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Abstract

From our previous work on biochemical applications, the structure of port graph (or multigraph with ports)
and a rewriting calculus have proved to be well-suited formalisms for modeling interactions between proteins.
Then port graphs have been proposed as a formal model for distributed resources and grid infrastructures,
where each resource is modeled by a node with ports. The lack of global information and the autonomous
and distributed behavior of components are modeled by a multiset of port graphs and rewrite rules which
are applied locally, concurrently, and non-deterministically. Some computations take place wherever it is
possible and in parallel, while others may be controlled by strategies.

In this paper, we first introduce port graphs as graphs with multiple edges and loops, with nodes having
explicit connection points, called ports, and edges attaching to ports of nodes. We then define an abstract
biochemical calculus that instantiates to a rewrite calculus on these graphs. Rules and strategies are
themselves port graphs, i.e. first-class objects of the calculus. As a consequence, they can be rewritten as
well, and rules can create new rules, providing a way of modeling adaptive systems.

This approach also provides a formal framework to reason about computations and to verify useful
properties. We show how structural properties of a modeled system can be expressed as strategies and
checked for satisfiability at each step of the computation. This provides a way to ensure invariant proper-
ties of a system. This work is a contribution to the formal specification and verification of adaptive systems
and to theoretical foundations of autonomic computing.

Keywords: Port graph, port graph rewriting, rewriting calculus, biochemical calculus, rewriting
strategies, adaptive systems, autonomic computing, invariant verification.

1 Introduction

Autonomic computing refers to self-manageable systems initially provided with
some high-level instructions from administrators. It gained much interest with the
recent development of large scale distributed systems such as service infrastructures
and grids. For such adaptive systems, there is crucial need for theories and formal
frameworks to model computations, to define languages for programming and to
establish foundations for verifying important properties of these systems.
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ANDREI AND KIRCHNER

In [3] we have introduced the structure of port graph, port graph rewrite rules
and a rewriting relation for port graphs. We have designed this formalism for
modeling complex systems with dynamical topology whose components interact
in a concurrent and distributed manner. Nodes with ports represent components
(or objects), while edges correspond to communication channels. Then port graph
rewrite rules are used for modeling the interactions between some entities or nodes,
capable of creating connections among them at specific points (ports), breaking
connections, merging, splitting, or deleting nodes, or performing any combination
of these operations. A dynamic system whose initial state is represented by a port
graph structure evolves according to a set of port graph rewrite rules leading to
changes in its structure over time. We have defined a higher-order formalism, the
ppg-calculus, where the system state and the system behavior are described at the
same level. More expressive power is gained in modeling a system evolution via
port graph rewrite rules that may introduce other port graph rewrite rules and via
strategies for controlling the application of a set of port graph rewrite rules. We
have already shown the capabilities of the p,,-calculus to model adaptive systems
and biochemical networks [1,4].

Once a formal specification framework for such systems has been set up, the
next step that comes naturally is to provide an automated method for validating the
behavior of the system with respect to some initial design requirements or properties.
A main contribution of this paper is the enrichment of the calculus with a method
for verifying a given set of structural properties for a modeled system. We express
the requirements that a system behavior has to meet as structural formulas using
a suitable syntax and we embed them at the same level as the system description.
Then the structure of the modeled system is dynamically verified to satisfy the
given requirements. We encode the structural formulas by means of adequate rewrite
strategies and we verify that the modeled system satisfies them using the evaluation
mechanism of rewrite strategies. We obtain a kind of runtime verification technique
which allows the running system to detect its own structural failures. Usually,
this verification technique increases the confidence in the correctness of the system
behavior with respect to its formal specification. In particular, for adaptive systems,
runtime verification is useful for recovering from problematic situations, hence for
ensuring a self-healing property.

The paper is structured as follows. Section 2 defines the notions of port graphs,
port graph rewrite rules and port graph rewriting, illustrating them by molecular
graph rewriting in a biological model. Then Section 3 presents an abstract rewriting
calculus inspired by biochemical transformations in which molecules are collections
of structured objects, rules and more general abstractions. An interaction taking
place between an abstraction and a molecule is a step of the calculus. Introducing
application and failure allows the definition of more general forms of abstractions
called strategies to express control on rule application in the same formalism. Sec-
tion 4 extends the formal framework to verify structural properties of systems. We
show how properties of a modeled system can be expressed as strategies and checked
for satisfiability at each step of the computation. This provides a way to ensure
invariant properties of a system. Further research perspectives are given in the
conclusion. All proofs of the results presented in this paper can be found in [1].
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2 Port Graphs and Port Graph Rewriting

Port graphs are a particular class of graphs, where nodes have explicit connection
points called ports with the edges attached to specific ports of nodes. This graph
structure is inspired by the molecular complexes formed in protein-protein interac-
tions in a biochemical network: a protein is characterized by a collection of small
patches on its surface, called functional domains or sites, and two proteins can bind
on such sites. Then a protein with its collection of sites is modeled by a node with
ports, and a bond between two proteins by an edge in a port graph.

Example 2.1 Let us consider a fragment of the epidermal growth factor receptor
(EGFR) signaling pathway, an example often studied in the context of various
formalisms, the k-calculus [16,19] for instance. The species in this model are:

 the signal protein EGF situated outside the cell acting as a ligand,

e the transmembrane protein EGFR with two extracellular sites and two intracel-
lular sites as a receptor, and

e the adapter protein SHC situated inside the cell.

