archives-ouvertes

Building Controllers for Tetris
Christophe Thiery, Bruno Scherrer

» To cite this version:

Christophe Thiery, Bruno Scherrer. Building Controllers for Tetris. International Computer Games
Association Journal, ICGA, 2009, 32, pp.3-11. inria-00418954

HAL 1Id: inria-00418954
https://hal.inria.fr /inria-00418954
Submitted on 22 Sep 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00418954
https://hal.archives-ouvertes.fr

Building Controllers for Tetris 3

BUILDING CONTROLLERSFOR TETRIS

Christophe Thieryand Bruno Scherrér

Vandoeuvre#s-Nancy Cedex, France

ABSTRACT

This article has two purposes: a review on the problem ofdingl a controller for the well-known
video game Tetris, and a contribution on how to achieve tts performance. Key components
of typical solutions include feature design and featuréghteoptimization. We provide a list of all
the features we could find in the literature and in implemigoria, and mention the methods that
have been used for weight optimization. We also highligktfdct that performance measures for
Tetris must be compared with great care, as (1) they haveharrirge variance, and (2) subtle
implementation choices can have a significant effect onakalting scores. An immediate interest
of this review is illustrated. Straightforwardly gathegiideas from different works may lead to new
ideas. We show how we built a controller that outperformspteviously known best controllers.
Finally, we briefly discuss how this implementation allowexito win the Tetris-domain prize of the
2008 Reinforcement Learning Competition.

1. INTRODUCTION

Tetris is a popular video game created in 1985 by Alexey iajit The game is played onl@ x 20 grid where
pieces of different shapes fall from the top (see Figure he player has to choose where each piece is added:
he can move it horizontally and rotate it. When a row is filléds removed and all cells above it move one row
downwards. The goal is to remove as many lines as possibteebtife game is over, that is when there is not
enough space remaining on the top of the pile to put the cunem piece. A nice detailed specification of Tetris
can be found on Fahey's website (Fahey, 2003).

In this contribution we give a review of works that attempbitald Tetris controllers and provide references of
the feature functions involved in those works. To our knalgke, no such review exists in the literature. For a
human player, the main difficulty of the Tetris game is the fhat the pieces may fall quite fast from the top of
the playing area: the small amount of time often makes thisidecprocess hard. This dimension of the problem

1LORIA - INRIA Lorraine, Campus Scientifique BP 239, 54506 Vaadvre-es-Nancy Cedex, FRANCE. Email: thierych@loria.fr
2scherrer@loria.fr

Figure 1: Left: a screenshot of a Tetris ganfeight: the seven existing shapes.

4 ICGA Journal March 2010

does not appear when dealing with artificial players as thiedaspeed of the pieces is negligible compared to
the decision speed of the controllers: indeed, the cortolve discuss in this article are able to play tens of
thousand moves per second on a howadays desktop computer.

The game of Tetris was chosen as a benchmark optimizatidiigondoy several researchers: the goal is to find a
controller that maximizes the average number of lines, Whlways happens to be finite since it was shown that
every Tetris game finishes with probability 1 (Burgiel, 199%uch a problem is known to be computationally
hard to solve. Tetris indeed contains a huge number (ahout 2'%° ~ 5.6 x 10°°) of board configuratioris
and even in the case where the sequence of pieces is knowméanag] finding the strategy that maximizes the
average score is an NP-complete problem (Demaine, Hohgethand Liben-Nowell, 2003).

The course of the article is as follows. In Section 2 we descifie existing Tetris controllers. Section 3 reports
on the difficulty of composing different Tetris controlleis Section 4 we present our own program BCTS, that
won the 2008 Reinforcement Learning Competition. BCTS is@mnym for Building Controllers for Tetris
Systems. Section 5 provides a conclusion and lists two opestipns.

