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Abstract. This paper addresses the issue of improving the performance of memory management for real-time
Java applications, building upon the real-time specification for Java (RTSJ) from the Real-Time Java Expert
Group. In a first step, a collecting dynamic memory solution including both a real-time garbage collector and
region-based memory management, is proposed. A thorough analysis of the parameters influencing the
performance of write barriers in memory management, together with ways of improvement are then presented.
Finally, the implementation of a memory management solution compliant with the RTSJ and integrating the
proposed improvements is sketched.
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1. Introduction

The Java environment provides attributes that make it a powerful platform to develop
embedded real-time applications. However, it presents some important lacks regarding its
use in this kind of systems (Higuera et al., 2000). The original Java platform was
designed for computers with RAM memory (personal computers or workstations). Then,
other Java platforms were defined to support real-time and embedded systems. In
particular JavaCard (Sun, 1998), EmbeddedJava (Sun, 1999) and PersonalJava (Sun,
1998) are three different platforms from Sun Microsystems. But none of these Java
adaptations integrate the techniques and methods that real-time systems require.

The National Institute of Standards and Technology (NIST), has produced a basic
requirements document (Carnahan, 1998) for a standard real-time Java API extension.
Solutions that comply with this document are the real-time specification for Java (RTSJ)
(RTJEG, 2000) and the real-time core extension for the Java platform (RT Core) (J
Consortium, 1999). There are some other solutions that were introduced before the NIST
document. The simplest one is a prototype introducing tasks support over RT-Mach (RT-
Threads) (Miyoshi et al., 1997). Another proposal is the portable executive for reliable

* This work has been partially funded by Texas Instruments.
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Table 1. Comparison of studied solutions.

@ (i) (iii) (iv) (v
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=

RTSJ A A A A M A
RT Core A A A M M A
PERC A A M M A A
RT-Threads A A — — M M
CTJ A — — — — —
GVM M A — — M —
Aj-100 A A A M M M

Notes. We use A, M, and—to respectively mean that the corresponding issue is addressed in detail, only
partly addressed, and not addressed.

control (PERC) (Nilsen, 1998), that is close to the J Consortium solution, the latter being
actually an evolution of PERC. A very different solution is the communication threads for
Java (CTJ) (Hilderink, 1998), that is based on the CSP algebra, the Occam?2 language and
the Transputer microprocessor. Other solutions integrate the JVM into the operating
system such as the GVM (Bak et al., 1998), a prototype centered around resource
management. Another option to improve the performance of Java is to integrate the JVM
in a microprocessor as the Aj-100 (Hardin, 2001), which implements the entire JVM
instruction set in silicon and directly supports the Java thread model in hardware.

We have analyzed and studied how the above solutions resolve the problems that Java
presents to effectively support embedded real-time applications (Higuera et al., 2000).
We have divided these problems in the following categories: (i) the inability to access the
underlying hardware, (ii) the unspecified behavior for thread scheduling, (iii)
synchronization that requires stronger semantics, (iv) the inability to handle events, (v)
the inability to specify resources, and (vi) dynamic memory management. A comparison
of the aforementioned solutions is summarized in Table 1.

From our point of view, the RTSJ constitutes the most adequate solution for real-time
systems in general, and a hardware support such as Aj-100 enables improving the
system’s performance. In the context of the activities of the Solidor group at INRIA, we
are currently developing a Java-based software environment accounting for embedded
real-time (Issarny et al., 2000). This paper focuses on how to make Java memory
management real-time while accounting for relevant Java specifications: the RTSJ, the
KVM (Sun. 1999) targeting limited-resource and network connected devices, and the
picoJava microprocessor core (Sun, 1999).

1.1. Background

Implicit garbage collection has always been recognized as a beneficial support from the
standpoint of promoting the development of robust programs. However, this comes along
with overhead regarding both execution time and memory consumption, which makes
(implicit) garbage collection poorly suited for small-sized embedded real-time systems.
This must not lead to undertake the unsafe primitive solution that consists in letting the
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Figure 1. The  MemoryArea  hierarchy: Whereas ImmortalMemory,  HeapMemory, and
ImmortalPhysicalMemory objects end with the application, the life of ScopedMemory objects depend on
the program control flow.

application programmer to explicit deal with memory reclamation. As an alternative,
region-based memory allocation enables grouping related objects within a region. This is
an intermediate solution between explicit memory deallocation (e.g., free() in C) and
garbage collection. Application of the two above implicit strategies has been studied in
the context of Java, which are combined in RTSJ. The MemoryArea abstract class
supports the region paradigm in RTSJ through the following three kinds of regions (see
Figure 1): (i) immortal memory contains objects whose lifetime ends only when the JVM
terminates (i.e., supported by the ImmortalMemory1 and the ImmortalPhysicalMemory
classes); (ii) (nested) scoped memory enables grouping objects having well-defined
lifetimes and that may either offer temporal guarantees (i.e., supported by the LTMemory
class) or not (i.e., supported by the VTMemory and the ScopedPhysicalMemory? classes)
on the time taken to create objects; and (iii) the conventional heap (i.e., supported by the
HeapMemory class).

