
HAL Id: inria-00418954
https://hal.inria.fr/inria-00418954

Submitted on 22 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Controllers for Tetris
Christophe Thiery, Bruno Scherrer

To cite this version:
Christophe Thiery, Bruno Scherrer. Building Controllers for Tetris. International Computer Games
Association Journal, ICGA, 2009, 32, pp.3-11. �inria-00418954�

https://hal.inria.fr/inria-00418954
https://hal.archives-ouvertes.fr

Building Controllers for Tetris 3

BUILDING CONTROLLERS FOR TETRIS

Christophe Thiery1 and Bruno Scherrer2

Vandoeuvre-l̀es-Nancy Cedex, France

ABSTRACT

This article has two purposes: a review on the problem of building a controller for the well-known
video game Tetris, and a contribution on how to achieve the best performance. Key components
of typical solutions include feature design and feature-weight optimization. We provide a list of all
the features we could find in the literature and in implementations, and mention the methods that
have been used for weight optimization. We also highlight the fact that performance measures for
Tetris must be compared with great care, as (1) they have a rather large variance, and (2) subtle
implementation choices can have a significant effect on the resulting scores. An immediate interest
of this review is illustrated. Straightforwardly gathering ideas from different works may lead to new
ideas. We show how we built a controller that outperforms thepreviously known best controllers.
Finally, we briefly discuss how this implementation allowedus to win the Tetris-domain prize of the
2008 Reinforcement Learning Competition.

1. INTRODUCTION

Tetris is a popular video game created in 1985 by Alexey Pajitnov. The game is played on a10 × 20 grid where
pieces of different shapes fall from the top (see Figure 1). The player has to choose where each piece is added:
he can move it horizontally and rotate it. When a row is filled, it is removed and all cells above it move one row
downwards. The goal is to remove as many lines as possible before the game is over, that is when there is not
enough space remaining on the top of the pile to put the current new piece. A nice detailed specification of Tetris
can be found on Fahey’s website (Fahey, 2003).

In this contribution we give a review of works that attempt tobuild Tetris controllers and provide references of
the feature functions involved in those works. To our knowledge, no such review exists in the literature. For a
human player, the main difficulty of the Tetris game is the fact that the pieces may fall quite fast from the top of
the playing area: the small amount of time often makes the decision process hard. This dimension of the problem

1LORIA - INRIA Lorraine, Campus Scientifique BP 239, 54506 Vandoeuvre-l̀es-Nancy Cedex, FRANCE. Email: thierych@loria.fr
2scherrer@loria.fr

Figure 1: Left: a screenshot of a Tetris game.Right: the seven existing shapes.

4 ICGA Journal March 2010

does not appear when dealing with artificial players as the falling speed of the pieces is negligible compared to
the decision speed of the controllers: indeed, the controllers we discuss in this article are able to play tens of
thousand moves per second on a nowadays desktop computer.

The game of Tetris was chosen as a benchmark optimization problem by several researchers: the goal is to find a
controller that maximizes the average number of lines, which always happens to be finite since it was shown that
every Tetris game finishes with probability 1 (Burgiel, 1997). Such a problem is known to be computationally
hard to solve. Tetris indeed contains a huge number (about7.0 × 2199 ≃ 5.6 × 1059) of board configurations3

and even in the case where the sequence of pieces is known in advance, finding the strategy that maximizes the
average score is an NP-complete problem (Demaine, Hohenberger, and Liben-Nowell, 2003).

The course of the article is as follows. In Section 2 we describe the existing Tetris controllers. Section 3 reports
on the difficulty of composing different Tetris controllers. In Section 4 we present our own program BCTS, that
won the 2008 Reinforcement Learning Competition. BCTS is anacronym for Building Controllers for Tetris
Systems. Section 5 provides a conclusion and lists two open questions.

2. EXISTING TETRIS CONTROLLERS

Most realizations of Tetris controllers (Tsitsiklis and van Roy, 1996; Bertsekas and Tsitsiklis, 1996; Kakade,
2001; Lagoudakis, Parr, and Littman, 2002; Ramon and Driessens, 2004; Farias and van Roy, 2006; Szita and
Lőrincz, 2006; Llima, 2005) areone-piece controllers, i.e., controllers that use knowledge of the current board
and the current piece only. A controller that also uses knowledge of the next piece (Fahey, 2003; Böhm, Kókai,
and Mandl, 2005), as it is possible in the original Tetris setting, can make decisions that take advantage of the
combination of pieces, and is called atwo-piece controller.