The behavior of a protein is given by its functional domains that determine
which other protein it can bind to or interact with. These domains are usually
abstracted as sites that can be bound or free, visible or hidden. A protein is char-
acterized by the collection of interaction sites on its surface. Proteins can connect
at specific sites by low energy bounds forming molecular compleres. A biochemi-
cal system is represented as a discrete system consisting of interacting components
which gives rise to structural and behavioral transformation of the components and
of the system as a whole. Such a system is dynamic, has an emergent behavior, is
highly concurrent and non-deterministic.

We represent a protein as an empty box having the identifier placed at the
exterior and the sites as small points on the surface of the box. For proteins the ports
are called sites and the edges bonds. Graphically, the state of a site is represented
as a filled circle for bound, an empty circle for free, and a slashed circle for hidden.

Then the three types of proteins above are represented graphically as in Figure 1.

@,
£
O 7))
EGF EGFR SHC

Fig. 1. The species in the EGFR signaling pathway fragment

In the left side of Figure 2 we illustrate an initial state of the system modeling
the signaling pathway and on the right, an intermediary state where two signal
proteins are already bound forming a dimer which in turn is bound to a receptor.

Before giving the formal definition of port graphs [1,4], let us start by defining
the way ports are associated to node names via a signature.

Definition 2.2 [P-Signature] A p-signature is a pair of sets of names
V =(V_ 4,V) where V_, is a set of node names and V4 is a set of port names
such that each node name N comes with a finite set of ports Interface(N) C V 5.

3
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Fig. 2. Initial and intermediate port graphs in the EGFR model
The port names associated to a node name are assumed to be pairwise distinct.

Let X% and X 4 be two sets of port name variables and node name variables,
respectively. We denote by V% the p-signature associating to a node name in
V_y UX  an interface (finite set of port names) from V4 U X%. We extend the
definition of Interface over variable node names such that Interface(X) C Va2 UX
forall X € X 4.

Definition 2.3 [Port Graph] Given a fixed p-signature V¥, a labeled port graph
over V¥ is a tuple G = (Vg, Eg, lvg, leg) where:

* Vg is a finite set of nodes;

* Fq is a finite multiset of edges,
Eg = {{(v1,p1), (va, p2)) | vi € Vg, pi € Interface(lvg(vi)) U Xz}

e lvg : Vg — V_y UX 4 is the labeling function for nodes,

e leg: Eqg— (VaUX%) x (Ve UX2) is the labeling function for edges such that
leg({(v1,p1), (v2,p2))) = (P1,P2)-

We represent the nodes by unique identifiers which are non-empty words over
integer and literal symbols {i,7,k,...}. For instance, i.j.1, 2, 1.3 are three node
identifiers. The identifiers must be unique because we allow several nodes to have
the same name. Hence the set of nodes is given as a set of unique identifiers, and
each node has an associated type described by a name n in V_y and a set of ports
in Interface(n) U X.

A port graph morphism f : G — H relates the elements of two port graphs
by preserving sources and targets of edges, constant node names and associated
interfaces up to a variable renaming. Two port graphs G and H are isomorphic,
denoted by G = H, if there is a port graph morphism f : G — H whose component
f Vo x Interface(lvg(Ve)) — Vi x Interface(lvg(Vir)) is bijective, i.e., any two
ports (v1,p1) and (ve,p2) of G are connected in G if and only if f(vi,p;) and
f(va,p2) are connected in H.

Definition 2.4 A port graph rewrite rule L = R is a port graph consisting of two
port graphs L and R over the same p-signature and one special node =, called arrow
node connecting them. L and R are called the left- and right-hand side respectively.
We assume here that all node identifiers are variables. The arrow node has the
following characteristics:
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(i) for each port p in L, to which corresponds a non-empty set of ports {p1,...,pn}
in R, the arrow node has a unique port r and the incident edges (p, r) and (r, p;),
foralli=1,...,n;

(ii) all ports from L that are deleted in R are connected to the black hole port of
the arrow node, named bh.

The arrow node together with its adjacent edges embed the correspondence between
elements of L and elements of R.
A port graph rewrite system R is a finite set of port graph rewrite rules.

We illustrate some port graph rewrite rules in Fig. 3. In general, we represent
graphically the edges incident to the arrow node only if the correspondence is am-
biguous. Thanks to Definition 2.4, port graphs represent a unifying structure for
representing port graph rewrite rules as well.

Fig. 3. Some port graph rewrite rules: (a) splitting node ¢ in two; (b) deleting node ; (c) merging nodes 4
and j.

Let us now formalize the graph transformations induced by port graph rewrite
rules. Let L = R be a port graph rewrite rule and G a port graph such that there
is an injective port graph morphism ¢ from L to G; hence g(L) is a subgraph of
G. Replacing g(L) by g(R) and connecting it appropriately with the context, we
obtain a port graph G’ which represents a result of one-step rewriting of G using
the rule L = R, written G — - G’. There can be different injective morphisms g
from L to G leading to different results. They are built as solutions of a matching
problem from L to a subgraph of G. If there is no such injective morphism, we say
that G is irreducible with respect to L = R. Given a port graph rewrite system R,
a port graph G rewrites to a port graph G’, denoted by G —x G’, if there is a port
graph rewrite rule r in R such that G —, G’. The formal definition of port graph
rewriting is given in [1,3].