Whereas there are only one ImmortalMemory and one HeapMemory objects in the
system, several ImmortalPhysicalMemory and ScopedMemory objects can exist. Then,
an application can allocate objects into the heap, the immortal region, or several scoped
regions. Several related threads, possibly real-time, can share a memory region, and the
region must be active until the last thread has exited. The default region is the Java heap.
Allocations outside the active region can be performed by the newInstance() methods or
the newArray() as shown in Figure 2.

1.2. Paper Organization

In the context of RTSJ, this paper proposes such a study, focusing on minimizing the
execution time overhead caused by write barriers in implicit memory reclamation. We
first present basic modifications to the garbage collector of a Java VM in order to make it
compatible with real-time tasks execution, and a possible implementation of the memory
region abstraction presented by the RTSJ (Section 2). A thorough analysis of the
parameters influencing the performance of write barriers is presented regarding the
management of memory regions (Section 3). A solution improving the write barrier
performance of both memory regions and the collector is then given (Section 4). Results
of this analysis are further exploited to derive a memory management solution for a Java
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import javax.realtime;

class Allocator implements Runnable {
public void run() {
HeapMemory. instance() .newirray(Integer, 10);
int[] x = new int[20];
...................... // do some stuff

class RegionUseExample {
public static void main (String[] args) {

ScopedMemory myRegion = new VTMemory(1024, 2%x1024);

RealtimeThread task = new RealtimeThread(
null, null,
new Hamorypumsters(1024, 0),
myRegion, null, new Allocator());

task.start();

}

Figure 2. Using memory regions in RTSJ: This code shows a real-time thread, which allocates an array of 10
integers in the heap, and another of 20 integers in the MR called myRegion.

environment aimed at wireless PDAs, which we are experimenting through adaptation of
the KVM (Section 5). Finally, a summary of our contribution together with an overview
of our ongoing and future research work towards offering an overall memory
management solution for next-generation wireless PDAs conclude this paper (Section 6).

2. The Basic Approach

From a real-time perspective, the garbage collector (GC) introduces unpredictable pauses
that are not tolerated by real-time task. Real-time collectors eliminate this problem but
introduce a high overhead. An intermediate approach is to use memory regions (MRs)
within which allocation and deallocation are customized, and also space locality is
improved. Note that both collection strategies are complementary: a GC may be used
within some regions in order to limit their size, while the use of regions allows reducing
the runtime overhead due to GC.

In this section, we propose a possible implementation of memory reclamation for Java
that is compliant with the RTSJ specification (Bollella and Gosling, 2000). The proposed
solution addresses real-time constraints of the GC in the heap, and the problem associated
with inter-region references introduced by MRs (i.e., external references, illegal accesses,
and illegal references).
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2.1. GC Strategy

There are some important considerations when choosing a real-time GC strategy. Among
them are space costs, barrier costs, and available compiler support. Copying GCs require
doubling the memory space, because all the objects must be copied during GC execution.
Non-copying GCs do not require this extra space, but are subject to fragmentation. We
specifically base our solution on the incremental non-copying collector called treadmill
(Baker, 1991). Since this allows the application to execute while the GC has been
launched, a mechanism, called read barrier, is used to keep the state of the GC consistent
by coordinating the execution of the GC and of the application. The basic algorithm is as
follows (see Figure 3): an object is colored white when not reached by the GC, black
when reached, and gray when it has been reached, but its descendants may not be (i.e.,
they are white). Gray objects make a wavefront, separating the white (unreached) from
the black (reached) objects, and the application must preserve the tri-color invariant that
no black objects have a pointer to a white object, which is achieved using read barriers
(i.e., the white object is grayed when it is accessed). The collection is completed when
there are no more gray objects. All the white objects can then be recycled and all the
black objects become white after the recycling phase. In this process, objects that must
execute the finalize() method® are moved to a finalize-list as in the Kaffe JVM (Petit-
Bianco and Tromey, 1998).

To coordinate the application and the GC, we use write barriers (i.e., a white object is
greyed when the application creates a pointer from a black object) instead of read barriers
(Wilcon and Johnstone, 1993). This decision is motivated by the fact that write barriers
are more efficient than read barriers,” and that the resulting collector can further be easily
extended to generational, distributed, and parallel collection. Then, violation of the tri-
color invariant must be checked when executing instructions that store references within

Run-time stack

Black-list j=----_ T Gray-list
~ .

SWE

Figure 3. The GC strategy: to maintain list coherency, all the operations on shared lists must be synchronized
with the application threads.
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other objects (or arrays) (i.e., when executing putfield, putstatic,
aputfield_quick, aputstatic_quick, aastore, or aastore_quick bytecodes).

2.2. Dealing with Fragmentation

In general, memory fragmentation is not a severe problem, but for embedded systems
(like PDAs) the amount of memory is normally small. Additionally, if the application
only allocates objects with small size, acceptable worst-case bounds can be given. For
objects with large size, strategies such as fragmenting the object into smaller-size chunks
may be used. Another strategy relies on occasionally running a compacting GC, which
implies some degradation of real-time guarantees. Since in Java, the size of reachable
objects does not change much and is rather small (see Table 2 for applications from
SPECjvm98; SPEC, 1998), the average cost of each compactation phase is constant.

