computers is prime with the number of chunks.

As the studied parameter is not the overall number of chunks but the number
of chunks per unit of work, the number of computers has no signi�cant impact
on the performance (except, obviously, for� cyclic-rep).

6.2.4 Experiment (E4): Fixed W(ttl) , p, and cs

In this set of experiments, we study the impact of the start-up cost on the
solution, which can take values between 0 and 1.

Figure 10 presents a representative excerpt of the experiments. (All results
are presented in the appendix, on Figures 33 through 37).

When the start-up cost " increases, starting from 0, one observes a dramatic
drop in performance. Indeed, when" is large, that is, when " � 0:05 (roughly),
very few chunks can be executed on a computer before it fails. In these con�g-
urations, the performance mainly depends on the size of chunks with respect to
the failure times in the instance. There is no way to design good heuristics on
average (compared to� omniscient) and all heuristics have poor performance. This
even gets worse with the increase of the number of chunks per unit of work. As
" gets closer to 1, the proportion of cases where even� omniscient do not complete
any work increases. In these cases, all heuristics have a performance of 1, hence
the sharp increase in heuristic performance. Needless to say that these cases
have no practical merits.

6.2.5 Experiment (E5) and (E6): Automatic Inference of Chunk Size

Finally, we did two di�erent set of experiments to assess the quality of the
heuristics when the number of chunks is automatically inferred using the scheme
proposed in Section 5.3.

Experiment (E5) replicates Experiment (E1) except that, for each instance
and each heuristic, the chunk size is no longer given but automatically inferred.
Figure 11 presents an aggregated view of the 76,000 generated instances. (All
results are presented in the appendix, on Figures 62 and 63). On Figure 11,
for each heuristic we plot the average performance when only considering the
x% best instances for that heuristic. The performance for 100% is thus the
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(a) W(ttl) = 7 :5, " = 0 :1000.
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(b) W(ttl) = 17 :5, " = 0 :1000.
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(c) W(ttl) = 7 :5, " = 0 :0100.
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(d) W(ttl) = 17 :5, " = 0 :0100.
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(e) W(ttl) = 7 :5, " = 0 :0001.
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(f) W(ttl) = 17 :5, " = 0 :0001.

Figure 9: (E3): representative sampling of studied con�gurations (p = 25).
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost e

(a) W(ttl) = 7 :5, 47 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost e

(b) W(ttl) = 17 :5, 47 chunks.
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(c) W(ttl) = 7 :5, 97 chunks.
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(d) W(ttl) = 17 :5, 97 chunks.
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(e) W(ttl) = 7 :5, 147 chunks.
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(f) W(ttl) = 17 :5, 147 chunks.

Figure 10: (E4): representative sampling of studied con�gurations (p = 25).
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Figure 11: Experiment (E5): per-
formance with automatic inference of
chunk sizes.
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Figure 12: Experiment (E6): impact
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.

average performance over all instances: 85.2% of the omniscient optimal for
� greedy and 79.7% for � no-rep. Therefore, on average,� greedy closed 37.8% of
the gap between� no-rep and the optimal. Furthermore, in more than 21% of
the instances� greedy achieves quasi-optimal performance (over99:5%). � cyclic-rep

achieves close performance.
In Experiment (E6), presented on Figure 12, we �xed the overall workload

to 10 units (W(ttl) = 10) and we had the number of computers take any integral
value between 10 and 100 (with the same four choices for the value of" as
previously). This scheme enables to assess the impact of the ratio of potential
replication, pX

W (ttl)
. We randomly built 1000 instances of each set of parameters.

� cyclic-rep and � greedy always have better performance than� no-rep, and the
di�erence is very signi�cant as soon as the ratio of potential replication is
greater than 2. � greedy has better and more regular performance than� cyclic-rep.
� cyclic-rep takes almost no advantage of the possibility of replication when the
potential for replication is small (smaller than 2); � greedy takes advantage.