The port graph rewrite system R generates an abstract reduction system, which
is a graph whose nodes are port graphs and whose oriented edges are port graph
rewriting steps. Then a derivation in R is a path in the underlying graph of the as-
sociated abstract reduction system. The notions of strategy and strategic rewriting
were introduced in the rewriting community in order to control rule applications,
i.e. to select relevant derivations. Strategies are formalized as subsets of derivations
of an abstract reduction system in [18]. Strategies can be described in a strategy
language. Various approaches have been followed, yielding different strategy lan-
guages such as ELAN [11], Stratego [22], TOM [5] or Maude [20]. All these languages
are concerned with abstract ways to express control on rule applications. Follow-
ing [18], we can distinguish two classes of constructs in the strategy language: the
first class allows construction of derivations from the basic elements, namely the
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rewrite rules, identity (Id) and failure (Fail). The second class corresponds to con-
structs that express the control, like sequence (Sequence or _; _), left-biased choice
(First), negation (Not), and if-then-else construct (IfThenElse). Moreover, the ca-
pability of expressing recursion in the language brings even more expressive power.
The strategies can be composed to build other useful strategies. One composed
strategy, for instance, is Try which applies a strategy if possible, and the iden-
tity strategy otherwise. Similarly, the Repeat combinator is defined with a fixpoint
operator to iterate the application of a strategy.

Example 2.5 Port graphs provide a modeling formalism for molecular complexes
by restricting the connectivity of a port (called site in the biological model) to at
most one other port; we call such restricted port graphs molecular graphs [2]. For a
given biological model, we can extract a p-signature by associating to each protein
name its site names.

A molecular graph rewrite rule is a port graph rewrite rule where the left- and
right-hand sides are molecular graphs. A molecular graph rewrite system is a finite
set of molecular graph rewrite rules. Actually a molecular graph rewrite rule is
not a molecular graph, but a port graph, since the arrow node does not satisfy the
constraint of the maximum one incidence degree for its ports.

Figure 4 shows the molecular graphs rewrite rules for the EGFR signaling path-
way:

(rl) two signaling proteins form a dimer represented as a single node;
(r2) an EGF dimer and a receptor bind together on free sites;

(r3) two receptors activated by the same EGF dimer bind together creating an
active dimer RTK;

(r4) an active dimer RTK activates itself by attaching phosphate groups;

(r5) an activated RTK binds to an adapter protein activating it as well.

i:EGF E i:EGF.EGF i:EGE.EGF E k:EGF.EGF k:EGF.EGF
] I U T e N
T : : 2 2 2 2
o rl. d2 : r2 : r3
> . > .
o q2z '

: >
5 o ! 1 1
j:EGF :  J:EGFR JEGFR : {EGFR j:EGFR  EEGFR j:EGFR
"""""""""""""" iEGFR  i:EGFR :  LEGFR  ©&EGFR 7
) L) G
r4 : O rs
[ &
' Q
(3
i:EGFR j:EGFR ! j:SHC

Fig. 4. The reaction patterns in the EGFR signaling pathway fragment

The rewriting relation induced by a set of molecular graph rewrite rules is similar
to the port graph rewrite relation up to the constraints imposed on molecular graphs
as particular port graphs. In a similar way, the strategic molecular graph rewriting
is defined based on strategic port graph rewriting.

6
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We illustrate in Figure 5 two possible results G” and G”” of applying the rewrite
rule r2 on the molecular graph G’.

1.2:EGF.EGF 3.4:EGF.EGF 1.2:EGF.EGF 3.4:EGF.EGF 1.2:EGF.EGF 3.4:EGF.EGF

&5 SFEEH

s ",')o GEGFR | SEGFR g

ristc " —

G' G" G"

Fig. 5. G” and G”’ are obtained from G’ by rewriting using the rule r2 on different subgraphs

Biological transformations as illustrated in the previous example have inspired
many new computation models in recent years. In autonomic computing, systems
and their components reconfigure themselves automatically according to directives
(rewrite rules and strategies) given initially by administrators. Based on these
primary directives and their acquired knowledge along the execution, an adaptive
system seeks new ways of optimizing its performance and efficiency via new rewrite
rules and strategies that it deduces; then it includes them in its own behavior.
Since there is no ideal system, functioning problems and malicious attacks or failure
cascades may occur, and the systems must be prepared to face them and solve them.
The four most important aspects of self-management as presented in [17] are self-
configuration, self-optimization, self-healing, and self-protection. In the strategic
rewriting framework, the self-configuration is simply described by the concurrent
application of the rules. A self-healing behavior can be described by rules that
detect the problems and by rules that repair them by modifying the configuration
or introducing new rules in the system. The same method can be used as well for
self-optimization and self-protection as illustrated in [4].

In the next section, we define an abstract biochemical calculus for adaptive
systems. Objects may be instantiated for instance as terms or as port graphs.
Rules and strategies are first-class objects of the calculus. As a consequence, they
can be rewritten as well, and rules can create new rules, providing a way of modeling
adaptive systems.

3 The Abstract Biochemical Calculus

The calculus presented here is inspired by two previous works: the p-calculus (also
called the rewriting calculus) [14] and the v-calculus [6].

The p-calculus extends first-order term rewriting and the A-calculus. From the
A-calculus, the p-calculus inherits higher-order capabilities and the explicit treat-
ment of functions and their applications. Moreover, all the basic ingredients of
rewriting are explicit objects, in particular the notions of rewrite rule (or ab-
straction), rule application, and structure of results. In the p-calculus, the usual
A-abstraction Az.t is replaced by a rule abstraction p — ¢, where p and ¢ are two
p-terms, with p called a pattern, and the free variables of p are bound in ¢. Thus

7
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the p-calculus generalizes the A-calculus by abstracting over a pattern instead of a
simple variable.