Normally, to reduce the cost of object relocation, each object has a non-moving handle.
Compaction is made in two phases: the object space is first compacted, and the handles
are then updated. In this way, relocating objects is transparent to the application program,
which always accesses objects using their non-moving handle. Given the small average
object size (i.e., 36 Bytes), it appears imperative to keep the number of header words to a
minimum. For example, a header of only a word will consume about 11% of the total
memory heap, whereas if the header has two words, this consumption will increase to
20%. Hence, for some applications, it can be interesting to not use a compacting phase,
avoiding handles.

Since objects outside the heap are not moved, we can improve the performance by
avoiding the handle of these objects, and hence use direct reference objects. Eliminating
handles improves also the memory consumption in a word per object. Note that this
strategy is always possible even if the GC has a compactation phase requiring handles for
objects within the heap. Suppressing handles in the heap improves the performance of
both the application and the collector.

Table 2. Object characterization: number of objects allocated by each application, average object size in Bytes,
average object lifetime in millions of references, and average number of references per each object.

Allocated objects Size Lifetime References
JESS 8,131,609 40 1.3 87
DB 3,262,899 31 129.5 449
JAVAC 6,244,896 36 55.2 116
MTRT 6,095,116 25 10.8 86

JACK 6,955,528 31 1.6 147
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2.3. External References

Since objects allocated within immortal or scoped regions may contain references to
objects in the heap, the collector must take into account these external references, adding
them to its reachability graph. To facilitate this task, we color black each object allocated
outside the heap (see Figure 4). In this way, a reference from an object allocated in a
region (i.e., black) to an object in the heap that is still not reached (i.e., white) is treated as
a write barrier (i.e., the white object is grayed to be reached by the GC). Black objects
outside the heap are considered as root by the GC. This requires that all objects of all the
MRs must be explored by the collector, which introduces high overhead.

Scoped regions can be nested. A safe region implementation requires that a region gets
deleted only if there is no external reference to it. This problem has been solved in RTSJ
by using a reference-counter for each region which keeps track of the use of the region by
threads, and a reference-counting GC collects scoped memory regions when their
reference-counter reaches 0. The reference-counter is increased upon entering a new
scope through the enter() method, the creation of a real-time thread with a scoped
region, and the opening of an inner scope. It is decreased when an inner scope returns
from its enter() method or when the real-time thread using the scoped region exits.

Run-time stack

Scoped memory region
Memory heap
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> | “ -«

- o, -

VAN Y
| White-list | M () /

I
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~__ " memory region

Figure 4. External references: objects within the heap referenced from immortal or scoped regions must be
considered reachable by the GC.
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2.4. Illegal Accesses

RTSJ makes distinction between three main kinds of tasks: (i) critical tasks that cannot
tolerate preemption latencies, (ii) high-priority tasks that cannot tolerate unbounded
preemption latencies, and (iii) low-priority tasks that are tolerant with the GC.” Whereas
high-priority tasks require a real-time GC (i.e., the behavior of the algorithm given in
Section 2.1 must be deterministic), critical tasks must not be affected by the GC, and as
consequence cannot access any object within the heap. To detect these illegal accesses,
we introduce a fourth color (e.g., red) meaning that the object cannot access objects
within the heap (Figure 5).

An access from a red object allocated for a critical task to another object allocated in
the heap (i.e., white, black, or gray) causes a MemoryAcessError exception. Illegal
accesses from a red object to an object within the heap must be checked when executing
instructions that load a reference to an object or array (i.e., at every read barrier, those
bytecodes causing a load operation: getfield, getstatic, agetfield quick,
agetstatic_quick, or aaload and those causing a load-store operation: putfield,
putstatic, aputfield_quick, aputstatic_quick, aastore, or aastore_quick).

Run-time stack

Scoped memory region

Memory heap

,
e i

Immortal
memory region

Figure 5. lllegal accesses: red objects cannot access objects within the heap.
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2.5. Illegal Asignments

The lifetime of objects allocated in scoped regions is governed by the control flow (see
Figure 6). To maintain the safety of Java and avoid dangling references, objects in a
scoped MR can only reference objects within an outer region, within the heap, or within
immortal memory. And, objects within the heap or within the immortal region cannot
reference objects within a scoped region. In our example, an object within the scoped
region associate which task t1 can only be referenced by objects allocated within the
same region or within an inner region (see Figure 7), i.e., within the scoped region
associated which task t3.

To detect illegal references, we propose a stack-based algorithm, which associates a
region stack with each thread. Note that references from objects within the heap, an

class ScopedRegionExemple {

static Runnable codeY = new Rumnable() {

public void run() {
Y y1 = new Y()3
Y y2 = new Y();
LTHemory r3 = new LTMemory(32768, 32768);
RealtimeThread t3 = new HoHeapRealtimeThread(r3, null, codeX);
t3.start();
// do some stuff

static Runnable codeX = new Runnable() {
public void run() {
X x1 = new X();
X x2 = new X();
// do some stuff
¥
}i

public static void main(String args[]) {
VTMemory ri = new VTHemory(32768, 65536);
VIMemory r2 = new VTMemory(32768, 65536);
RealtimeThread t1 = new RealtimeThread(ril, null, codeY);
RealtimeThread t2 = new RealtimeThread(r2, null, codeX);
til.start();
t2.start();