2. EXISTING TETRISCONTROLLERS

Most realizations of Tetris controllers (Tsitsiklis andnvRoy, 1996; Bertsekas and Tsitsiklis, 1996; Kakade,
2001; Lagoudakis, Parr, and Littman, 2002; Ramon and Deiess2004; Farias and van Roy, 2006; Szita and
L&rincz, 2006; Llima, 2005) arene-piece controllers.e., controllers that use knowledge of the current board
and the current piece only. A controller that also uses kadge of the next piece (Fahey, 2003jHBn, Kokali,

and Mandl, 2005), as it is possible in the original Tetrigisgt can make decisions that take advantage of the
combination of pieces, and is calledveo-piece controller

All controllers rely on arevaluation function In a given gamestate(i.e., (1) the current board configuration,
(2) the current piece, and (3) optionally the next piecéd)p@ssibleactions(i.e., the choice of a position and an
orientation for the current piece) are evaluated by theuatan function. Then, the controller chooses the action
with the highest evaluation. Figure 2 illustrates this s In Figure 2a, we see the principle of a one-piece
controller (i.e., a one-ply evaluation process). From theent state (the current board and the current piece),
each possible action is tried and leads to a new board, whiekaluated through the evaluation function. The
action that leads to the best evaluation is then played.duarEi2b, we see the principle of a two-piece controller
(i.e., a two-ply evaluation process). From the currenestach possible action is tried and leads to a new board
where the next piece is known. For each of these states, pussyble next action is tried and the resulting boards
are evaluated through the evaluation function. We then ipldlye first state the action leading to the state where
the best evaluation was found.

In principle, it would be possible to calculate a lookahe&daveral stages by evaluating the actions for every
possible piece at each stage and averaging the evaluatitovgever and as far as we know, such an in-depth
search has never been carried out since it would require @ ¢tmmgputation time. Thus, the problem of building
a Tetris controller comes down to building a good evaluatiorction. Ideally, this function should return high
values for the good decisions and low values for the bad drfesevaluation function is usually a combination of
feature functionstypically (but not always; see, e.g.pBmet al,, 2005) a weighted sum. Each feature function
aims at capturing some relevant characteristics of thermeand states. An example of a feature is the number of
hole¢ in the pile and its associated weight is usually negative niore holes created, the lower the evaluation.

Practically designing a feature-based Tetris controldersists of two steps. The first step amounts to choosing
a set of features that can extract relevant information sbizelgame and is usually achieved by an expert.
Table 2.1 provides a synthetic list of the features intredlioy the works we mention herein. The second step is
the tuning of the features’ relative weights. In the literat this tuning has been done manually or automatically
(by reinforcement learning or some optimization techngu&Ve now discuss in more details what we believe
are the most significant works. In Subsection 2.1 we disdusshand-written controllers, in Subsection 2.2
the reinforcement learning approaches, and in Subsect®th2 general purpose optimization approaches. In
Subsection 2.4 we give final comments on the best approach.

3This number is an estimate because it includes a few impossihfigarations (see Fahey, 2003).
4A hole is an empty cell covered by a full cell.

Building Controllers for Tetris 5

Current state

- Current board

— Current piece,
<

Current state

- Current board
- Current piece oo

p Try each possible action

(translatign + rotation

N \

\
o
Try each possible action
\

(translation + rotation)

Next state 1
- Board 1
- Piece p

Next state 2
- Board 2
- Piece p

Next state n
—Boardn
- Piece p

Try ¢ach possible action Try each pogsible action

Next board 1 Next board 2 Next board n

'

Tryeach posibls;\ac\tion
AR

Second ne; Second ne; Second next
board 1 board 2 board

Evaluation 1 Evaluation 2 Evaluation k Evaluation m

Evaluation 1 Evaluation 2 Evaluation n

Figure 2: (a) A one-ply evaluation process. (b) A two-ply evoluatfmocess.

