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ABSTRACT

Many problems in remote sensing can be modeled as the min-

imization of the sum of a data term and a prior term. We pro-

pose to use a new complex wavelet based prior and an effi-

cient scheme to solve these problems. We show some results

on a problem of image reconstruction with noise, irregular

sampling and blur. We also show a comparison between two

widely used priors in image processing: sparsity and regular-

ity priors.

1. INTRODUCTION

Some problems in remote sensing consist in retrieving an im-

age u ∈ R
n acquired by a satellite, from a damaged observa-

tion. This can be modeled as follows:

g = Au + n (1)

where A : R
n → R

m is a linear transform (generally the

Point Spread Function of the optical system of the satellite),

n ∈ R
m is a noise (Gaussian noise for example) and g ∈ Rm

is the observed image. The formalism (1) covers a large class

of problems: image reconstruction (including deconvolution)

[1], zooming [2] or denoising [3]. Usually, finding the origi-

nal image u from the observation g is an ill-posed problem (A

is non invertible or ill-conditioned). Variational approaches

have been proposed [3, 4, 5] to solve these problems, using

different norms on the data term and the regularizing term.

The norm on the data term allows to adapt the restoration

model to the noise model. For instance the l2-norm is adapted

to Gaussian noise while the l1-norm is more robust to impulse

noise [4, 6]. A variational approach consists in determining:

arg min
u∈Rn

{

‖Au − g‖p
p + λJ(u)

}

(2)
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where J(u) is a regularizing term, ‖.‖p denotes the lp-norm

and λ is a regularizing parameter. Efficient priors are of the

form J(u) = ‖Bu‖1 where B is a linear transform.

We focus here on our previous work [4] and consider again

the problem of the reconstruction of an image sampled on

a regular grid from an image sampled on an irregular grid,

knowing the position of the irregular samples. We use the

same model as in [4] and want to solve:

arg min
u∈Rn

{

‖SHFu − g‖p
p + λJ(u)

}

(3)

where F is the discrete Fast Fourier Transform (FFT), H is

the Fourier transform of the PSF of the satellite and S is

the transform that creates an irregularly sampled image from

its regular samples in the Fourier domain. This last opera-

tor can be computed efficiently with the Unequally Spaced

Fast Fourier Transform (USFFT) from G. Beylkin [7]. In [4]

the authors set J(u) = ‖∇u‖1 which is the total variation

[3]. Total variation is a widely used prior in image process-

ing as it removes noise while preserving the discontinuities

of the image. However, this regularization does not allow to

recover the textures correctly (this effect is known as ”car-

toon” effect). This is a problem in remote sensing as we want

to retrieve thin details. Some errors in the sampling grid may

generate huge errors on the intensity result (near edges for ex-

ample), so the authors of [4] set p = 1 in order to be robust

against impulse noise. The same problem has been solved

by Almansa et al. with p = 2 [1]. Finally, the model in [4]

reduces to:

arg min
u∈Rn

{

‖Au − g‖1 + λ‖∇u‖1

}

(4)

where A = SHF . In this paper, we propose an efficient

wavelet based prior allowing to retrieve thin details and a fast

algorithm to solve the considered problem. We also show a

comparison between two common priors in image processing

for wavelet regularized problems.



2. COMPLEX WAVELET REGULARIZATION

As previously said, the total variation does not allow to re-

cover the textures correctly. In order to restore all thin details,

we set B to be a wavelet transform W : R
n → R

q. Real

non-redundant wavelets are not translation and rotation in-

variant, and using them in (2) leads to poor results in practice.

We propose to use instead the Dual-Tree Complex Wavelet

transform (DTCW) [8]. The choice of the DTCW transform

is motivated by the fact that this transform is quasi-invariant

by translation and rotation with a low redundancy (4 for 2D

images). This quasi-invariance is a necessary property to be

used as a regularizing operator. This wavelet transform is

built using two real wavelets transform. One of these wavelet

transforms give the real part of the transform while the other

provides the complex part. When thresholded, these complex

coefficients give less artifacts than usual real wavelets. More-

over, real, non-redundant wavelets suffer from a weakness of

directionality that is improved with the Dual-Tree Complex

Wavelet transform [8]. Finally the problem under considera-

tion writes:

arg min
u∈Rn

{

‖Au − g‖1 + λ‖Wu‖1

}

(5)

where A is a convolution with a blurring operator and an ir-

regular sampling operator and W is the DTCW transform.

