F. Nataf, A new approach to perfectly matched layers for the linearized Euler system, Journal of Computational Physics, vol.214, issue.2, pp.757-772, 2006.
DOI : 10.1016/j.jcp.2005.10.014

URL : https://hal.archives-ouvertes.fr/hal-00112953

M. Gunzburger and G. Guirguis, Error estimates and implementation issues for artificial boundary conditions methodes in exterior problems, in: Advances in computer methods for partial differential equations, IMACS, vol.VI, pp.338-345, 1983.

S. Tsynkov, Numerical solution of problems on unbounded domains. A review, Applied Numerical Mathematics, vol.27, issue.4, pp.465-532, 1998.
DOI : 10.1016/S0168-9274(98)00025-7

J. Pedlosky, Geophysical Fluid Dynamics, 1987.
DOI : 10.1007/978-1-4612-4650-3

V. Joolen, B. Neta, and D. Givoli, A stratified dispersive wave model with highorder nonreflecting boundary conditions, Computers and Mathematics with Applications, vol.8, pp.1167-1180, 2008.

R. Higdon, adiation boundary conditions for dispersive waves, SIAM J. Numer. Anal, p.31
DOI : 10.1137/0731004

J. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

J. Bérenger, Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves, Journal of Computational Physics, vol.127, issue.2, pp.363-379, 1996.
DOI : 10.1006/jcph.1996.0181

I. Navon, B. Neta, and M. Hussaini, A Perfectly Matched Layer Approach to the Linearized Shallow Water Equations Models, Monthly Weather Review, vol.132, issue.6, pp.1369-1378, 2004.
DOI : 10.1175/1520-0493(2004)132<1369:APMLAT>2.0.CO;2

F. Hu, A Perfectly Matched Layer absorbing boundary condition for linearized Euler equations with a non-uniform mean flow, Journal of Computational Physics, vol.208, issue.2, pp.469-492, 2005.
DOI : 10.1016/j.jcp.2005.02.028

T. Hagstrom, A New Construction of Perfectly Matched Layers for Hyperbolic Systems with Applications to the Linearized Euler Equations, pp.125-129, 2003.
DOI : 10.1007/978-3-642-55856-6_20

I. Lie, Well-posed transparent boundary conditions for the shallow water equations, Applied Numerical Mathematics, vol.38, issue.4, pp.445-474, 2001.
DOI : 10.1016/S0168-9274(01)00045-9

J. Wloka, B. Rowley, and B. Lawruk, Boundary Value Problems for Elliptic Systems, cambridge Edition, 1995.

S. Abarbanel, D. Gottlieb, and J. S. Hesthaven, Well-posed Perfectly Matched Layers for Advective Acoustics, Journal of Computational Physics, vol.154, issue.2, pp.266-283, 1999.
DOI : 10.1006/jcph.1999.6313

E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics, vol.188, issue.2, pp.399-433, 2003.
DOI : 10.1016/S0021-9991(03)00184-0

J. Diaz and P. Joly, A time domain analysis of PML models in acoustics, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.29-32, pp.29-32, 2006.
DOI : 10.1016/j.cma.2005.02.031

URL : https://hal.archives-ouvertes.fr/inria-00410313