The chemical metaphor was proposed as a computational paradigm in the I'
language [8]. Computations are described in terms of a chemical solution in which
molecules, representing data, interact according to reaction rules. Chemical solu-
tions are represented by multisets and the reaction rules by rewrite rules on such
multisets. Then the computation proceeds by application of rewrite rules which con-
sume and produce new elements according to the conditions and transformations
specified by the reaction rules. The chemical metaphor was used as well as a basis
for defining the CHemical Abstract Machine (CHAM) [9]. The v-calculus [6] was
designed as a basic higher-order calculus developed on the essential features of the
chemical paradigm. It generalizes the chemical model by considering the reactions
as molecules as well. The Higher-Order Chemical Language (HOCL) [7] extends
the ~-calculus with programming elements. The ~y-calculus and HOCL were proved
to be well-suited for modeling autonomous systems and for grid programming.

A natural extension of the chemical metaphor is to enrich it with a biological
flavor by providing the molecules with a particular structure and with associa-
tion (complexation) and dissociation (decomplexation) capabilities. In living cells,
molecules like nucleic acids, proteins, lipids, carbohydrates can combine based on
their structural properties to form more complex entities. Biochemistry as science
focuses heavily on the role, function, and structure of such molecules. Adding as-
sociation and dissociation capabilities for molecules represents an essential feature
for passing from a minimal chemical model to a biochemical one [12].

Along this line, we extend the chemical model by embedding higher-order capa-
bilities of p-calculus and by considering an abstract structure OBJ for the molecules
and for the computation rules. The structure OBJ permits the modeling of connec-
tions between objects as well as the actions of creating and removing such connec-
tions. The result is an abstract biochemical calculus based on rewriting structured
molecules, called the pops)-calculus and presented in the rest of this section.

3.1 Syntax

For OBJ a set of structured objects and X a set of variables, the syntax of the
calculus is defined in Figure 6.

(Objects) O == OBJ|X |00
(Molecules) M == O0|0=0| MM
(Configuration) K == M| M= M|KLK
(System) S == [K]

Fig. 6. The basic syntax of the p o5 )-calculus

We consider collections of objects that are built out of structured objects and
a juxtaposition operator that is supposed to be associative and commutative. We
assume that this juxtaposition operator is not a constructor for the structured ob-

8
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jects. Molecules are bags, built once again using the same associative-commutative
juxtaposition operator * as for objects, that contain not only collections of objects
but also rules. Rules define transformations of collections of objects. Developing
this calculus on a (bio)chemical metaphor, the juxtaposition operator simulates a
kind of Brownian motion of objects and rules.

We add a higher-order feature, the abstractions, which are necessary for
expressing transformations over molecules. A rule can be seen as a first-order ab-
straction that transforms only (collections of) objects while the general higher-order
abstractions act on objects and on rules as well. Collections of molecules and ab-
stractions are called configurations. Then all molecules and abstractions are put in a
collection to obtain a system, which we also refer to as (system) state. We introduce
the system entity in order to distinguish between global and local configurations by
making explicit the square brackets for the later ones.

We distinguish the two types of transformations in the pppz)-calculus by
defining the set of rules R and the set of abstractions A as below:

(Rules) R == O0=0
(Abstractions) A 1= M=3M

Hereinafter, let us consider the symbol = standing for = or =. By their
definition, abstractions can specify not only transformations on objects but on
rules as well, including deleting and creating rules. The next example illustrates
our motivation for defining abstractions in addition to the usual rules specifying
transformations on objects.

Example 3.1 Let us consider a system where a protein ProteinBB is created from
ComplexB via the rule ComplexB = ProteinBB. But the occurrence of a particular
vitamin VitaminX changes the production of proteins ProteinBB from ComplexB
to twice as much as in the conditions when VitaminX is not present in the system.
In order to model this behavior, we include in the definition of the system the
following abstraction:

(VitaminX+(ComplezB = ProteinBB)) =
(VitaminX+(ComplexB = ProteinBB* ProteinBB))

Application of this abstraction will transform the rule ComplexB = ProteinBB into
ComplexB = ProteinBB* ProteinBB, but only in the presence of VitaminX.

3.2 Semantics

The evaluation mechanism of the calculus relies on the fundamental operation of
matching. When applying an abstraction, this operation allows binding variables to
their corresponding values. The general framework of the calculus allows matching
to be performed syntactically or modulo a theory. The theory modulo which the
matching is performed is thus a parameter of the calculus; we only suppose that
there is a function Sol that returns the set of substitutions that are solution of a
given matching problem between two molecules M and M’ denoted M < M’.

9
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(Interaction) [K*(M = N)*M']| —; [K*s(N)] if ¢ € Sol(M < M')

Fig. 7. The operational semantics of the p(op7)-calculus

For the (Interaction) evaluation rule, we consider that a rule from R is applied
only when no abstraction from 4\ R is applicable. More precisely, a rule from
L = R € R in a system of the form [A;*...*A,*M] with A; in A\ R and L = R
in M is considered by the (Interaction) evaluation rule only if VA; = L; = R;, we
have Sol(L; < M) = (). This means that the application of abstractions has higher
priority than application of rules.

This calculus generalizes the A-calculus, the «-calculus and HOCL through a
more powerful abstraction power that considers for matching not only a variable or
a pattern from a restricted pattern language, but a more generic object built over an
algebraic structure and a set of variables. The pop7)-calculus also encompasses the
rewriting calculus [14] and the term graph rewriting calculus [10] by considering the
tree-like structure of terms and the graph-like structure of termgraphs respectively
as special structures.

3.8 Adding Strategies to the Biochemical Calculus

By considering the pop)-calculus as a modeling framework for a system, we gain
in expressivity by choosing convenient descriptions of the states, and we dispose
of a great flexibility in modeling the system dynamics. For instance, rules can be
consumed when applied and new rules can be created by the application of other
rules. Then, instead of having a non-deterministic (and possibly non-terminating)
behavior for the application of abstractions, one may want to introduce some control
to compose or to choose the rules to apply. The notion of abstraction proves to be
powerful enough to express such control, thanks to the notions of strategy and
strategic rewriting. In addition, strategies allow exploiting failure information.