6.3 Summarizing the Experiments

From these experiments, we see that replication, when cleverly done, can im-
prove the performance of heuristics. Our� greedy heuristic always delivers good
performance, is never outperformed by any other heuristic (on each con�gura-
tion, on average, it delivers the best performance), and, on favorable cases, it
performs signi�cantly better than any other heuristics. This heuristic is there-
fore an obvious winner.

7 Going Beyond the Linear Risk Model

So far, we have almost exclusively focused on the linear risk model. Some of
our results, however, can be extended to general risk functions (we have directly
written Theorems 4 and 7 in a general context). We will �rst extend two of our
results to the general case (Section 7.1). Inferring from these theoretical results,
we will extend our group heuristics to the general context and evaluate them
(Section 7.2).
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7.1 Asymptotically Optimal Scheduling under General
Risk and the Free-Initiation Model

We prove that, with one or two remote computers, a schedule using equal-size
chunks is asymptotically optimal.

7.1.1 One Remote Computer

Theorem 8. (One remote computer: free-initiation model and general
risk)
Say that one wishes to deployW(ttl) units of work to a single remote computer
in at most n chunks, for some strictly positive integern. The scheduling reg-
imen below, which partitions the overall workload inton equal-size chunks, is
asymptotically optimal:

8i 2 [1; n] ; Wi  
�

i � 1
n

W(ttl) ;
i
n

W(ttl)

�
:

In other words, the expectation ofW(cmp) of this equal-size regimen tends to the
expectation of an optimal regimen asn grows without bound.

Note that, if there exists a minimal amount of work V by which the computer
is certain to be interrupted (with probability 1), then one can improve the
regimen with equal-size chunks by having chunks of sizemin f W (ttl) ;V g

n rather

than of size W (ttl)

n . (Under the linear-risk model V = X .)

Proof. In this proof, we denote by S(n) the regimen usingn equal-size chunks
we want to establish the asymptotic optimality of. We denote by O(n) an
optimal regimen using (at most) n chunks. Under regimenO(n), we denote
the chunks W 0

1, ..., W 0
n , and we denote by! 0

i the size of chunkW 0
i . Without

loss of generality, we can assume that, for anyi in [1::n], chunk W 0
i is equal toDP i � 1

k=1 ! 0
k ;

P i
k=1 ! 0

k

E
.

Let us consider any strictly positive integer m. We are going to compare the
performance of the scheduling regimensO(n) and S(m). For that purpose, we
introduce three more notations. First, we denote by � the size of a chunk of
S(m): � = W (ttl)

m . Then, for any i 2 [1::m � 1], let s(i ) be the index of the �rst
chunk of S(m) which starts no sooner than the end of thei -th chunk of O(n).
Formally:

s(i ) = 1 +

&P i
k=1 ! 0

k

�

'

:

Symmetrically, for any i 2 [1::m], let p(i ) be the index of the last chunk ofS(m)
which ends no later than the beginning of thei -th chunk of O(n). Formally:

p(i ) =

$ P i � 1
k=1 ! 0

k

�

%

:

If at least one chunk ofS(m) is fully included in W 0
i , s(i � 1) is the index of the

�rst such chunk, and p(i + 1) the index of the last such chunk.
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The overall expectation of W(cmp) for O(n) is:

E (W(ttl) ; O(n)) =
nX

i =1

! 0
i

0

@1 � P r

0

@
iX

j =1

! 0
j

1

A

1

A : (19)

Let us now consider any chunkW 0
i of O(n) (that is, any i 2 [1::n]). Its contri-

bution to the overall expectation is:

ei = ! 0
i

0

@1 � P r

0

@
iX

j =1

! 0
j

1

A

1

A : (20)

If ! 0
i < 2� , obviously ei < 2� . Otherwise, ! 0

i � 2� and there exists at least one
chunk of S(m) which is included in the chunk Wi . Then, p(i + 1) � s(i � 1) (we
extend s by letting s(0) = 0 ). We can then establish:

! 0
i =

iX

j =1

! 0
j �

i � 1X

j =1

! 0
j

=

0

@
iX

j =1

! 0
j � p(i + 1) �

1

A + ( p(i + 1) � � (s(i � 1) � 1)� )