2.1 Hand-written controllers

To our knowledge, the current best one-piece Tetris cdetr due to Dellacherie (Fahey, 2003) and was tuned
by hand. Dellacherie came up with an efficient set of featares fixed their weights manually, by trial and
error. Surprisingly, this hand-written controller outfmems the other one-piece controllers from the literature,
even when their weights are tuned automatically. On a tdt&6ogames, Dellacherie’s algorithm completed
an average score of abo@i0, 000 lines. Moreover, this measure 660,000 lines per game was made on an
implementation of the original Tetris game, which is, as viésee in Section 3, harder than the usual simplified
Tetris setting considered by most researchers. As the s@oe of the algorithm is freely available on Fahey’s
website, we reverse-engineered it and determined therésssaind their weights. Dellacherie’s evaluation function
is the following linear combination of features:

— (Landing heighti (Eroded piece cellsy (Row transitions)
— (Column transitions)}- 4 x (Holes)— (Cumulative wells)

where the above features are detailed in Table 1.

Fahey (2003) created a two-piece controller with some waigieatures of which the weights were also tuned by
hand. He reports a game scorero200, 000 lines. Only one game was played and this took a week.

2.2 Reinforcement L earning Approaches

Several works of the reinforcement learning literaturesider the game of Tetris. Some of them are mentioned
in a review by Carr (2005). In the reinforcement learningtegh(Sutton and Barto, 1998), algorithms aim at
tuning the weights such that the evaluation function apipnaies well the optimal expected future score from
each state (recall that the state is (1) the current boarfigtwation, (2) the current piece, and (3) optionnally the
next piece). As the number of states is huge, the state spagaidally visited through simulations.

The first work regarding Tetris in this domain seems to be duksttsiklis and van Roy (1996). Their approach
uses a feature-based Value Iteration method. The obtaordder is based on two features (the pile height and
the number of holes) and makes a low average score (in thel30s)ever, their work showed that using a feature-
based evaluation function works better than just choodiegtiove that realizes the highest immediate reward
(according to them, most of the time, the latter method do¢score any points). Later, Bertsekas and Tsitsiklis
(1996) proposed tha-Policy Iteration algorithm and applied it to Tetris. Thigthod generalizes the standard
algorithms Value Iteration and Policy Iteration (Bellmd®57). The evaluation function is approximated by a
weighted sum of a more elaborate set of features and is dstimaing simulations. They report an average
score of 3,200 lines on 100 games played. Two other reinfioecé learning works reused their set of features.
In the first one, Kakade (2001) applied a natural policy ggatimethod and reported an average score of about
6,800 lines per game, without specifying how many game scare averaged though. In the second one, Farias

6 ICGA Journal March 2010
2
S
N
|8 3 5
9|3 s 213y 3
s [19|89
T | S T L .| NN
[} 4] o X o = S © <
2SI |8 | |28« |B
x| o -S| =G |52
nl2|c|o | |8 ¢ E | ¢
=2 |l e |o|< | = c |2
. %] [= (o] [ss] () [¢ e} =
Feature Description |l |3J |3 |0L | 0| |mo|kF
Max height Maximum height of a column X | x| x| X% X | x
Holes Number of empty cells covered by afullcell x | x | x | x | x | x | x | x | x
Column height Height of each column X X
. Height difference between each pair of ad-
Column difference . X X
jacent columns
Landing height Height where the last piece is added X X X | X
Cell transitions Number of full to empty or empty to full »
cell transitions
Sum of well depths, except for wells with
Deep wells X
depth 1
Embedded holes Sort of weighted sum of holes (not precisely y
documented)
Height differences _Sum of the height differences between gd- «
jacent columns
Mean height Mean height of columns X X
A max height Variation of the maximum column height X
A holes Variation of the hole number X
A height differences | Variation of the sum of height differences X
A mean height Variation of the mean column height X
Removed lines Number of lines completed at the last moye X | X X
Height weighted cells | Full cells weighted by their height X X
Wells Sum of the depth of the wells X X | x
Full cells Number of occupied cells on the board X X
(Number of rows eliminated in the last
Eroded piece cells move) x (Number of bricks eliminated X X
from the last piece added)
Row transitions Number of horizontal cell transitions X X | X
Column transitions Number of vertical cell transitions X x | X
Cumulative wells > wewelsll 2+ - - - 4 depth(w)) X X
Min height Minimum height of a column X
. Maximum column height- Mean column
Max — mean height . X
height
Mean— min height Me_an column height- Minimum column o
height
Mean hole depth Mean depth of holes X
Max height difference Maximum difference of height between twpo y
columns
. Number of holes, where adjacent holes|in
Adjacent column holes X
the same column count only once
Max well depth Maximum depth of a well X
Number of full cells in the column above
Hole depth X
each hole
Rows with holes Number of rows having at least one hole X
. . Number of different transition patterns be-
Pattern diversity . X
tween adjacent columns

Table 1: Features mentioned in Tetris publications.