Figure 6. Using scoped memory regions in RTSJ. This code shows three tasks (t1, t2, and t3), whose one is
critical (t3), which allocate allocating objects in a MR (i.e., t1 within r1, t2 within r2, and t3 within r3).
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Run-time stack

Memory heap

Scoped region r2

Immortal
memory region

Figure 7. Tllegal references: an object within a scoped region can only be referenced by objects from the same
region or within an inner region (the region r3 is inner to the region r1 from the code of Figure 6.

immortal MR, or a scoped MR, to objects within the heap or an immortal memory are
allways allowed. Then the region stack of a thread supports scoped regions where the
thread can reference objects. Figure 8 shows the region stack associated with the tasks of
our example. This mechanism was introduced in Higuera et al., (2001) and is similar to
the contaminated GC, a Java stack-based collector given in Cannarozzi et al. (2000),
which collects objects when the scoped associated to a control flow ends.

We detail below how to support such a functionality:

e When an object is created, it is associated with the scope of the active region.

e When removing a region, the top of the region stack is adjusted, and it is sure that
there is no object dependent on an older scoped region. Note that the immortal
memory and the heap, which are at the bottom of the stack end with the application,
and as consequence are never removed from the stack.

Illegal inter-region references causes an I1legalAsignmentError exception and must
be checked when executing instructions that store references to objects outside the heap
within other objects (or arrays) (i.e., when executing putfield, aputfield _quick,
aastore, or aastore_quick bytecodes). The putfield (aputfield_quick) instruction
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Figure 8. Region stack: Each task has an associated region stack: (a) region stack of the critical task t1,
(b) region stack of task t2, and (c) region stack of task t3.

causes the object X to reference Y, whereas the aastore (aastore_quick) instruction
stores a reference Y into an array X of references. If the object Y is within a scoped
region, the region of the object X must be inner to the region of Y. This check can be
made by using the region stack, from the region of X down to the region of Y (an outer
region). If the region of Y is not found in the stack (i.e., the heap that is the outest region
and hence the bottom of the stack is reached), this is notified by throwing an exception.
Whereas the putstatic(aputstatic_quick) instruction causes a reference to an object
whithin the outermost region (i.e., the HeapMemory object). Then, checking the stack is
not needed.

3. Analyzing the Performance of Region Management

In general, the management of memory regions introduces overhead, which we
characterize in this section. The cost to maintain MRs is considered as a fraction of
the total program execution time. To estimate the time overhead of different
implementations, two measures are combined: (i) the number of events that occur
during the execution of a program, and (ii) the measured cost of the event. Then, the
region overhead is given by dividing the application execution time with the number of
events and the cost per event. The region implementation given in Gay and Aiken (1998)
presents a time overhead that is constant per instruction executed. The RTSJ imposes
strict rules on assignments to or from regions. The JVM must detect illegal accesses and
assignments and throw an exception when they occur. Also, the collector must scan
regions for references to objects within the heap which introduces an additional overhead.

3.1. Memory Management Overhead

Each MR is managed so as to embed objects that are related regarding associated lifetime
and real-time requirements. GC within the heap relies on the (real-time) collector of the
JVM. The immortal memory region is never subject to GC and may be exploited by
critical tasks. And scoped region get collected as a whole once it is no longer used and
may or may not be subject to internal real-time GC depending on their temporal
properties.® Then, the overall cost introduced by region management is given by the cost
associated with: region allocation, reference counter updates, and region deletion. The



74 HIGUERA ET AL.

time cost to allocate a new region is always constant. Note that by collecting regions,
problems associated with reference counting collectors are solved: the space to store
reference counters is minimal, and there cannot be cycles among regions. Before cleaning
a region, the finalize() method of all the objects in the region must be executed, and it
cannot be reused until all the finalizes execute to completion. Problems with the
finalize() method are resolved by adding to the finalize-list of the GC, all the objects
within the terminated region that are pending to execute this method.

From a real-time perspective, regions give predictable performance, since the cost of
every allocation operation is easily bounded. Assuming that objects in a ScopedMemory
region are not subject to GC and may not be moved,’ the time to allocate an object is
proportional to the object size, and in the worst case may include time to acquire
additional memory for the region. Whereas an allocation in a VTMemory region may take
variable time, the time taken in a LTMemory region is linear to the object size. Then, the
memory space for a LTMemory region must be continuous,® and its size is further
specified upon creation, remaining fixed over its lifetime. Since objects allocated in
LTMemory regions are not garbage collected the allocation time is proportional to the
object size,’ it is safe to associate this subclass with critical tasks. However, an instance
of VTMemory is created with an initial size and may grow up to a given maximum size.

3.2. Region Barrier Overhead

Experimental measures indicate that in Lisp programs the references to the heap (as
opposed to the runtime stack) account for an average of 12% of all executed instructions
(Zorn, 1990). However, all the objects created in Java are allocated in the heap, only
primitive types are allocated in the runtime stack (Gay and Steensgaard, 1998). In most
applications of the SPECjvm98 benchmark suite,'® less than half of the references are to
the heap memory (i.e., 45%), the other half is to either the Java or the C stack (see Table
3), and about 35% of the total executed instructions are memory references (Kim and
Hsu, 2000), where typically 70% are load operations and 30% store operations.