All controllers rely on anevaluation function. In a given gamestate(i.e., (1) the current board configuration,
(2) the current piece, and (3) optionally the next piece), all possibleactions(i.e., the choice of a position and an
orientation for the current piece) are evaluated by the evaluation function. Then, the controller chooses the action
with the highest evaluation. Figure 2 illustrates this process. In Figure 2a, we see the principle of a one-piece
controller (i.e., a one-ply evaluation process). From the current state (the current board and the current piece),
each possible action is tried and leads to a new board, which is evaluated through the evaluation function. The
action that leads to the best evaluation is then played. In Figure 2b, we see the principle of a two-piece controller
(i.e., a two-ply evaluation process). From the current state, each possible action is tried and leads to a new board
where the next piece is known. For each of these states, everypossible next action is tried and the resulting boards
are evaluated through the evaluation function. We then playin the first state the action leading to the state where
the best evaluation was found.

In principle, it would be possible to calculate a lookahead of several stages by evaluating the actions for every
possible piece at each stage and averaging the evaluations.However and as far as we know, such an in-depth
search has never been carried out since it would require a huge computation time. Thus, the problem of building
a Tetris controller comes down to building a good evaluationfunction. Ideally, this function should return high
values for the good decisions and low values for the bad ones.The evaluation function is usually a combination of
feature functions, typically (but not always; see, e.g., Böhmet al., 2005) a weighted sum. Each feature function
aims at capturing some relevant characteristics of the actions and states. An example of a feature is the number of
holes4 in the pile and its associated weight is usually negative: the more holes created, the lower the evaluation.

Practically designing a feature-based Tetris controller consists of two steps. The first step amounts to choosing
a set of features that can extract relevant information about the game and is usually achieved by an expert.
Table 2.1 provides a synthetic list of the features introduced by the works we mention herein. The second step is
the tuning of the features’ relative weights. In the literature, this tuning has been done manually or automatically
(by reinforcement learning or some optimization techniques). We now discuss in more details what we believe
are the most significant works. In Subsection 2.1 we discuss the hand-written controllers, in Subsection 2.2
the reinforcement learning approaches, and in Subsection 2.3 the general purpose optimization approaches. In
Subsection 2.4 we give final comments on the best approach.

3This number is an estimate because it includes a few impossible configurations (see Fahey, 2003).
4A hole is an empty cell covered by a full cell.

Building Controllers for Tetris 5

Evaluation 1 Evaluation 2 Evaluation n

(translation + rotation)

Try each possible action

− Current piece

Current state

Next board 1 Next board nNext board 2

− Current board

− Current piece

(translation + rotation)

Try each possible action

− Current board

Next state 1
− Board 1
− Piece p

Next state 2
− Board 2
− Piece p

Next state n
− Board n
− Piece p

Try each possible action

Second next Second next

Try each possible action Try each possible action

Second next

Current state

board 1

Evaluation 1 Evaluation 2

board 2 board k

Evaluation k

board m
Second next

Evaluation m

Figure 2: (a) A one-ply evaluation process. (b) A two-ply evoluationprocess.

2.1 Hand-written controllers

To our knowledge, the current best one-piece Tetris controller is due to Dellacherie (Fahey, 2003) and was tuned
by hand. Dellacherie came up with an efficient set of featuresand fixed their weights manually, by trial and
error. Surprisingly, this hand-written controller outperforms the other one-piece controllers from the literature,
even when their weights are tuned automatically. On a total of 56 games, Dellacherie’s algorithm completed
an average score of about660, 000 lines. Moreover, this measure of660, 000 lines per game was made on an
implementation of the original Tetris game, which is, as we will see in Section 3, harder than the usual simplified
Tetris setting considered by most researchers. As the source code of the algorithm is freely available on Fahey’s
website, we reverse-engineered it and determined the features and their weights. Dellacherie’s evaluation function
is the following linear combination of features:

− (Landing height)+ (Eroded piece cells)− (Row transitions)

− (Column transitions)− 4 × (Holes)− (Cumulative wells)

where the above features are detailed in Table 1.