Building Controllers for Tetris 7

and van Roy (2006) applied a linear programming approaagthiag an average score of 4,700 lines on 90
games played. Lagoudakés al. (2002) applied the Least-Squares Policy Iteration methitkd some original
features and reported an average score of 1,000 to 3,00 [Minés algorithm collects samples only once at the
beginning and they show interesting convergence progectienpared to tha-Policy Iteration method. Even
though it did not lead to very good performances (about 5sliper game on average), we should also mention
for completeness the work by Ramon and Driessens (2004 usliational reinforcement learning.

2.3 General Purpose Optimization Approaches

An alternative to reinforcement learning for tuning the g¥es is to use general purpose optimization, where an
algorithm looks directly for weights that make the corrasgiag controller perform well, instead of trying to ap-
proximate the optimal expected score. Contrary to reimfiorent learning, the resulting evaluation function does
not have any specific semantics. For instance, the bot of Mid Bplementation X RIS involves six features

of which the relative weights have been tuned through a geakgjorithm (Llima, 2005). The algorithm made
evolve 50 sets of coefficients on 18 generations, during 58hime hours distributed among 20 workstations.
On a simulator which is very close to the original Tetris gaiteauthor reports an averageitf, 000 lines per
game. Bhmet al. (2005) also report interesting results, with an evolutigregproach that attemps to optimize
a controller with features from the literature and severijinal ones. However, their results cannot be compared
to most of the other works since they only consider two-pieaetrollers. Furthermore, for running time rea-
sons, they do not give any averaged results orl the 20 board. Recently, Szita andtincz (2006) applied the
cross-entropy method (see de Beeal, 2004), a method close to evolutionary algorithms wherepaladion of
controllers evolves around a Gaussian distribution. Treduhe features of Bertsekas and Tsitsiklis (1996) and
reported an average score3¥0, 000 lines on 30 games, outperforming the reinforcement legrapproaches
that used the same features.

2.4 Final comments of the best approach

This overview of the state of the art leads to a few commentsth® one hand, the features of Dellacherie seem
to be the most competitive. Even with hand-chosen weighéflabherie’s controller has so far given the best
results. On the other hand, the optimization algorithm&#%mnd L6rincz, 2006; Bhmet al,, 2005; Llima, 2005)
appear to be the most successful methods for tuning the tgeidfla given set of features for Tetris. The reason
why reinforcement learning approaches (which try to extgle optimal control structure of the Tetris problem)
do not lead to good results is probably that for the statéiefart techniques of this domain, the problem of Tetris
is currently too hard. The optimal score might be too diffi¢alestimate with a linear architecture.

3. ONTHE DIFFICULTY OF COMPARING DIFFERENT TETRISCONTROLLERS

We have mentioned the average scores reported by the awathseseral Tetris controllers. This section will
emphasize the fact that comparing various Tetris contglespecially when their performances are measured on
differentimplementations, is a difficult matter. First, wal highlight (in 3.1) the fact that the game specifications
often differ from one work to another. Then, we will argue 8i2) that the average score of a Tetris controller
has a very large deviation and we will explain how to derivafience intervals. Eventually, we will show (in
3.3) that the performance of a controller can vary signifigamecause of some subtle details.