Rewrite Strategies as Abstractions

In this section, we define strategies as objects of the calculus, using the basic
constructs, as one can do in the A-calculus or the y-calculus. For such definition we
use a similar approach to the one used in [15] where rewrite strategies are encoded
by rewrite rules. Then, thanks to strategies, new extensions for the calculus are
possible, for instance to catch a failure in the application or to define persistent
strategies, as shown later.

We first extend the syntax of the calculus with the failure or stuck object, stk.
This failure object stk is the result of a failing application of an abstraction to a
molecule as explained later in the semantic rules.

In order to encode strategies, we also need to add to the calculus the notion of
sequentiality. Therefore we introduce the application operator @ for applying an
abstraction to a molecule to construct a reacting molecule and then for applying an
abstraction on a reacting molecule. We obtain recursively new types of configura-
tions. The syntax of the calculus with strategies is given in Figure 8.

10
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(Objects) O == stk|OBJ | X | 0O
(Molecules) M == O0|0=0| MM
(Configurations) K = M|M=K|(M = K)aK | KK
(System) S :u= [K]

Fig. 8. The syntax of the p o5 7)-calculus with strategies

At this point of development of the calculus, the abstractions which we also call
strategies may contain in their right-hand side the application construct:

(Abstractions) T := M =K

The semantics of the calculus is given now as a set of four reduction rules
(Figure 9) which take into account the application operator @ and failing abstrac-
tion applications.

The evaluation rule (Interaction) chooses an abstraction M = K and a
molecule M’ in the system and reduces them in the same way as it is done in
the basic version of the calculus (see Section 3.2).

In the case of reducing the application of an abstraction to a molecule, if a
matching failure occurs during the application process, we handle it explicitly. If
the matching problem between the left-hand side of the abstraction M = K and
the molecule M’ has solutions, the evaluation rule (Application) is used and one
substitution is chosen from the solution set and applied on the right-hand side of
M = K, otherwise, if the matching problem has no solution, the evaluation rule
(Application Fail) is used and the application fails by returning the stk object.

The evaluation rule (Stuck) removes any stk object from a juxtaposition of
configurations.

(Interaction) [K'¢(M = K)*M'| —; [K'*¢(K)]
if ¢ e Sol(M < M)
(Application) (M = K)QM' —,¢(K) if ¢ € Sol(M <« M')
(Application Fail) (M = K)QM' — stk if Sol(M < M') =0
(Stuck) stkeK —; K

Fig. 9. The operational semantics of the p o5 7)-calculus with strategies

In the following we encode some usual strategies as built-in abstractions in the
poBg)-calculus.

Let us extend the set of object variables X to molecule variables. We consider
for the strategy combinators enumerated in Section 2, the following abstractions
(or aliases): id for Id, fail for Fail, first for Flirst, seq for _;_, not for Not,
ifThenElse for IfThenFlse. These abstractions are defined using the extended

11
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syntax of Figure 9 and molecule variables.

id2 X=X
fail £ X = stk
seq(Ty1,Th) £ X = ThQ(T1QX)
first(T1,T) £ X = (T1QX)*(stk = (1,QX))Q(T1QX)

not(7) £ X = first(stk = X, X’ = stk)Q(TQX)
ifThenElse(T}, T, T3) £ X = first(stk = T3@X, X' = T,QX)Q(T1QX)
The abstraction corresponding to the composed rewrite strategy Try is then
easily defined based on the strategies first and id, whereas for Repeat we use the

recursion operator p and the strategies try and seq as follows:

try(T) = first(T,id)
repeat(T) 2 pX.try(seq(T, X))

We encode the p abstraction using the fixed-point combinator of the A-calculus
as done for encoding iterators in the p-calculus [14].

In order to get the intended behavior of strategies, we impose in the pop7)-
calculus with strategies that no reduction is allowed in the right-hand side of an
abstraction. Under this assumption, the encoding of rewrite strategies as abstrac-
tions in the popg)-calculus is correct with respect to the semantics of abstract
strategies as given in [18], in the following sense:

Theorem 3.2 For every strategy T in the calculus obtained by combining the prim-
itive strategy objects id, fail, seq, first, not, ifThenElse and for every molecule
M, a successful reduction of TQM yields a configuration K such that K is obtained
from M by strategic rewriting under the strateqy T'.

Example 3.3 In the calculus of molecular graphs, for the system corresponding to
the EGFR pathway fragment described in the previous example, the initial state is
a world consisting of the molecular graph G and several strategies built upon the
five reaction rules. G can be also written as the following juxtaposition of molecular
graphs (or nodes in this particular situation):

1:EGF*2:EGF*3:EGF*4:EGF*5:EGFR*6:EGFR*7:SHC

Let us consider a few examples of strategies for generating the biochemical net-
work. The most straightforward way of modeling the biochemical network for the
EGFR signaling pathway fragment presented here is to consider the juxtaposition
of the reaction rules as persistent strategies. Hence the initial state of the system is
the simple world [r1!er2!er3lerd!sr5!*G|. Then any of the five rules is applied ex-
haustively. We can easily prove that the system will reach a stable state since with
every successful rule application, either the total number of free and hidden sites
decreases or if it remains constant (when applying rule r4) the number of hidden
site decreases.
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The strategy first can be used to specify a higher priority in the appli-
cation of two rules; for instance, first(rg,ry) is saying that an EFG dimer
binds to a receptor as soon as it is created. @ Then the initial state is
[first(r2,rl)!ler3ler4ler5!*G]. We can slightly modify this state such that r3 is not
persistent: [first(r2,rl)!*r3sr4ler5!*G]. This means that the rule r3 is consumed
when creating the active dimer RTK; having only one instance of such rule allows
the creation of only one active dimer RTK.