Fahey (2003) created a two-piece controller with some original features of which the weights were also tuned by
hand. He reports a game score of7, 200, 000 lines. Only one game was played and this took a week.

2.2 Reinforcement Learning Approaches

Several works of the reinforcement learning literature consider the game of Tetris. Some of them are mentioned
in a review by Carr (2005). In the reinforcement learning context (Sutton and Barto, 1998), algorithms aim at
tuning the weights such that the evaluation function approximates well the optimal expected future score from
each state (recall that the state is (1) the current board configuration, (2) the current piece, and (3) optionnally the
next piece). As the number of states is huge, the state space is typically visited through simulations.

The first work regarding Tetris in this domain seems to be due to Tsitsiklis and van Roy (1996). Their approach
uses a feature-based Value Iteration method. The obtained controller is based on two features (the pile height and
the number of holes) and makes a low average score (in the 30s). However, their work showed that using a feature-
based evaluation function works better than just choosing the move that realizes the highest immediate reward
(according to them, most of the time, the latter method does not score any points). Later, Bertsekas and Tsitsiklis
(1996) proposed theλ-Policy Iteration algorithm and applied it to Tetris. This method generalizes the standard
algorithms Value Iteration and Policy Iteration (Bellman,1957). The evaluation function is approximated by a
weighted sum of a more elaborate set of features and is estimated using simulations. They report an average
score of 3,200 lines on 100 games played. Two other reinforcement learning works reused their set of features.
In the first one, Kakade (2001) applied a natural policy gradient method and reported an average score of about
6,800 lines per game, without specifying how many game scores are averaged though. In the second one, Farias

6 ICGA Journal March 2010

Feature Description T
si

ts
ik

lis
e

ta
l.,

19
96

B
er

ts
ek

as
e

ta
l.,

19
96

Ll
im

a,
20

05

La
go

ud
ak

ise
ta

l.,
20

02

F
ah

ey
,2

00
3

D
el

la
ch

er
ie

(F
ah

ey
,2

00
3)

R
am

on
e

ta
l.,

20
04

B
öh

m
e

ta
l.,

20
05

T
hi

er
y

e
ta

l.,
20

09

Max height Maximum height of a column × × × × × ×

Holes Number of empty cells covered by a full cell × × × × × × × × ×

Column height Height of each column × ×

Column difference
Height difference between each pair of ad-
jacent columns

× ×

Landing height Height where the last piece is added × × × ×

Cell transitions
Number of full to empty or empty to full
cell transitions

×

Deep wells
Sum of well depths, except for wells with
depth 1

×

Embedded holes
Sort of weighted sum of holes (not precisely
documented)

×

Height differences
Sum of the height differences between ad-
jacent columns

×

Mean height Mean height of columns × ×

∆ max height Variation of the maximum column height ×

∆ holes Variation of the hole number ×

∆ height differences Variation of the sum of height differences ×

∆ mean height Variation of the mean column height ×

Removed lines Number of lines completed at the last move × × ×

Height weighted cells Full cells weighted by their height × ×

Wells Sum of the depth of the wells × × ×

Full cells Number of occupied cells on the board × ×

Eroded piece cells
(Number of rows eliminated in the last
move) × (Number of bricks eliminated
from the last piece added)

× ×

Row transitions Number of horizontal cell transitions × × ×

Column transitions Number of vertical cell transitions × × ×

Cumulative wells
P

w∈wells(1 + 2 + · · · + depth(w)) × ×

Min height Minimum height of a column ×

Max− mean height
Maximum column height− Mean column
height

×

Mean− min height
Mean column height− Minimum column
height

×

Mean hole depth Mean depth of holes ×

Max height difference
Maximum difference of height between two
columns

×

Adjacent column holes
Number of holes, where adjacent holes in
the same column count only once

×

Max well depth Maximum depth of a well ×

Hole depth
Number of full cells in the column above
each hole

×

Rows with holes Number of rows having at least one hole ×

Pattern diversity
Number of different transition patterns be-
tween adjacent columns

×

Table 1: Features mentioned in Tetris publications.