3.1 Tetrisproblem variations

We have already mentioned that some works propose one-gat®llers while some others consider two-piece
controllers. Fahey, who made a two-piece controller, erpléhat when the next piece is unknown, the corre-
sponding one-piece controller of his algorithm realized $eores compared to other one-piece controllers. This
suggests that knowing the next piece improves considethblperformance. Conversely, it suggests that works
on one-piece controllers are significantly under-ratedh wéispect to the few works (Fahey, 2003)Bn et al,,

8 ICGA Journal March 2010

2005) on two-piece controllets

When one looks at the Tetris problem as considered by mosandsa's, one can observe that it is slightly
different from the original game as specified by Fahey (20@)me simplifications are often made in order
to focus on the main matter of an automatic player, which isosing a position and an orientation for the
current piece. In the original game (that is as specified be¥a2003), the current piece appears inside the
playing area and falls gradually. The game is over when theephas not sufficient space to appear inside the
top part of the area. Most realizations (Tsitsiklis and vay,RL996; Bertsekas and Tsitsiklis, 1996; Kakade,
2001; Lagoudakigt al, 2002; Ramon and Driessens, 2004; Farias and van Roy, 2@@&;a8d Lorincz, 2006),

as well as our own implementation, consider the followimgified setting: the controller only decides in which
column and orientation it drops the piece. Doing so, the garskightly simplified since the piece does not appear
in the playing area until the controller has decided whergutdt. This is as if there were always sufficient space
above the playing area to set the orientation and deterrhmedlumn where one drops the current piece. It
makes an important difference when the entire space of thedbdmecomes available, including the top-most
rows. Moreover, we prefer to avoid situations where a piecgot move from one side of the board to the other
because the pile is too high. The simplified Tetris game iee#san the original game, and a controller is likely
to complete more rows

3.2 Thelargedeviation in Tetris scores

Surprisingly, though most authors seem to be aware of tlye ldeviation of the Tetris performances, almost
none of them provide confidence intervals. To our knowletlyework by Szita and &rincz (2006) is the only
publication that provides such confidence intervals. Bel@explain how to derive them.

Fahey (2003) conjectured that the score of a Tetris game fixed strategy follows an exponential distribu-
tion (2003Y. In fact, as the score (the number of lines) is an integer, emeasonable and qualitatively close
conjecture would be that the score follows a geometricibision. An intuition behind this conjecture is the fol-
lowing. Roughly speaking, the maximum height of the wallidgra game resembles a one-dimensional random
walk: it goes up and down depending on the random piecespiesmes leads back to the initial empty board.
The eventual score is strongly correlated to the duraticth®fyame, which is the time when the random walk
hits the top of the board. This time, a random variable whichsually called the hitting time, is asymptotically
known to be equivalent to a geometric faw

Even though geometric would be a better guess than expahdrahey’s conjecture was confirmed experimen-
tally for many controllers (each of these controllers inglian exponential distribution of score9%l;) using the
Kolmogorov-Smirnov statistical test by Szita an@rincz (2006). Under this conjecture (or under the geometri
conjecture, respectively), the standard deviation of toeesis equal (or very clos&yespectively) to its expected
value (Billingsley, 1995). Such a fact is of practical irstrsince it allows to assess a confidence interval. When
evaluating the average score by playing several gamesiatastatistical analysis tells that the confidence one
can have on the estimate grows with the number of games andades when the standard deviation grows. For
a given confidence level, a larger standard deviation requarlarger number of games played. Since for Tetris
the standard deviation is equal to the score, the betteraeatler, the harder its precise evaluation.

More precisely, a confidence interval has the following f¢se any probability textbook, for instance, Billings-
ley (1995) for a general introduction): with some probapifi, the difference between the averggtéhrough N

SRecall that a one-piece controller can be easily extendadwm-piece controller setting (see Figure 2).

6Note that with this common simplification, it becomes impossibléilt a “hole” by letting the current piece fall and then moviiig
horizontally. However, this does not make any differenceabse the controllers implemented with respect to Fahey'sfaggmon of the
original game (Fahey, 2003) do not exploit this ability eithe

"This is a typical property of the Tetris game. There is no reasdelieve that other games have the same kind of property.