+

0

@(s(i � 1) � 1)� �
i � 1X

j =1

! 0
j

1

A

< � + ( p(i + 1) � s(i � 1) + 1) � + �:

Using this result and Equation (20) we can bound the value ofei :

ei < (2� + ( p(i + 1) � s(i � 1) + 1) � )

0

@1 � P r

0

@
iX

j =1

! 0
j

1

A

1

A

� 2� +
p( i +1)X

j = s( i � 1)

�

0

@1 � P r

0

@
iX

j =1

! 0
j

1

A

1

A

� 2� +
p( i +1)X

j = s( i � 1)

� (1 � P r (j� )) :

The last inequation holds becausep(i + 1) � is no greater than
P i

j =1 ! 0
j and

becausePr is a non decreasing function.
We can now rewrite Equation (19):

E (W(ttl) ; O(n)) =
X

1 � i � n
! 0

i < 2�

ei +
X

1 � i � n
! 0

i � 2�

ei

<
X

1 � i � n
! 0

i < 2�

2� +
X

1 � i � n
! 0

i � 2�

0

@2� +
p( i +1)X

j = s( i � 1)

� (1 � P r (j� ))

1

A

� 2n� +
mX

j =1

� (1 � P r (j� ))

�
2n
m

W(ttl) + E(W(ttl) ; S(m)) :RR n° 7029
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Therefore, for any positive integersn and m:

E(W(ttl) ; O(n)) �
2n
m

W(ttl) < E (W(ttl) ; S(m)) � E (W(ttl) ; O(m)) : (21)

E(W(ttl) ; O(n)) is obviously a non-decreasing, upper-bounded (byW(ttl) ), se-
quence and it thus converges. By replacingn by b

p
mc in Equation (21), one

easily sees that the sequenceE(W(ttl) ; S(m)) is converging with the same limit.

7.1.2 Two Remote Computers

Theorem 9. (Two remote computers: free-initiation model and gen-
eral risk)
Say that one wishes to deployW(ttl) units of work on two computers, in at mostn
chunks, for some strictly positive integern. Then, the following regimen, which
schedules the same set of equal-size chunks on both computers, is asymptotically
optimal:

8i 2 [1; n] ; W1;i = W2;n � i +1  
�

i � 1
n

W(ttl) ;
i
n

W(ttl)

�
:

In other words, the expectation ofW(cmp) of the above regimen tends to the
expectation of an optimal regimen asn grows without bound.

Proof. This proof is mainly a combination of the result of Theorem 4 and of the
proofs of Theorem 6 and 8.

In this proof, we denote by S(n) the regimen using n chunks we want to
establish the asymptotic optimality of. We denote by O(n) an optimal regimen
using (at most) n chunks.

Thanks to Theorem 4, we know the general shape of scheduleO(n). Without
loss of generality, we can indeed assume thatO(n) has the shape described on
Figure 4(a). We can then use the �rst two transformations of Figure 4. We �rst
complete the workload of each computer (Figure 4(b)) and then subdivide the
chunks for chunk boundaries to coincide (Figure 4(c)). This way we transform
O(n) into a scheduling regimenO0(n) with at most l = 2n + 1 chunks per
computer and whose expectation is no smaller than that ofO (following the
arguments already used in the proof of Theorem 6):

E (W(ttl) ; O(n)) � E (W(ttl) ; O0(n)) :

Under regimen O0(n), we denote byW 0
1;1, ..., W 0

1;l the chunks of computer P1

and by W 0
2;1, ..., W 0

2;l those of computerP2. Then, for any i 2 [1::l ], W 0
2;l � i +1 =

W 0
1;i .
Let us now consider any strictly positive integerm. We are going to compare

the performance of the scheduling regimensO0(n) and S(m).
For that purpose, we introduce three more notations. First, we denote by�

the size of a chunk ofS(m): � = W (ttl)

m . Then, for any i 2 [1::m � 1], let s(i ) be
the index of the �rst chunk of S(m) which starts no sooner than the end of the
i -th chunk of O0(n) (on computer P1). Formally:

s(i ) = 1 +

&P i
k=1 ! 0

1;i

�

'