Then, 15% (i.e., 0.45 * 0.35) of instructions executed by a Java application is a
reference into the heap or another memory region, where 11% require read barriers
executing the code of Figure 9 for checking illegal accesses (see Section 2.4). Thus we
estimate the read barrier overhead as (.11 * read-Barrier, where the readBarrier

Table 3. Memory reference characteristics: number of instructions executed for each application, heap memory
allocated in KB, and average allocation rate in Bytes/(1000 instructions).

Executed Data Percentage of references
instructions references into the heap

JESS 9,168 x 10° 1,798 x 10° 39.40

DB 712 x 10° 3,211 x 10° 45.61

JAVAC 7,717 x 10° 2,515 x 10° 28.70

MTRT 3,917 x 10° 1,129 x 10° 50.97

JACK 6,553 x 10° 2,014 x 10° 50.74
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readBarrierMR:
if ((region(Y) = heap) and (color(X) = red)) goto memoryAccesError;

end_readBarrier:

Figure 9. Read barrier code for MRs.

writeBarrierMR:
if (region(Y) = scoped)
if (not checklNestedRegions(X, Y)) goto illegalAssignmentError;
if ((region(Y) = heap) and (color(X) = red)) goto memoryAccesError;

end writeBarrier:

Figure 10. Write barrier code for MRs: the checkNestedRegions() function is an implementation of the
algorithm given in Section 2.5.

parameter is the percentage of the number of instructions executed by the code taged as
readBarrierMR proportional to the number of instructions required to access an object.
In addition, a 5% of executed bytecodes require write barriers executing the code of
Figure 10 for checking illegal accesses and also illegal assignments (see Section 2.5).
Thus we estimate the inter-region reference overhead as 0.05 * writeBarrierRegion,
where the writeBarrierRegion parameter is the percentage of the average number of
instructions executed by the code taged as writeBarrierMR proportional to the number
of instructions required by an assignment.

Note that read barriers are not strictly necessary. The restriction on critical tasks can be
reduced to write barriers checks since reads does not interfere with the GC.'" Write
barriers-supporting MRs include check for both illegal inter-region references (which
causes an I1legalAssignmentError exception), and illegal access from critical task to
objects within the heap (which causes a MemoryAccesError exception). We thus add the
getWriteBarrierOverhead() method to the MemoryArea abstract class, which serves
to identify region barrier overhead. Note that for write barrier-based collectors (e.g.,
incremental or generational collectors), this method gives the write barrier overhead
caused by the GC.

3.3. Collector Barrier Overhead
Hence, the write barrier cost introduced by the GC is as for regions (ie.,

0.05 * writeBarrierCollector). However, in this case as shown in Figure 11, the
writeBarrierCollector parameter is the average cost to preserve the tri-color invariant
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writeBarrierGC:
if ((color(X) = black) and (color(Y) = white)) grayObject(Y);
end_writeBarrierGC:

Figure 11. Write barrier code for the collector.

(e.g., test if a white object is referenced by a black object, then grey the referenced object
and link it to the gray-list) proportional to the number of instructions required by an
assignment.

The most common approach to implement write barriers is by in-line code, consisting
in generating the instructions executing write barrier events with every store operation.
This solution requires compiler cooperation (e.g., JIT), and presents a serious drawback
because it nearly doubles the application’s size. Regarding systems with limited memory
such as PDAs, this code expansion overhead is considered prohibitive. Alternatively, we
can instrument the bytecode interpreter, avoiding space problems, but this still requires a
complementary solution to handle native code.

4. Minimizing the Write Barrier Overhead

A solution minimizing the write barrier overhead consists in using hardware support such
as the picoJava-II microprocessor,'> which allows performing write barrier checks in
parallel with the store operation.

4.1. Using Hardware Support

Upon each instruction execution, the picoJava-II core checks for conditions that cause a
trap. From the standpoint of hardware support for GC, the core of this microprocessor
checks for the occurrence of write barriers, and notifies them using the gc_notify trap.
This trap is triggered under certain conditions when assigning a new reference to a field
of an object (i.e., when executing putfield, putstatic, aputfield_quick,
aputstatic_quick, aastore, or aastore_quick bytecodes). The conditions under
which this trap is generated are governed by the values of the PSR and the GC_CONFIG
registers. If the GCE bit of the PSR register is set, then write barriers are enabled. Hence to
disable them it suffices to unset this bit. The GC_CONFIG register governs two types of
write-barrier mechanisms: page- and reference-based. We can use both mechanisms
simultaneously. Also, we can disable either or both of the mechanisms if we do not want
to use them (e.g., if the current tracing rate allows disabling the GC). The configuration of
this register is summarized in Table 4.

The reference-based write barriers of picoJava-Il can be used to implement
incremental collectors. An incremental collector traps when a white object is written
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Table 4. Garbage collector register (GC_CONFIG).

Bits Field Type Description

31:21 REGION_MASK RW It allows knowing if both, the reference and
the stored data belong to the same page.

20:16 CAR_MASK RW It allows knowing if both, the reference and
the stored data belong to the same car.

15:0 WB_VECTOR (Write Barrier Vector) RW If the corresponding bit is set, then, the above

bytecodes signal a gc_notify trap.

into a black object; the GC_TAG field for black objects is %11 and for white objects %00
(see Figure 12).