8This can be seen as a consequence of the well-known Peroabdiius Theorem (Billingsley, 1995): letbe the biggest (in module)
non-1 eigenvalue of the stochastic matrix associated witahdom walk. When the timetends to infinity, the probability that the random
walk is still in a non-absorbing state at timés equivalent taz|\|* for some constant. As a consequence, the probability that the hitting
time is exactlyt, is equivalent tai| \[*t1 — a|\|, which is proportional tg|?.

9A geometric law of parameterhas mear% and standard deviatiov/% (Billingsley, 1995). Whem is very small (this the case when

the Tetris controllers are good), the standard deviati@gisvalent to};.

Building Controllers for Tetris 9

games of the expected Tetris scarevith standard deviation = ;. satisfies:

ko ku ki

|M—ﬂ\§ﬁ—ﬁ—ﬁ

wherek is a constant that depends on the chosen probabilitypical relations aré& = 1 for p = 0.68, k = 2
for p = 0.95, k = 3 for p = 0.997). Equivalently, this leads to the followinglative confidence interval:

|l — il < i

LT VN

As an illustration, consider the evaluation of Dellachsr@ontroller with N = 56 games. The above analysis
implies that the confidence of the empirical averagf## (000 lines) is+27% with probability 0.95. Despite its
large size, this confidence interval confirms the fact thét) Wigh probability (0.95), no publicly known one-
piece algorithm does better. More generally, controlleadated withV = 100 games lead to a confidence of
+20% that is valid95% of the time. In the rest of the paper, we chose to use the patati+ ¢% to represent
confidence intervals vali@i5% of the time (corresponding to = 2). We chose this value df.95 in order to
provide intuitive confidence intervals for Tetris scordémttare valid most of the time.

3.3 Tetrisimplementations subtleties

We have just seen that, in general, the confidence intehatisvie can derive for Tetris controllers are large. When
we implemented our own Tetris simulator, we further notitteat some subtle details in the implementation could
have a significant effect on the performance measures. \Wedigruss these details and their influence on the
game scores, using the example of Dellacherie’s controller

A first subtle detail (which is never explicitly mentioned time publications we have seen so far) is how an
evaluation-based controller acts when it is close to ganee. dvmight be that the decision that has the highest
evaluation leads to game over while other decisions (witleleevaluations) do not. In such a case, it is better not
to consider actions that directly lead to game over: thotierscwill not be evaluated, the game will last longer
and the score will be better. If we act this way, the game is if\and only if all decisions lead to game over. We
implemented Dellacherie’s algorithm this way, and it coetes5, 200, 000 + 20% rows on average. If we let the
controller evaluate actions that lead to game over, Dedldels performance drops &0, 000 & 20% rows with

our implementation.

Additionally, we believe that most implementations of ettefine game over as the moment when the current
piece cannot fit into the board, that is when the current pmesflows thel0 x 20 board. However, if we
closely examine the description of Tetris considered bydgdias and Tsitsiklis (1996), we can see they consider
that the gaméends when a square in the top row becomes full and the topefathll reaches the top of the
grid”. This latter definition is equivalent to saying that the mleerflows in al0 x 19 board. Such a subtle
detail can make a significant difference on the game scorét avi0 x 19 board, Dellacherie’s algorithm
completes2, 500, 000 + 20% rows instead of, 200, 000 + 20%. For this reason, we actually believe that the
experimental results of Bertsekas and Tsitsiklis that watioaed in Section 2 are underrated with respect to the
other reinforcement learning works.

As small details concerning the game rules and the contioliglementations can have significant effects on the
game scores, particular care is required when comparifgrelift approaches. Most of the results reported by
previous works are actually not comparable since they ufereint Tetris implementations. In particular, when
Dellacherie’s score has to be compared to scores realizbdhg simplified Tetris setting (considered by most
researchers, see above), it should be considergda8, 000 + 20% rows instead 0660, 000 + 27%, which was

its reported score on an original Tetris simul&foiThe only way to do a fair comparison of various controllsrs i
to run them on the same simulator and a large number of tintethiF end, we have implemented a configurable
and optimized Tetris simulator, and several controtfers

10Although the score 0660, 000 + 27% was obtained with a more restrictive implementation than thelusimplified setting, it was
already the best performance known.
The C source code is available heie:t p: / / gf orge. i nria.fr/projects/ ndptetris.