The execution can be separated in two stages: the first one is concerned with
the extracellular interactions between the signals and the receptors, namely the
reactions r1l, r2 and r3, while the second one with the RTK pathway, namely the
reactions r4, r5. If we consider that r2 has a higher application priority than rl,
and any reaction from the first stage has an higher priority than any reaction from
the second stage, then the initial world of the system is:

[first(first(r2,rl),r3)*first(first(r2,rl),rd)*first(first(r2,rl),r5)* G|

From every such initial state, the interactions lead to a state of equilibrium
where no more rules can be applied. In each case, the equilibrium state contains
either the molecular graph H given in Figure 10 or G”’ from Figure 5.

1.2:EGF.EGF 3.4:EGF.EGF

1
kO
O

7isC

Fig. 10. The molecular graph H for the EGFR signaling pathway fragment in the equilibrium state

Failure Recovery

Explicit failure provides the calculus with more expressivity. By considering
a strategy with the failure object as the left-hand side, we can catch and tackle
appropriately the failure of the application of another strategy.

Based on the strategy definitions, we can reformulate the main reduction rule
modeling the interaction between a strategy 7" and a molecule M using a failure
catching mechanism:

(InteractionR) [K*T*M| —;, [K*seq(T,try(stk = T*M))QM] (1)

A reduction using the rule (1) proceeds in either of the following ways:
o if T@QM reduces to the failure construct stk, then the strategy try(stk = T*M)
restores the initial abstraction and molecule subject to reduction;
o if T@QM succeeds, then the application of the strategy try(stk = T*M) does not
change the result of the application TQM.

We call this improved reduction interaction with recovery and stk = T*M a
recovery abstraction. The abstraction T" and the molecule M from the right-hand
side of the recovery rule cannot interact before the rule is applied thanks to the

13
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evaluation strategy which does not permit reduction inside the right-hand side of
an abstraction.

In the following we denote by —* the reflexive and transitive closure of the
relation —=—;, U —, U — U —,.

The behavior presented above for the interaction with recovery rule is correct
under the assumption that the failure object stk is a protected symbol that cannot
be introduced in a right-hand side of abstraction if it is not already present in
the left-hand side. In other words, an user-defined abstraction M = K may check
whether the failure object stk is present in M but is not allowed to introduce it in K.
This restriction is motivated by the following example. Let us take a user-defined
abstraction O = stk and an object O" such that O matches O', then (O = stk)@QO’
reduces to stk. The abstraction is applied successfully but the result says that
the application has failed. The contradictory situation comes from the use of the
application failure information as an explicit object. This example shows that the
expressive power we gained by making the failure an explicit object can lead to an
unexpected behavior if not handled with caution.

The interaction with recovery rule (1) is just an example of tackling a matching
failure occurred in the application process. Instead of just recovering the interacting
abstraction T" and molecule M, one can imagine other ways of tackling a failure in
the interaction, for instance by modifying M or even T.

Persistent Strategies

At this level of definition of the calculus, a strategy (and in particular a rule)
is consumed by a non-failing interaction with a molecule M. One advantage is
that, since we work with multisets, a strategy can be given a multiplicity, and each
interaction between the strategy and a molecule M consumes one occurrence of the
strategy. This permits controlling the maximum number of times an interaction
can take place.

Sometimes however it is suitable to have persistence of strategies. For this
purpose, we define the persistent strategy combinator that applies a strategy given
as argument and, if successful, replicates itself:

T! 2 uX.seq(T,first(stk = stk,Y = (Y*X)))

Application of the strategy T to a molecule M leads to one of the two following
situations:

e If T@QM reduces to stk, the abstraction stk = stk is applied; then the interaction
with recovery rule reduces stk to the juxtaposition T'!*M;

o [f T@M reduces to a non-failing configuration K then the second argument of the
strategy first is applied, Y is instantiated by K, and the final result is T K.

As for the encoding of the Repeat strategy, we use an encoding of the recursion
operator p as done for the p-calculus [14] and detailed in [1].

Based on the correctness of the encoding of the recursion operator u as done for
the p-calculus [14], the following result proves that the persistent strategy combi-
nator is correctly defined in the pops)-calculus with strategies.

14
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Proposition 3.4 Let M be a molecule and T an abstraction. If TQM —* stk,
then TV M —;.—* T* M, else, if TQM —* K with K # stk, i.e., the applica-
tion does not fail, then T!eM —;.—* Tl* K.

If we consider that a successful application of a strategy to a molecule does
not consume the strategy, then the strategies are persistent by definition and we
no longer need to define the persistent combinator for strategies. However, the
current approach gives us the freedom of providing some strategies with a persistent
behavior, while others exist in a limited number of occurrences, and are consumed
after a few applications.

3.4 Coarse-Grained Reduction Relation

Before modifying the semantics of the calculus to take into account the invariant
verification, we define another reduction relation coarser than the reduction relation
defined in Figure 9. It consists of an interaction step, followed by application and
possible stuck steps. At this coarse-grained level, we no longer focus on the internal
processing of an interaction between a strategy and a molecule, but on its final
result.

Definition 3.5 [Evolution step] An evolution step for a system [K*T*M] is a re-
duction consisting of the sequential composition of two stages: the first stage cor-
responds to reduction using the interaction with recovery rule (InteractionR),
and the second stage to the union of the application rules (Application) and
(Application Fail), and the stuck removing rule (Stuck).