:
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Symmetrically, for any i 2 [1::m], let p(i ) be the index of the last chunk ofS(m)
which ends no later than the beginning of thei -th chunk of O0(n) (on computer
P1). Formally:

p(i ) =

$ P i � 1
k=1 ! 0

1;i

�

%

:

The overall expectation of W(cmp) for O0(n) is:

E (W(ttl) ; O0(n)) =
lX

i =1

! 0
1;i

0

@1 � P r

0

@
iX

j =1

! 0
1;j

1

A Pr

0

@W(ttl) �
i � 1X

j =1

! 0
1;j

1

A

1

A :

(22)
Let us now consider any chunkW 0

1;i of O0(n) (that is, any i 2 [1::m]). Its
contribution to the overall expectation is:

ei = ! 0
1;i

0

@1 � P r

0

@
iX

j =1

! 0
1;j

1

A Pr

0

@W(ttl) �
i � 1X

j =1

! 0
1;j

1

A

1

A : (23)

If ! 0
1;i < 2� , obviously ei < 2� . Otherwise, ! 0

1;i � 2� and there exists at least
one chunk ofS(m) which is included in the chunk W1;i . Then, p(i +1) � s(i � 1)
(we extend s by letting s(0) = 0 ). We can then establish:

! 0
1;i =

iX

j =1

! 0
1;j �

i � 1X

j =1

! 0
1;j

=

0

@
iX

j =1

! 0
1;j � p(i + 1) �

1

A + ( p(i + 1) � � (s(i � 1) � 1)� )

+

0

@(s(i � 1) � 1)� �
i � 1X

j =1

! 0
1;j

1

A

< � + ( p(i + 1) � s(i � 1) + 1) � + �:

Using this result and Equation (23) we can bound the value ofei :

ei < (2� + ( p(i + 1) � s(i � 1) + 1) � )

�

0

@1 � P r

0

@
iX
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! 0
1;j

1

A Pr

0

@W(ttl) �
i � 1X
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! 0
1;j

1

A

1

A

� 2� +
p( i +1)X

j = s( i � 1)
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0

@1 � P r

0

@
iX

j =1

! 0
1;j

1

A Pr

0

@W(ttl) �
i � 1X

j =1

! 0
1;j

1

A

1

A

� 2� +
p( i +1)X

j = s( i � 1)

�
�
1 � P r (j� ) P r

�
W(ttl) � (j � 1)�

��
:

The last inequation holds becausePr is a non decreasing function, because
p(i + 1) � is no greater than

P i
j =1 ! 0

1;j , and because(s(i � 1) � 1)� is no smaller

than
P i � 1

j =1 ! 0
1;j .
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We can now rewrite Equation (22):

E (W(ttl) ; O0(n)) =
X

1 � i � l
! 0

1;i < 2�

ei +
X

1 � i � l
! 0

1;i � 2�

ei

<
X

1 � i � l
! 0

1;i < 2�

2�

+
X

1 � i � l
! 0

1;i � 2�

0

@2� +
p( i +1)X

j = s( i � 1)

�
�
1 � P r (j� ) P r

�
W(ttl) � (j � 1)�

��
1

A

� 2l� +
lX

j =1

�
�
1 � P r (j� ) P r

�
W(ttl) � (j � 1)�

��

�
4n + 2

m
W(ttl) + E(W(ttl) ; S(m)) :

Therefore, for any positive integersn and m:

E(W(ttl) ; O(n)) �
4n + 2

m
W(ttl) � E (W(ttl) ; O0(n)) �

4n + 2
m

W(ttl)

< E (W(ttl) ; S(m)) � E (W(ttl) ; O(m)) : (24)

E(W(ttl) ; O(n)) is obviously a non-decreasing, upper-bounded (byW(ttl) ), se-
quence and it thus converges. By replacingn by b

p
mc in Equation (24),

one easily sees that the sequenceE(W(ttl) ; S(m)) is converging with the same
limit.