10 ICGA Journal March 2010

4. THE 2008 REINFORCEMENT LEARNING COMPETITION

Based on this careful analysis of the Tetris literature, mplémented a controller that combines previous suc-
cessful feature design and feature-weight optimizatioa.célled the program BCTS, which stands for Building
Controllers for Tetris Systems. We trained a controller iy ¢ross-entropy method (Szita an@rincz, 2006),
using the performant features of Dellacherie (Fahey, 2@@08) two original features mentioned in Table 2.1:
the hole depth and the number of rows with holes. We give Herestaluation function we obtained after the
cross-entropy optimization of the weights:

—12.63 (Landing heighth 6.60 (Eroded piece cells} 9.22 (Row transitions)- 19.77 (Column transitions)
—13.08 (Holes)— 10.49 (Cumulative wells)- 1.61 (Hole depth)— 24.04 (Rows with holes).

On the simplified Tetris setting considered by most reseaiscfsee Section 3.1), this controller achieves an
average score df5, 000,000 + 20% lines with probability0.95. Although we did not test it on the real Tetris
game (as specified by Fahey, 2003), a conservative lowerdbomithe score it would realize §50, 000 + 5%
lines with probability0.95. We obtained this bound by playing games dida 16 board of the simplified setting;
indeed, any move possible on théx 16 board with the simplified setting would also be possible @llthx 20
board with the real Tetris game since the height of all Tgiesces is lower than or equal to 4. More details
regarding how we built BCTS can be found in Thiery and Schi€g@09).

Using the bibliographical work we present in this articl&;BS recently won the 2008 Reinforcement Learning
Competition. This competition made Tetris controllersypta modified instances of the problem, where some
properties of the game (for instance, the board size andcthring function for making 1-2-3 or 4 lines) could
vary and the artificial players had to adapt themselves tb eagironment. The performance meastfrthat was
used to compare the different players had much less vartaaoghe natural measure which we discussed in this
article. Though the problem was formulated in the reinforeat learning context for this competition, any kind
of method was allowed. We used a modified version of our ctatrdiscussed above, with an additional original
feature called “pattern diversity”, which looks at the pattformed by the top part of two adjacent columns and
counts how many different patterns are present. This eagesrthe controller to ensure that the board can absorb
any piece without making a hole. We know that the artificialelrs that obtained the second and the third places
(personal communication with Marek Petrik and &tvSzita respectively) were also tuned by the cross-entropy
method. We believe that our choice of features was decigsivért the competition.

5. CONCLUSION AND OPEN QUESTIONS

To our knowledge, this article is the first in-depth reviewtloa problem of building a Tetris controller, summariz-
ing the most significant realizations (hand-written, remeEment learning, general optimization) and providing a
list of the feature functions. This is meant to be a workingebfor anyone interested in the Tetris problem. Fur-
thermore, we showed that comparing results from diffenpiémentations may not make sense because small
differences have a significant effect on game scores. Thisinggmay be applied to other games than Tetris too.

5.1 Two open questions

An observation of this review is that optimization approaskike the cross-entropy method (Szita arfdihcz,
2006) or the evolutionary methodsdBmet al,, 2005; Llima, 2005) have been much more successful so far tha
reinforcement learning approaches. However, the lattevige nice theoretical tools to calculate in particular
the expected score (thvalue functioi of the best Tetris strategy. Thus, we were actually ableutlol bhe exact
optimal player for a reduced instance of Tetriss(a 5 board) using the Value Iteration algorithm (Puterman,
1994; Sutton and Barto, 1998). On this reduced board, theatag value of the score of the optimal strategy
is 13.7 lines. With the real size of the Tetris board, even if the fimicement learning algorithms suffer from
the curse of dimensionality and have difficulties to estarthe future score when approximation is needed, an
advantage is that they estimate future scores insteadtdfyirsg to maximize them. Although the optimization
methods such as cross-entropy and genetic algorithmsrpetietter on Tetris, they provide no information

12The performance was the total score after a fixed number ofictiens, with no penalty for losing a game (except a resetetartitial
empty board).