Building Controllers for Tetris 7

and van Roy (2006) applied a linear programming approach, reaching an average score of 4,700 lines on 90
games played. Lagoudakiset al. (2002) applied the Least-Squares Policy Iteration method with some original
features and reported an average score of 1,000 to 3,000 lines. This algorithm collects samples only once at the
beginning and they show interesting convergence properties compared to theλ-Policy Iteration method. Even
though it did not lead to very good performances (about 50 lines per game on average), we should also mention
for completeness the work by Ramon and Driessens (2004) using relational reinforcement learning.

2.3 General Purpose Optimization Approaches

An alternative to reinforcement learning for tuning the weights is to use general purpose optimization, where an
algorithm looks directly for weights that make the corresponding controller perform well, instead of trying to ap-
proximate the optimal expected score. Contrary to reinforcement learning, the resulting evaluation function does
not have any specific semantics. For instance, the bot of the GNU implementation XTRIS involves six features
of which the relative weights have been tuned through a genetic algorithm (Llima, 2005). The algorithm made
evolve 50 sets of coefficients on 18 generations, during 500 machine hours distributed among 20 workstations.
On a simulator which is very close to the original Tetris game, its author reports an average of50, 000 lines per
game. B̈ohmet al. (2005) also report interesting results, with an evolutionary approach that attemps to optimize
a controller with features from the literature and several original ones. However, their results cannot be compared
to most of the other works since they only consider two-piececontrollers. Furthermore, for running time rea-
sons, they do not give any averaged results on the10 × 20 board. Recently, Szita and Lőrincz (2006) applied the
cross-entropy method (see de Boeret al., 2004), a method close to evolutionary algorithms where a population of
controllers evolves around a Gaussian distribution. They used the features of Bertsekas and Tsitsiklis (1996) and
reported an average score of350, 000 lines on 30 games, outperforming the reinforcement learning approaches
that used the same features.

2.4 Final comments of the best approach

This overview of the state of the art leads to a few comments. On the one hand, the features of Dellacherie seem
to be the most competitive. Even with hand-chosen weights, Dellacherie’s controller has so far given the best
results. On the other hand, the optimization algorithms (Szita and L̋orincz, 2006; B̈ohmet al., 2005; Llima, 2005)
appear to be the most successful methods for tuning the weights of a given set of features for Tetris. The reason
why reinforcement learning approaches (which try to exploit the optimal control structure of the Tetris problem)
do not lead to good results is probably that for the state-of-the-art techniques of this domain, the problem of Tetris
is currently too hard. The optimal score might be too difficult to estimate with a linear architecture.

3. ON THE DIFFICULTY OF COMPARING DIFFERENT TETRIS CONTROLLERS

We have mentioned the average scores reported by the authorsof several Tetris controllers. This section will
emphasize the fact that comparing various Tetris controllers, especially when their performances are measured on
different implementations, is a difficult matter. First, wewill highlight (in 3.1) the fact that the game specifications
often differ from one work to another. Then, we will argue (in3.2) that the average score of a Tetris controller
has a very large deviation and we will explain how to derive confidence intervals. Eventually, we will show (in
3.3) that the performance of a controller can vary significantly because of some subtle details.

3.1 Tetris problem variations

We have already mentioned that some works propose one-piececontrollers while some others consider two-piece
controllers. Fahey, who made a two-piece controller, explains that when the next piece is unknown, the corre-
sponding one-piece controller of his algorithm realizes bad scores compared to other one-piece controllers. This
suggests that knowing the next piece improves considerablythe performance. Conversely, it suggests that works
on one-piece controllers are significantly under-rated with respect to the few works (Fahey, 2003; Böhmet al.,

8 ICGA Journal March 2010

2005) on two-piece controllers5.

When one looks at the Tetris problem as considered by most researchers, one can observe that it is slightly
different from the original game as specified by Fahey (2003). Some simplifications are often made in order
to focus on the main matter of an automatic player, which is choosing a position and an orientation for the
current piece. In the original game (that is as specified by Fahey, 2003), the current piece appears inside the
playing area and falls gradually. The game is over when the piece has not sufficient space to appear inside the
top part of the area. Most realizations (Tsitsiklis and van Roy, 1996; Bertsekas and Tsitsiklis, 1996; Kakade,
2001; Lagoudakiset al., 2002; Ramon and Driessens, 2004; Farias and van Roy, 2006; Szita and L̋orincz, 2006),
as well as our own implementation, consider the following simplified setting: the controller only decides in which
column and orientation it drops the piece. Doing so, the gameis slightly simplified since the piece does not appear
in the playing area until the controller has decided where toput it. This is as if there were always sufficient space
above the playing area to set the orientation and determine the column where one drops the current piece. It
makes an important difference when the entire space of the board becomes available, including the top-most
rows. Moreover, we prefer to avoid situations where a piece cannot move from one side of the board to the other
because the pile is too high. The simplified Tetris game is easier than the original game, and a controller is likely
to complete more rows6.