7.2 Heuristics and Simulations

We have shown that schedules using equal-size chunks were asymptotically op-
timal on systems with one or two remote computers. It is then natural to
extend our group heuristics, de�ned in Section 5.2, for the case with general
risk functions. This extension is straightforward as we only need to replace, for
the group-greedy heuristic, the linear probability function with the function we
wish to study. (Obviously, we also need to use the correct risk function when
inferring the adequate number of chunks using the scheme of Section 5.3.)

To assess the quality of our heuristics in the general context, we use traces.

7.2.1 Traces and Methodology

We evaluate our algorithms using 8 traces recording, per computer, the lengths
of the di�erent time intervals during which the computer was available:

0. the SDSC trace, described in [23, p. 33], contains 5678 availability dura-
tions from a desktop grid of PC's located at the San Diego Super Computer
Center (SDSC);

1. the UCB trace, described in [4], contains 19276 availability durations from
53 DEC workstations from the University of California, Berkeley;

2. the XtremWeb trace, described in [23, p. 33], contains 8756 availability
durations from a desktop grid including a cluster and some PC's located
at the University of Paris South;
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3. the Cetus trace, described in [30], contains 1898 availability durations from
31 Sun workstations from the University of Tennessee;

4. the LONG trace, described in [30], contains 10958 availability durations
from workstations located at di�erent sites;

5. the Princeton trace, described in [30], contains 79 availability durations
from 16 Dec Alpha workstations from the Princeton university;

6. the Condor trace, described in [28], contains 1125 availability durations
from the Condor pool at the University of Wisconsin;

7. the CSIL trace, described in [28], contains 927 availability durations from
the CSIL computer science student lab at the University of California,
Santa Barbara.

We �rst normalize these traces so that for each trace the longest availability
interval is exactly equal to 1 (this only matters when we want to average statis-
tics over di�erent traces). Then, from these traces we build failure probability
functions as follows:

P r (trace; t) =

Number of availability durations in trace that are shorter than t
Number of availability durations in trace

:

We generate instances of computer failure times by uniformly and randomly
picking availability durations in the studied trace. Therefore, we implicitly
assume that, when making a scheduling decision, we only consider computers
that just became available.

7.2.2 Simulation Results

We ran the heuristics setting parameter� to 1.00 (see Section 5.1), parametersp
and " according to Section 6.1, and parameterW(ttl) taking all integral values in
[1::p]. The aggregated simulation results are presented on Figure 13. (Ventilated
graphs are presented in the appendix on Figures 64 through 67.) Overall, and
under each studied scenario,� greedy achieves far better results than� cyclic-rep

and � no-rep. The di�erence between � greedy and the other heuristics becomes
more and more important as the number of computers increases or as the size
of the start-up cost decreases. The performance of� cyclic-rep is close to that of
� no-rep.

8 Conclusion

We have presented a model for studying the problem of scheduling large divisible
workloads on p identical remote computers that are vulnerable (with the same
risk function) to unrecoverable interruptions (Section 2). Our goal has been
to �nd schedules for allocating work to the computers and for scheduling the
checkpointing of that work, in a manner that maximizes the expected amount of
work completed by the remote computers. Most of the results we report assume
that the risk of a remote computer's being interrupted increaseslinearly with
the amount of time that the computer has been available to us; a few results
provide scheduling guidelines for more general risks.
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(b) Statistics over all 608000 in-
stances.

Figure 13: Performance of the heuristics with risk functions de�ned by
computer-availability traces.

We have completely solved this scheduling problem for the case ofp = 1 re-
mote computer (Section 3). Our solution provides exactly optimal schedules�
whose expected work completion is exactly maximum�both for the free-initia-
tion model, wherein checkpointing incurs no overhead, and the charged-initiation
model, wherein checkpointing does incur an overhead. For the case ofp = 2
remote computers, we provide schedules whose expected work completion is
asymptotically optimal, as the size of the workload grows without bound; we
also provide some guidelines for deriving exactly optimal schedules (Section 4).
The complexity of the development in Section 4 suggests that the general case
of p remote computers will be prohibitively di�cult, even with respect to de-
riving asymptotically optimal schedules. Therefore, we settle in this general
case for deriving a number of well-structured heuristics, whose quality can be
assessed via explicit expressions for their expected work outputs (Section 5).
Simulations suggest that one of our six heuristics�regrettably, the computa-
tionally most complicated one�is the clear winner in terms of performance. An
extensive suite of simulation experiments suggests that all of our heuristics pro-
vide schedules with good expected work output, and that the �clear winner� in
the competition of Section 5 does, indeed, dominate the others (Section 6). We
extended to general risk functions the asymptotic optimality result for two com-
puters and then the p-computer heuristics. Extensive simulations using actual
traces of computers' availabilities suggest that the clear winner of Sections 5
and 6 also dominate other solutions in the presence of general risk functions
(Section 7).