An evolution step is silent (or non-observable), denoted by ——, if the recovery
rule stk = T*M is applied during the second stage. In other words, the strategy T'
chosen to be applied on M fails. An evolution step is wvisible if it is not silent.

Definition 3.6 [Coarse-grained one-step reduction of a system] A coarse-grained
one-step reduction of a system is induced by finitely many silent evolution steps and

* *

one visible evolution step. We denote it by = or & for () — and (—=)* —7

respectively if the successfully applied strategy T is relevant.

Informally, the coarse-grained one-step reduction relation between a strategy T’
and a molecule M states that: [K*T*M] EN [K+*M’'] if M’ can be obtained from M
by rewriting under the strategy T

We need such a coarse-grained reduction level in the p(op)-calculus in order to
verify in Section 4 the invariance of a structural formula with respect to a modeled
system.

3.5 Towards Embedding Verification in the Biochemical Calculus

The pop)-calculus can be instantiated with the structure of port graphs presented
in Section 2 to obtain a biochemical calculus for port graphs, which we call the
Ppg-calculus.

We have shown in [4] how a particular adaptive system can be modeled using
the ppg-calculus. The model should also ensure formally that the intended self-
managing specification of the system helps indeed preserving its properties. Some
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of them can be verified by checking the presence of particular port graphs. This
is the case if they are encoded as object port graphs, abstractions, or strategies,
hence as entities of the calculus. Consequently, the properties can be placed at the
same level as the specification of the modeled system and they can be tested for
satisfiability at any time.

For instance, embedding the self-healing property in a system modeled in
ppg-calculus can be performed by associating a recovery strategy for each strategy
modeling a behavior of the system. Let recovery(T) denote the recovery strategy
for T. Then instead of T we have first(7T,recovery(T)). If the recovery strategy
is id then we obtain try(7") which avoids a failure, whereas using fail as recovery
strategy does not change the failure if the strategy T fails. Of course, what needs
to be done is to determine which are the recovery strategies for each strategy of the
system.

A first approach for embedding verification in the model consists in expressing an
invariant of the system as an abstraction with identical sides, M = M, testing the
presence of a molecule M. The failure of the invariant is handled by a failure port
graph Error that does not allow the execution to continue. The strategy verifying
such an invariant is then:

first(M = M, X = Error)!
From another perspective, we express the unwanted occurrence of a object port
graph G in the system using the strategy (G = Error)!. For instance in our running
example on the EGFR signaling pathway fragment, an example of an undesirable
pattern describes that the two dimers EGF.EGF are bound to different receptors,
situation which prevents the two receptors to bound together and to be activated.

In the next section we show how we can increase the expressivity of the
ppg-calculus by embedding a particular set of structural formulas in the syntax and
adjusting correspondingly the reduction semantics in order to verify the formulas
in parallel with the evolution of the modeled system.

4 Adding Invariants to the Biochemical Calculus

In the context of modeling adaptive systems, runtime verification is useful for re-
covering from problematic situations, i.e., for the self-healing property, or for adapt-
ing accordingly to changes in the environment or changes in the interacting parts.
Typical requirements one may want a system to satisfy concern the occurrence,
consequence or invariance of particular structural or behavioral properties. Such
types of requirements are also interesting for verifying biochemical models [13,21].
In this paper we focus on verifying that particular structural properties of a modeled
system are invariant.

In this section we illustrate directly the principles of performing invariant verifi-
cation on the structure of port graph in the pp4-calculus. Nevertheless, this approach
is valid for any kind of object structure OBJ provided that a free algebraic structure
can be associated to OBJ.
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4.1 Structural Formulas

We call a port graph expression (or pattern) any port graph whose identifiers, node
names or port names may be variables from X.

Let 0 : X — Int* UV be a variable assignment from variables to constants for
node identifiers, node names, and port names respectively. We usually denote by
o* the extension of ¢ over port graph expressions.

Based on the port graph expressions defined above and on the Boolean connec-
tors, we introduce in the following the structural formulas we intend to verify on
each state of a system.

Definition 4.1 [Structural formulas] Given V' a p-signature, the set of structural
formulas, denoted by FS(V®), is constructed inductively as follows:

e T and L are structural formulas;
e any port graph expression 7 is a structural formula;

e if v, 1, and o are structural formulas, then —p, ©1 Ao, V1V Vs, Y1 — P, and
<> are structural formulas.

(Structural formula)
o = Tl L|v|l-wleiAp|er1Ves|er—e| e

The Boolean operators T, 1, =, A, V, — are the usual operators from propo-

sitional logic for “true”, “false”, “not”, “and”, “

or”, and “implies” respectively.
The somewhere operator < requires that the property holds on a fragment or port
subgraph of the state. As already known, we can consider only the Boolean oper-
ators L, —, and V; then combinations of these operators define the other Boolean
operators, T, A, and —.

Definition 4.2 [Structural satisfaction] The satisfiability of a structural formula
¢ € FS(VY) by a port graph G, denoted by G |= ¢, is defined inductively as
follows:

GET G L

GEvye o G=o*(y) GlE-pe Gy

GEpiNpr & G E¢rand G = @o GEp Ve GEe oG Ep
GEpi—p2e G orGlE=p GECpe I CG. .G Eo

Remark that a port graph expression -y is satisfied by a port graph G if they are
isomorphic. G structurally satisfies a formula <>~ if v matches a subgraph of G.

Proposition 4.3 G = < if and only if Sol(v < G) # 0.

The following proposition states that the structural satisfaction of formulas is
defined up to port graph isomorphism.