The page-based barrier mechanism was designed specifically to assist train-based
generational collectors (Wilson and Johnstone, 1993). A train-based generational
collector traps when, within a larger memory divided into a number of fixed-size
spaces, an object (X) references another object (Y) located in the same space but in a
different car (see Figure 13).

For example, if in the GC_CONFIG register, we initialize the REGION_MASK field
((31:21) bits) as %00000000000, and the CAR_MASK field ((20: 16) bits) as % 11111, we
divide the memory address space in 32 regions, each one divided in 16 KB cars (see
Figure 14). If we choose a %11110 value for the CAR_MASK, then we have 16 regions, and
a car size of 32 KB.

We use the page-based write barrier mechanism to detect references across different
regions. In order to use this hardware mechanism of picoJava-II, we adapt our algorithm
as follows: (i) in the header object, the (31 :30) bits give the color of the object and the
(18:14) bits give the memory area in which the object is allocated,'® and (ii) an

Object X Object Y
G GC_TAG

H\T/j

~——_ GC_CONFIG.WB_VECTOR

000 1_0..0 00000000000
15 T 0
ge_notify trap

a. Reference-based mechanism.

if { PSR.GCE = 1 ) then
gedndex <= (X carans << 2) | Yearnans
write_barrierbit <= (GC.CONFIG >> gc.index) | Dx00000001
if (write-barrier-bit = 1) then ge-notify trap

b. Reference-based pseudocode.

Figure 12. Reference-based write barriers.
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ObJBCl X

/;JK
XOR

Obccl‘f’
I9 81

GC_CONFIG

AND

!

gc_notify trap

a. Page-based mechanism.

if ((Xcuunu> & GCCONFIGci1:215 ) = (Yezaay & GCCONFIGc41:215))
AND ((X<is:14> & GC.CONFIGcu0:16> ) €3 (Y<is4> & GCCONFIG £ 2016 )
then ge-_notify trap

b. Reference-based pseudocode.

Figure 13. Page-based write barriers.

associated exception handler determines whether to execute the algorithm described in
Section 2.5 to detect erroneous inter-region references, and whether to execute actions
preserving the tri-color invariant of the GC. The only overhead is the handling of the
exception trap. However, this solution is very costly, due to the high costs of operating
system traps.

4.2. Improving Write Barrier Performance

Regarding the proposed solution, which configures picoJava-II to enable page-based and
reference-based write barriers, to handle the gc_notify trap, we can distinguish three
main conditions depending on the MR of the referenced object (i.e., the Y object): (A)
when it is within the immortal region, (B) when it is within the heap, and (C) when it is
within a scoped region (see Table 5).
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$0000 0000

. Immortal
$0000 3FFF 16 KB
SO000 4000
. Heap
%mm}}g% 16 KB | 32 Cars
: . Scoped Il’ﬂ:l; ID:'):]DO
30 regions 0 2K CARs
of - i
o B
¥ : /w_\ 2K -1 Cars
/\/\. from 00000
£ 16 KB to 11111
53FFF FFFF
$4000 0000
: System
memory 3GB
$FFFF FFFF

Figure 14. A memory map for memory regions: the (30:30) bits (i.e., GC_TAG field) and (1 : 0) bits (i.e., X and H
bits) of the reference object are masked to address the object.

The A condition is always allowed and does not require any treatment. For the B
condition, we must make distinction depending on the color of the object that makes the
reference (i.e., the X object):

e B.1 when the X object is black,
e B.2 when the X object is red and the Y object is within the heap.
Finally, for the C condition, we make distinction depending on the MR of the X object:

e C.1 is within the immortal region or within the heap,

e (.2 is within a different region than the Y object.

Table 5. Treatments for inter-region references.

X object Y object Treatment

Immortal Immortal Allowed

Immortal Heap Color analysis

Immortal Scoped Illegal assignment

Heap Immortal Allowed

Heap Heap Color analysis

Heap Scoped Tllegal assignment
Scoped Immortal Allowed assignment
Scoped Heap Color analysis

Scoped Scoped Region stack exploration

(when both scoped regions are different)
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priority.3:
if (color(X) = black) goto grayObjectY /f B.1
if (region(X) = heap) goto memoryAccesError // B.2
priority.2:

if (region(X) <> scoped)
if (region(Y) = scoped) goto illegalissignmentError // C.1

if (region(Y) = scoped) goto checkNetsdRegions // c.2
priv_ret from_ trap // A
priorityd:
goto grayObject // B.1

Figure 15. Treating write barrier exceptions.

Two different mechanisms detect the above conditions: (i) B.1 and B.2 conditions are
partly detected by reference-based write barriers and (ii) A, B.1, B.2, C.1, and C.2
conditions are detected by page-based write barriers mechanisms. Then, B.1 and B.2
conditions are detected by both mechanism reference- and page-based write barriers.
Since we must treat each condition in a different way, it is pretty interesting to make
distinction by hardware whether the trap is caused by a reference- or a paged-based
condition'* (e.g., gc_notify_0 when reference-based traps and gc_notify_1 when
paged-based traps). In order to improve the performance of critical tasks, the treatment of
the B.1 condition is prioritized. Then, we establish three main priority levels, where level
3 is the highest:

1. the reference-based write barrier trap is triggered,

2. the page-based write barrier trap is triggered,

3. both traps are triggered.