3.2 The large deviation in Tetris scores

Surprisingly, though most authors seem to be aware of the large deviation of the Tetris performances, almost
none of them provide confidence intervals. To our knowledge,the work by Szita and L̋orincz (2006) is the only
publication that provides such confidence intervals. Belowwe explain how to derive them.

Fahey (2003) conjectured that the score of a Tetris game for afixed strategy follows an exponential distribu-
tion (2003)7. In fact, as the score (the number of lines) is an integer, a more reasonable and qualitatively close
conjecture would be that the score follows a geometric distribution. An intuition behind this conjecture is the fol-
lowing. Roughly speaking, the maximum height of the wall during a game resembles a one-dimensional random
walk: it goes up and down depending on the random pieces; it sometimes leads back to the initial empty board.
The eventual score is strongly correlated to the duration ofthe game, which is the time when the random walk
hits the top of the board. This time, a random variable which is usually called the hitting time, is asymptotically
known to be equivalent to a geometric law8.

Even though geometric would be a better guess than exponential, Fahey’s conjecture was confirmed experimen-
tally for many controllers (each of these controllers induces an exponential distribution of scores at95%) using the
Kolmogorov-Smirnov statistical test by Szita and Lőrincz (2006). Under this conjecture (or under the geometric
conjecture, respectively), the standard deviation of the score is equal (or very close,9 respectively) to its expected
value (Billingsley, 1995). Such a fact is of practical interest since it allows to assess a confidence interval. When
evaluating the average score by playing several games, standard statistical analysis tells that the confidence one
can have on the estimate grows with the number of games and decreases when the standard deviation grows. For
a given confidence level, a larger standard deviation requires a larger number of games played. Since for Tetris
the standard deviation is equal to the score, the better the controller, the harder its precise evaluation.

More precisely, a confidence interval has the following form(see any probability textbook, for instance, Billings-
ley (1995) for a general introduction): with some probability p, the difference between the averageµ̂ throughN

5Recall that a one-piece controller can be easily extended toa two-piece controller setting (see Figure 2).
6Note that with this common simplification, it becomes impossible to fill a “hole” by letting the current piece fall and then movingit

horizontally. However, this does not make any difference because the controllers implemented with respect to Fahey’s specification of the
original game (Fahey, 2003) do not exploit this ability either.

7This is a typical property of the Tetris game. There is no reason to believe that other games have the same kind of property.
8This can be seen as a consequence of the well-known Perron-Froebenius Theorem (Billingsley, 1995): letλ be the biggest (in module)

non-1 eigenvalue of the stochastic matrix associated with the random walk. When the timet tends to infinity, the probability that the random
walk is still in a non-absorbing state at timet is equivalent toa|λ|t for some constanta. As a consequence, the probability that the hitting
time is exactlyt, is equivalent toa|λ|t+1 − a|λ|t, which is proportional to|λ|t.

9A geometric law of parameterp has mean1
p

and standard deviation
q

1−p

p2
(Billingsley, 1995). Whenp is very small (this the case when

the Tetris controllers are good), the standard deviation isequivalent to1

p
.

Building Controllers for Tetris 9

games of the expected Tetris scoreµ with standard deviationσ = µ satisfies:

|µ − µ̂| ≤ kσ√
N

=
kµ√
N

≃ kµ̂√
N

wherek is a constant that depends on the chosen probabilityp (typical relations arek = 1 for p = 0.68, k = 2

for p = 0.95, k = 3 for p = 0.997). Equivalently, this leads to the followingrelativeconfidence interval:

|µ − µ̂|
µ̂

≤ k√
N

.