Proposition 4.4 If G = ¢ and G = G’ then G’ |= .
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4.2 Syntazx and Semantics of the ppq-Calculus with Invariants

In the ppg-calculus with invariants we now consider systems guarded by structural
formulas:

(Guarded systems) S == [K],

A structural formula is mapped to a strategy: assuming that any port graph
expression v can be seen as a port graph molecule in the calculus, we define the
mapping 7 from structural formulas to strategies (or extended abstractions) as

follows:
7(T) = id T(Ll) = fail
T(¢y) == () =mnot(r(p))
T(¢1 A p2) = seq(7(p1), T(¢2)) T(p1V p2) = first(r(p1),7(p2))

T(p1 — p2) = X = seq(7(p1), first(stk = X, 7(¢p2)))QX

Lemma 4.5 Let ¢ be a structural formula in the calculus and G a port graph
molecule. Then 7(p)QG reduces either to G or to stk.

Intuitively, if the application of the strategy encoding ¢ on a port graph G
fails, then the formula is not satisfied by G. The following proposition shows the
soundness and completeness of encoding structural formulas as strategies.

Proposition 4.6 Let G be a port graph molecule and ¢ a structural formula in the
calculus. Then:

* G E ¢ if and only if T(p)QG —* G;
* G I~ ¢ if and only if T(p)QG —* stk.

We verify a structural formula only on molecules and not on configurations
(hence nor on abstractions). This restriction is justified by the fact that such a
verification is equivalent to a strategy application and strategies can only be applied
on molecules. In order to verify structural formulas describing configurations, one
need to extend the syntax and the semantics of the calculus with abstractions having
configurations in their left-hand side.

We define now the reduction relation = between guarded systems. For a mod-
eled system where K is the initial configuration and ¢ a structural property satisfied
by K, we start with the initial guarded system [K],. Informally the reduction re-
lation corresponds to:

(K] = [K'), if [K] b [K) and K’ |=

saying that, being in the system configuration K where the structural formula ¢ is
satisfied, if K’ is the configuration obtained in a coarse-grained one-step reduction
from K and the formula is still satisfied in this new configuration, then the invariant
still holds at this step of evolution.

We have already shown how we can test the satisfiability of K’ = ¢ using a strat-
egy application on K’. Therefore we formally define the coarse-grained reduction
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relation using strategies as follows:
[K], => ifThenElse(7(y), X1 = [K'],, X2 = error_message)QK" if [K] = [K']

If 7(p)@QK' reduces to a configuration different from stk (i.e., K’ = ), then the
state [K'] is returned guarded with the same invariant property ¢; otherwise, an
error message is returned. Moreover, instead of an error message, we can return the
state [K'] guarded by the negated formula: [K']-,.

Example 4.7 Let us consider a biological system where a virus (described by the
pattern Virus) may intrude, but an antiviral drug (Antiviral) can also be created.
We then guard the system with the structural formula:

© = = Virus V (Virus A\ Antiviral)

saying that either the virus is not present or the virus is present together with an
antiviral drug. In the case the system reaches a state where the formula is not
satisfied, we consider the negation of ¢ as guard of the system. Then the guard will
be equal to =y = Virus A —~Antiviral.

5 Conclusion and Future Work

The main original contributions of this paper are first to provide an abstract bio-
chemical calculus to model systems evolving according to initial rules and strategies,
that may in turn create new rules according to generated states; second, to show
how to slightly extend the syntax in order to embed in the same calculus the veri-
fication of invariant properties of the system. When the objects of the calculus are
instantiated by port graphs, we get an expressive representation of adaptive systems
with interacting components, strongly inspired by biological systems. We hope that
this work contributes to the theoretical understanding of autonomic computing.

A further step going on is to have an implementation of the port graph calculus
in which the user can visualize objects, rules and strategies, as well as the different
states of a given system and history of its evolution. Even if the underlying concepts
of graph rewriting have been largely explored, important problems remain to get a
realistic implementation: efficiency issues of rewriting, huge graphs representation,
dynamic reconfiguration of drawings are examples of problems we are addressing in
the Porgy project, led as a collaboration between INRIA and King’s College (see
Porgy Project homepage for more details).

On the verification side there are also interesting perspectives to investigate fur-
ther on. In particular, we can generalize the ideas presented in this paper as follows.
Instead of yielding the failure Error or an error message for signaling that an invari-
ant of the system is no longer satisfied, the problem can be “repaired” by associating
to each invariant the necessary rules or strategies to be inserted in the system in
case of failure. As we have already seen in this paper, for the biochemical calculus
with invariants, a failure can be tested by the unsatisfaction of a structural formula.
Then, as soon as the formula is unsatisfiable, a reparation rule may come into play
by removing the unsatisfied formula, by modifying some molecules or strategies
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from the current state, or even by adding a new formula for guarding the execution
from that state on. In order to be able to perform all these kinds of modifications,
a solution would be to extend the definition of abstractions with structural formu-
las for each side to obtain guarded abstractions: M, = K,,,. For applying the
abstraction M/, = K/,, on [Ki],, the matching problem M < K should have a
solution & which is also (or can be extended to) a solution for p; < ¢; the result of
the abstraction application would consist of (i) removing the &-instantiated formula
¢1 from the guard ¢, (ii) applying the abstraction M = K based on £ to obtain a
state [K3], and (iii) adding the instantiated formula ¢y to the guard to obtain the
formula ¢'; if K |= ¢’ then we could say that [K;], reduces to [Kp],.

An example of a guarded abstraction well-suited for Example 4.7 is the following:

X/ Virus A- Antiviral = XAntz'viml/ﬁ Virus

which introduces an antiviral drug in the system to inhibit the development of the
virus. This idea of extending the calculus is worth exploring since this would open a
wide field of possibilities for combining verification and self-healing in py,4-calculus.
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