Much remains to be done regarding this important problem, but three di-
rections stand out as perhaps the major outstanding challenges. One of these
is to extend our study to include heterogeneous assemblages of remote com-
puters, whose constituent computers di�er in speed and other computational
resources. When the assemblages are heterogeneous, but even when they are
homogeneous, it would be signi�cant to allow the assemblage's computers to be
subject to di�ering probabilities of being interrupted.
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A Experiments with linear risk functions
(selected heuristics)

On the following graphs, the only group-heuristic whose performance is reported
is � greedy.

A.1 Experiments E1
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Figure 14: Experiment (E1) using 5 computers.
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Figure 15: Experiment (E1) using 5 computers (continued).
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Figure 16: Experiment (E1) using 10 computers.
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Figure 17: Experiment (E1) using 10 computers (continued).

RR n° 7029



80 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

" =
0:1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25
W

(c
m

p)
 / 

O
pt

im
al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

" =
0:0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

" =
0:0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

" =
0:0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Figure 18: Experiment (E1) using 25 computers.
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Figure 19: Experiment (E1) using 25 computers (continued).
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Figure 20: Experiment (E1) using 50 computers.
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Figure 21: Experiment (E1) using 50 computers (continued).
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Figure 22: Experiment (E1) using 100 computers.
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Figure 23: Experiment (E1) using 100 computers (continued).
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Figure 24: Experiment (E2) with 47 chunks.
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Figure 25: Experiment (E2) with 97 chunks.
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Figure 26: Experiment (E2) with 147 chunks.
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Figure 27: Experiment (E2) with 197 chunks.
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A.3 Experiments E3

Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 1 :5 W(ttl) = 3 :5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

" =
0:1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

" =
0:0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

" =
0:0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

" =
0:0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Figure 28: Experiment (E3) using 5 computers.
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 3 W(ttl) = 7
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Figure 29: Experiment (E3) using 10 computers.
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 7 :5 W(ttl) = 17:5
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Figure 30: Experiment (E3) using 25 computers.

INRIA



Static Strategies for Worksharing with Unrecoverable Interruptions 93

Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy
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Figure 31: Experiment (E3) using 50 computers.
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 30 W(ttl) = 70
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Figure 32: Experiment (E3) using 100 computers.
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A.4 Experiments E4

Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 0 :3p W(ttl) = 0 :7p
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Figure 33: Experiment (E4) with 5 computers.
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 0 :3p W(ttl) = 0 :7p
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Figure 34: Experiment (E4) with 10 computers.
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 0 :3p W(ttl) = 0 :7p
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Figure 35: Experiment (E4) with 25 computers.
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 0 :3p W(ttl) = 0 :7p
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Figure 36: Experiment (E4) with 50 computers.
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Sbrute Sno-rep Scyclic-rep Srandom-rep Sgreedy

W(ttl) = 0 :3p W(ttl) = 0 :7p
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Figure 37: Experiment (E4) with 100 computers.

RR n° 7029



100 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

B Experiments with linear risk functions
(all heuristics)

On the following graphs, the performance of all the heuristics is displayed, in-
cluding all our group heuristics.
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Figure 38: Experiment (E1) using 5 computers.
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Figure 39: Experiment (E1) using 5 computers (continued).
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Figure 40: Experiment (E1) using 10 computers.
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Figure 41: Experiment (E1) using 10 computers (continued).
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Figure 42: Experiment (E1) using 25 computers.
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