The exception with priority 3 treats the B.1 and B.2 conditions. The routine of priority 2
treats the A, C.1, and C.2 conditions. Finally, the routine associated with priority 1 treats
the B.1 condition. Note that for the B.2 condition, both write barriers mechanisms are
always activated (i.e., the heap have not red objects). These conditions must be treated as
follows:

A: is always allowed.

B.1: colors gray referenced object.

B.2: throws the MemoryAccessError exception.

C.1: throws the I1legalAssignmentError exception.

C.2: explores the region stack associated to the active task.
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The above solution minimizes the cost of write barriers, which is zero for intra-region
references. '

5. Implementation Issues

This section discusses the implementation of a memory management strategy for a Java
environment aimed at wireless PDAs. Regarding specifically the offered memory
management, it builds upon the RTSJ and the KVM, and integrates the aforementioned
solutions for improving the performance of write barriers in GC and region management.

5.1. Integration within the KVM

We are currently implementing the proposed memory management solution within the
KVM in a way compliant to the RTSJ. The RTSJ defines the GarbageCollector
abstract class, which has been specialized through an IncrementalGC subclass. We have
implemented such a class within the KVM by modifying some files of the interpreter to
support our real-time GC (i.e., garbage.c to implement the collector algorithm and
interpreter.c to implement the write barriers, as well as native.h and nativeCore.c
that support the interface for the Java native methods). The incremental collector can be
introduced in the system by using the run-time type identification (RTTI) that the class
Class offers, (e.g., GarbageCollector gc =(GarbageCollector) Class.forName
(‘ IncrementalGC’).newlnstance();).

As discussed in the previous section, a significant source of performance improvement
for memory management is to exploit hardware aid. We are thus implementing memory
management so that it can be run over picoJava-Il. In order to make our memory
management implementation compliant with this microprocessor, we have modified the
object header tag of the KVM as follows: GC_TAG (31:30), SIZE_H (29:19), CAR_MASK
(18:14), 8IZE_L (13:7), TYPE (6:2), X (1), and H (0). We thus take six bits of the KVM
SIZE (31:8) field (i.e., the maximum size of the objects has thus been reduced from
16 MB to 256 KB). Note that the restriction on object size is not severe penalty as
suggested by the small average size of Java objects in SPECjvm98 (SPEC, 1998)
applications (e.g., Jess 40 Bytes, Db 31, Javac 36, Mtrt 25, and Jack 31). We also reduce
the KVM TYPE (7:2) field since 5 bits are sufficient (i.e., only 20 types are handled).
These bits have been used as the GC_TAG (31:30), and the CAR_MASK (18: 14) fields of
picoJava-II (i.e., these fields are used to store the color of the object and the embedding
memory region). The KVM MARK_BIT that is used by the collector to mark the object is
no longer used because objects are marked by color. Then, this bit is exploited to support
the X bit of picoJava-II. Finally, the KVM STATIC BIT is now used to mean the H bit of
picoJava-II. Since the collector does not move objects, handles are suppressed. This
strategy increases the performance of both, the application and the collector. Then, the H
bit is fixed to 0, and the core of picoJava-II accesses the object starting a word after the
handle. Eliminating handles improves also memory consumption by a word per object.
Given the small average size of Java objects the space overhead can be reduced to 12% of
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the total dynamic memory space (i.e., 4/(33 +4) x 100, where 4 and 33 are respectively
the handle size and the average size of Java objects in bytes). Since objects in memory
regions are not moved, this strategy is always possible even if the objects in the heap are
accessed via a handle.

5.2. Experiment

Instead of using the SPECjvm98 benchmark, which is not compatible with the KVM, we
use an artificial collector benchmark. This is an adaptation made by Hans Boehm from
the John Ellis and Pete Kovac benchmark.'® Two data structures of the same size are kept
around during the entire process: (i) a tree containing many pointers and (ii) a large array
containing double precision floating point numbers, which we have modified to contain
integers to make it compatible with the KVM. This benchmark executes 262 x 10°
bytecodes and allocates 408 MB. Then, the allocation rate is about 1.6 KB/1000-executed
bytecodes. The number of garbage collection pass, the total time spent by garbage
collection in microsecond, and the percentage overhead introduced by our collector are
given in Table 6.

The maximum latency to preempt the incremental collector has been measured as 1 us.
The number of executed bytecodes performing write barrier test is 15 x 10° (i.e.,
aastore : 1x10°, putfield : 6 x 106, putfield_fast : 7 X 109, putstatic : 19,
and putstatic_fast : 0) for a total of 262 x 10° executed bytecodes. This means that
5% of executed bytecodes perform a write barrier test, as already obtained in Section 3.2
with SPECjvm98 (SPEC, 1998). And the overhead introduced by the software write
barrier test in each assignment, is:

e 31% to maintain the root-set.
e 31% to preserve the tri-color invariant.
e 65% to detect possible illegal references.

e 45% to check a nested scoped level.

Table 6. Garbage collection overhead.

