Theoretical Aspects of Evolutionary Multiobjective Optimization---A Review

Dimo Brockhoff 1, *
* Auteur correspondant
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : Optimization problems in practice often involve the simultaneous optimization of 2 or more conflicting objectives. Evolutionary multiobjective optimization (EMO) techniques are well suited for tackling those multiobjective optimization problems because they are able to generate a set of solutions that represent the inherent trade-offs between the objectives. In the beginning, multiobjective evolutionary algorithms have been seen as single-objective algorithms where only the selection scheme needed to be tailored towards multiobjective optimization. In the meantime, EMO has become an independent research field with its specific research questions---and its own theoretical foundations. Several important theoretical studies on EMO have been conducted in recent years which opened up a better understanding of the underlying principles and resulted in the proposition of better algorithms in practice. Besides a brief introduction about the basic principles of EMO, the main goal of this report is to give a general overview of theoretical studies published in the field of EMO and to present some of the theoretical results in more detail. Due to space limitations, we only focus on three main aspects of previous and current research here: (i) performance assessment with quality indicators, (ii) hypervolume-based search, and (iii) rigorous runtime analyses and convergence properties of multiobjective evolutionary algorithms.
Type de document :
Rapport
[Research Report] RR-7030, INRIA. 2009
Liste complète des métadonnées

Littérature citée [99 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00414333
Contributeur : Dimo Brockhoff <>
Soumis le : mercredi 9 septembre 2009 - 16:08:13
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : mardi 15 juin 2010 - 19:46:26

Fichiers

RR-7030.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00414333, version 1

Citation

Dimo Brockhoff. Theoretical Aspects of Evolutionary Multiobjective Optimization---A Review. [Research Report] RR-7030, INRIA. 2009. 〈inria-00414333〉

Partager

Métriques

Consultations de la notice

314

Téléchargements de fichiers

306