Due to the l1-norms and the ill-conditioning of A, this prob-

lem is very challenging to solve numerically. In the next sec-

tion, we present an efficient algorithm to solve it.

3. DUAL PROBLEM AND FAST ALGORITHM

The authors of [4] use a smooth approximation and a gradient

descent to solve (4). This method only converges in O
(

1√
k

)

,

where k is the number of iterations. We propose to use a fast

multi-step first order method originally proposed by Y. Nes-

terov [9] to solve this problem with notable improvements

compared to other first order techniques. The idea of Y. Nes-

terov is that we can improve the convergence rate of classical

first order methods, if at each iteration the gradient step is

function of the gradient of all the previous iterations and not

only the gradient at the current iteration. When applied to

convex differentiable functions, this gives an algorithm with

a convergence rate in O
(

1
k2

)
, while classical first order meth-

ods have a worst case convergence rate in O
(

1
k

)
.

The problem (5) is not differentiable, so as in [4] we need to

smooth it. But instead of smoothing the primal problem, we

smooth the dual problem which offers better results in term

of computing time [10]. The dual formulation of (5) writes:

arg min
u∈Rn

{

max
y∈Y

(< Du − F, y >)
}

(6)

with:

D =

[
λW

A

]

, F =

[
0
g

]

(7)

Y = {y = (y1, y2) ∈ R
q × R

m, ‖y1‖∞ ≤ 1 and ‖y2‖∞ ≤ 1}
(8)

We smooth the dual problem by adding the term ǫ
2‖u − u0‖2

2

(u0 should be chosen close to the set of minimizer of (5)):

arg min
u∈Rn

{

max
y∈Y

(

< Du − F, y > +
ǫ

2
‖u − u0‖2

2

) }

(9)

We can now transform the min-max problem (9) in a max-min

one. The min problem consists in solving:

arg min
u∈Rn

{

< Du − F, y > +
ǫ

2
‖u − u0‖2

2

}

= −
D∗y

ǫ
+ u0

(10)

where D∗ denotes the complex conjugate of D:

D∗ =
[
λW ∗ A∗] (11)

Finally, by introducing the solution of (10) into (9), problem

(5) rewrites as follows:

−min
y∈Y







1

2ǫ
‖D∗y‖2

2− < Du0 − F, y >
︸ ︷︷ ︸

Ψǫ(y)







(12)

Ψǫ(y) is a convex and differentiable function with a Lipschitz

continuous gradient:

‖∇Ψǫ(y1) −∇Ψǫ(y2)‖2 ≤ L‖y1 − y2‖2 (13)

where L = 1
ǫ

(
λ2‖W‖2

2 + ‖A‖2
2

)
. We can apply a slightly

modified version [10] of the algorithm of Y. Nesterov on (12)

to solve (5). This writes:

Algorithm 1 (Dual)

Choose a number of iterations N .

Set a point u0.

Set a starting point y0.

Set ǫ.

Set A = 0, η = 0, ū = 0 and y = y0.

for k = 0 to N do

a = 1
L

+
√

1
L2 + 2

L
A

v = ΠY

(
y0 − η

)

z = Ay+av

A+a

y = ΠY

(

z − ∇Ψǫ(z)
L

)

ū = ū + a
(

−D∗y

ǫ
+ u0

)

η = η + a∇Ψǫ(y)
A = A + a

end for

Set ūN = ū
A .



where ΠY is the projector on the set Y :

(ΠY (y))i =

{ yi

|yi| if |yi| > 1

0 otherwise
(14)

Due to the smoothing of the problem, this algorithm can be

shown to converge in O
(

1
k

)
[10] while a classical gradient

descent on the smoothed primal problem (as the one used in

[4]) converges in O
(

1√
k

)

. From a practical point of view,

Y. Nesterov’s algorithm neatly improves the convergence rate

of first order method on all the imaging problems we tested.