Memory heap GC pass Time collecting Execution time Percentage overhead
8MB 51 13.54 x 10° 72.87 x 10° 18.85

16 MB 27 13.17 x 10° 72.72 x 106 18.11

24 MB 17 12.80 x 10° 71.99 x 10° 17.80

32MB 13 11.82 x 10° 70.50 x 10° 16.50
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5.3. Additional Considerations

Our solution requires configuring write barriers in picoJava-II. Notice that if the GCE bit
of the PSR register is set, write barriers are enabled. The instruction set of picoJava-II
provides extended bytecodes allowing access to the PSR and the GC_CONFIG
registers (i.e., priv_read_psr, priv_write_psr, priv_read gc_config, and
priv_write_gc_config). The routines given in Figure 16 allow enabling and disabling
write barriers. Whereas, Figure 17 shows how reference- and page-based write barriers
can be enabled to have our desired configuration. In this example, we have chosen 32
regions with a car size of 16 KB, and we have established the following color codes: %11,
%10, %01, and %00 meaning black, gray, red, and white, respectively. The partition of
the heap in cars is transparent for the GC by using a mask (e.g., $SFFEOFFFF).

This implementation is efficient, but quite inflexible. We must configure the system to
determine the virtual region memory map. In addition, our solution requires the size of a
region to be a multiple of the car size, which may possibly introduce internal
fragmentation. Finally, for a VTMemory scoped region that can change its size up to its
maximumSize, the additional memory must be assigned in terms of cars. This problem
can be unpractical for «classes dealing with I/O mapped memory (e.g.,
ScopedPhysicalMemory), which specify in their constructor not only the size of the
region, but also the base address. However, our solution improves the memory
management performance, because it minimizes the cost of intra-region references,
which has been reduced to the write barrier cost introduced by the GC algorithm in the

EnablePageWriteBarrier: DisablePageWriteBarrier:
priv.read.psr priv_read psr
spush 0x1000 //Set GCE spush OxEFFF  //Unset GCE
seti 0x0000 seti OxFFFF
ior iand
privaerite_psr privurite psr
privret_from_trap privret_from_-trap

Figure 16. Enabling and disabling barriers. If the GCE bit of the PSR register is set, then the paged-based write-
barriers are able. Hence to disable them it is suffice to set the bit to 0.

ConfigureWriteBarrier:
spush 0x1D00 //Reference-based barriers
zeti 0x001F //Page-based barriers
privwrite.gc_config
goto EnablePageWriteBarrier //Set the GCE bit

Figure 17. Configuring write barriers: We have established the following color codes: %11, %10, %01, and %00
mean black, gray, red, and white respectively. And we have divided the address space in 32 regions.
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heap, and to zero for the other memory regions. Note further that intra-region references
are much more frequent than inter-region references.

6. Conclusion

This paper has presented solutions for improving the performance of memory
management in the RTSJ, hence addressing performance improvement of both GC and
region management. Our proposal builds upon existing work since the area of memory
management in general, and of GC in particular, has for long been deserving a great deal
of attention in the programming language and system communities. The contribution of
our work comes from the adaptation and integration of relevant solutions, in the context
of the RTSJ, based on the analysis of the parameters that are the most influential in
memory management performance. In addition, we have discussed the implementation of
the resulting memory management solution within the KVM.

We omit write barriers in native code, which may be addressed using either of the two
following solutions: (i) forcing the native code to register their writes explicitly, or (ii)
using virtual memory protection to detect and register changes. The latter solution needs
further investigation because it is not trivial to combine real-time bounded collection with
barriers supported in the MMU. Our solutions for improving performance of memory
management partly addresses the use of hardware aid by exploiting existing hardware
support for Java (i.e., picoJava-II). In general, our study should be complemented with
work on improving memory management performance at the hardware level considering
both hardware aid and the features of the underlying processor, e.g., impact of garbage
collection upon cache management (Kim and Hsu, 2000).

Notes

1. This class supports a region with special memory attributes (e.g., ALIGNED, BYTESWAP, DMA, and SHARED).
2. This class supports a memory region with physical properties, having limited lifetime.
3. This method is a member of the Object class, which is executed just before discarding an object marked as
garbage.
4. Whereas read barriers take actions upon every each object access, write barriers take actions when the
application updates pointers.
5. In RTSJ, critical tasks are instances of the NoHeapRealtimeThread class, high-priority tasks of the
RealtimeThread class, and low-priority of the Thread class.
6. We can build a VTMemory object with a specific GC. Note that in this case, critical tasks must be able to use it.
7. This is always the case for objects within an instance of LTMemory but this is not mandatory for objects
within an instance of VTMemory.
8. Typically, the ScopedMemory implementation is made by using malloc() and free() routines to manipulate
memory.
9. In Baker-based algorithms, the work of the GC is performed in small increments triggered by allocations
requests.
10. http://www.spec.org/osg/jvm98
11. We apply the same optimization as for the incremental GC which is to use write barriers instead to read
barriers.
12. http://www.sun.com/microelectronics/picoJava
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13. Note that when the referenced object is from the heap it is not needed accessing the region stack.

14. Actually, the hardware support of picoJava-II does not make distinction, throwing the gc_notify for both
reference- and page-based, write barriers.

15. Except the cost to maintain the tri-color invariant when using an incremental GC.

16. http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.html
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