Building Controllers for Tetris 11

about the optimal possible score. This leads us to our firsh@uestion. It would be interesting to continue
investigations in this direction in order to estimate anermdpound on the expected value of the optimal player’s
score owing to the reinforcement learning framework.

A second natural question that remains open after thiswasito determine what optimization method is the most
suitable for Tetris. The state-of-the-art optimizatiopagaches to tune the weights (Llima, 2005jtBn et al,,
2005; Szita and &rincz, 2006) cannot be compared directly because they iffeeedt implementations and
different features. Furthermore, contrary to the two otlverks and the reinforcement learning approaches,
Bohmet al. (2005) only consider two-piece controllers. Hence, theif@rmance compared to one-piece con-
trollers is still unknown. It would be interesting to implemt and execute those methods under the same condi-
tions, to determine in what circumstances the cross-eptmogthod can perform better than genetic algorithms
(if it does), and whether such observations would be speoifietris or could apply to other problems as well.

6. REFERENCES

Bellman, R. E. (1957)Dynamic ProgrammingPrinceton University Press, Princeton, NJ.
Bertsekas, D. and Tsitsiklis, J. (199@Yeurodynamic Programmingthena Scientific.
Billingsley, P. (1995).Probability and measurdohn Wiley & Sons, New York, N.Y., 3rd edition.

Boer, P. de, Kroese, D., Mannor, S., and Rubinstein, R. (20Q4utorial on the cross-entropy methodnnals
of Operations Researc¥iol. 1, No. 134, pp. 19-67.

Bohm, N., Kdkai, G., and Mandl, S. (2005). An Evolutionary Approach ®&tris. The Sixth Metaheuristics
International Conference (MIC2005)

Burgiel, H. (1997). How to Lose at Tetriddathematical Gazett&ol. 81, pp. 194—-200.

Carr, D. (2005). Applying reinforcement learning to Tetrigechnical report, Computer Science department of
Rhodes University.

Demaine, E. D., Hohenberger, S., and Liben-Nowell, D. (200&tris is hard, even to approximat€roc. 9th
International Computing and Combinatorics ConferenceQOON 2003)pp. 351-363.

Fahey, C. P. (2003). Tetris Al, Computer plays Tethist p: / / col i nf ahey. comtetris/tetris_en.
htm .

Farias, V. and Roy, B. van (2006]Jetris: A study of randomized constraint sampliigpringer-Verlag.

Kakade, S. (2001). A natural policy gradiemddvances in Neural Information Processing Systems (NIPS 14
pp. 1531-1538.

Lagoudakis, M. G., Parr, R., and Littman, M. L. (2002). Lesgtiares methods in reinforcement learning for con-
trol. SETN ’'02: Proceedings of the Second Hellenic Conference lpp# 249-260, Springer-Verlag, London,
UK.

Llima, R. E. (2005). Xtris readme. http://www.iagora.coespel/xtriss§README.
Puterman, M. (1994)Markov Decision ProcessegViley, New York.

Ramon, J. and Driessens, K. (2004). On the numeric stalofityaussian processes regression for relational
reinforcement learninglCML-2004 Workshop on Relational Reinforcement Learnipg. 10-14.

Sutton, R. and Barto, A. (1998Reinforcement Learning, An introductioBradFord Book. The MIT Press.

Szita, I. and Brincz, A. (2006). Learning Tetris Using the Noisy CrosstbBpy Method. Neural Computation
\ol. 18, No. 12, pp. 2936-2941.

Thiery, C. and Scherrer, B. (2009). Construction d’un jauatificiel pour Tetris. Revue d’Intelligence Artifi-
cielle, Vol. 23, pp. 387-407.

Tsitsiklis, J. N. and Roy, B. van (1996). Feature-Based M@sHfor Large Scale Dynamic Programmidachine
Learning \Vol. 22, pp. 59-94.