Moreover, A. Nemirovski showed in [11] that this conver-

gence rate is somehow “optimal”. We refer the reader to [11]

for a detailed description of its optimality.

Now, an important remark is that we use a “regularizing”

prior in (5), while the current trend in signal processing con-

sists in using sparsity priors . With our notations this would

consist in solving:

arg min
c∈Rq

{

‖AW̃c − g‖1 + λ‖c‖1

}

(15)

where c are the wavelet coefficients of the image u and W̃ :
R

q → R
n is the reconstruction wavelet operator. This prior is

largely used in image processing as it is known to improve the

sparsity of the model [12, 13, 14, 15]. The idea behind this

model is that we can represent more complex signals with a

very low number of simple atoms if we increase the size of the

dictionary W . When this wavelet transform is a decomposi-

tion on a basis (q = n), both models are equivalent. However

when the wavelet transform is overcomplete, this model does

not give good results compared to the model (5), as this sparse

representation seems to be more sensitive to the presence of

noise [16]. In the next section, we give comparisons of both

priors for the following denoising problem:

arg min
c∈Rq

{

‖W̃ c − g‖2
2 + λ‖c‖1

}

(16)

For the same problem, the regularizing prior writes:

arg min
u∈Rn

{

‖u − g‖2
2 + λ‖Wu‖1

}

(17)

Both problems can be solved without smoothing. In (16) the

proximal operator of the l1-norm can be computed explicitly

and is equal to a soft-thresholding. An iterative thresholding

algorithm as [12, 17] can be used to solve it. We use the

algorithm 1 to solve (17).

4. RESULTS

Results of the proposed algorithm for the problem of irregu-

lar sampling are shown on figure 1. Due to space limitations,

the original image in our figures is the regularly sampled im-

age (i.e. the expected result). We can see that the image re-

trieved with the proposed method allows to retrieve more thin

details compared to the one obtained using the TV regular-

ization (look at the diagonal zebra crossing on figures (c) and

(d)). For very noisy images, we could check that this regu-

larization gives some artifacts and slightly blurs the image.

Small elements may thus lose intensity.

Comparison of the two different priors is shown on the fig-

ure 2. As we use the DTCW transform, (16) and (17) are

not equivalent. For this denoising problem, we get similar

PSNR, but we can check that the results are different from

a perceptual point of view. We can see that the sparse prior

gives more artifacts than the regularizing prior. The authors

of [16] consider the same problem and also get better results

with the regularizing prior.

(a) (b)

(c) (d)

Fig. 1. Restoration of an irregularly sampled, blurred and

noisy image. (a) Original image c©CNES, (b) distorted image

(Gaussian noise, SNR = 15.62 dB), (c) result with the TV

regularization (SNR = 24.09 dB), and finally (d) result with

the DTCW regularization (SNR = 24.42 dB).

5. CONCLUSION

We have proposed a new method for solving restoration prob-

lems in image processing using a variational approach. We

used the l1-norm of a complex wavelet transform as a prior.

This method has proven to be be really efficient to restore

thin details and to remove noise compared to the TV regu-

larization which smooths the oriented textures of the image.

To the best of our knowledge, only few results are provided

in image deconvolution with wavelet regularization (non or-

thogonal basis) as the minimization is very time consuming.

In this paper, we use a fast algorithm to solve this problem.

We also make a comparison of two widely used priors in im-



(a) (b)

(c) (d)

Fig. 2. Comparison of the two different priors on a denois-

ing problem. (a) Original image c©CNES, (b) distorted im-

age (Gaussian noise, PSNR = 22.65 dB), (c) result with

the regularizing prior (PSNR = 28.40 dB), and finally (d)

result with the sparse prior (PSNR = 28.11 dB).

age processing. This simple experiment shows that in some

cases the regularizing prior gives better results than the spar-

sity prior. We will try to analyze the differences between these

models from a theoretical point of view.
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