As an illustration, consider the evaluation of Dellacherie’s controller withN = 56 games. The above analysis
implies that the confidence of the empirical average (660, 000 lines) is±27% with probability0.95. Despite its
large size, this confidence interval confirms the fact that, with high probability (0.95), no publicly known one-
piece algorithm does better. More generally, controllers evaluated withN = 100 games lead to a confidence of
±20% that is valid95% of the time. In the rest of the paper, we chose to use the notation m ± c% to represent
confidence intervals valid95% of the time (corresponding tok = 2). We chose this value of0.95 in order to
provide intuitive confidence intervals for Tetris scores, that are valid most of the time.

3.3 Tetris implementations subtleties

We have just seen that, in general, the confidence intervals that we can derive for Tetris controllers are large. When
we implemented our own Tetris simulator, we further noticedthat some subtle details in the implementation could
have a significant effect on the performance measures. We here discuss these details and their influence on the
game scores, using the example of Dellacherie’s controller.

A first subtle detail (which is never explicitly mentioned inthe publications we have seen so far) is how an
evaluation-based controller acts when it is close to game over. It might be that the decision that has the highest
evaluation leads to game over while other decisions (with lower evaluations) do not. In such a case, it is better not
to consider actions that directly lead to game over: those actions will not be evaluated, the game will last longer
and the score will be better. If we act this way, the game is over if and only if all decisions lead to game over. We
implemented Dellacherie’s algorithm this way, and it completes5, 200, 000± 20% rows on average. If we let the
controller evaluate actions that lead to game over, Dellacherie’s performance drops to850, 000± 20% rows with
our implementation.

Additionally, we believe that most implementations of Tetris define game over as the moment when the current
piece cannot fit into the board, that is when the current pieceoverflows the10 × 20 board. However, if we
closely examine the description of Tetris considered by Bertsekas and Tsitsiklis (1996), we can see they consider
that the game“ends when a square in the top row becomes full and the top of the wall reaches the top of the
grid” . This latter definition is equivalent to saying that the pileoverflows in a10 × 19 board. Such a subtle
detail can make a significant difference on the game scores: with a 10 × 19 board, Dellacherie’s algorithm
completes2, 500, 000 ± 20% rows instead of5, 200, 000 ± 20%. For this reason, we actually believe that the
experimental results of Bertsekas and Tsitsiklis that we mentioned in Section 2 are underrated with respect to the
other reinforcement learning works.

As small details concerning the game rules and the controller implementations can have significant effects on the
game scores, particular care is required when comparing different approaches. Most of the results reported by
previous works are actually not comparable since they use different Tetris implementations. In particular, when
Dellacherie’s score has to be compared to scores realized with the simplified Tetris setting (considered by most
researchers, see above), it should be considered as5, 200, 000±20% rows instead of660, 000±27%, which was
its reported score on an original Tetris simulator10. The only way to do a fair comparison of various controllers is
to run them on the same simulator and a large number of times. To this end, we have implemented a configurable
and optimized Tetris simulator, and several controllers11.

10Although the score of660, 000 ± 27% was obtained with a more restrictive implementation than the usual simplified setting, it was
already the best performance known.

11The C source code is available here:http://gforge.inria.fr/projects/mdptetris.

10 ICGA Journal March 2010

4. THE 2008 REINFORCEMENT LEARNING COMPETITION

Based on this careful analysis of the Tetris literature, we implemented a controller that combines previous suc-
cessful feature design and feature-weight optimization. We called the program BCTS, which stands for Building
Controllers for Tetris Systems. We trained a controller by the cross-entropy method (Szita and Lőrincz, 2006),
using the performant features of Dellacherie (Fahey, 2003)and two original features mentioned in Table 2.1:
the hole depth and the number of rows with holes. We give here the evaluation function we obtained after the
cross-entropy optimization of the weights:

−12.63 (Landing height)+ 6.60 (Eroded piece cells)− 9.22 (Row transitions)− 19.77 (Column transitions)

−13.08 (Holes)− 10.49 (Cumulative wells)− 1.61 (Hole depth)− 24.04 (Rows with holes).

On the simplified Tetris setting considered by most researchers (see Section 3.1), this controller achieves an
average score of35, 000, 000 ± 20% lines with probability0.95. Although we did not test it on the real Tetris
game (as specified by Fahey, 2003), a conservative lower bound on the score it would realize is910, 000 ± 5%

lines with probability0.95. We obtained this bound by playing games on a10×16 board of the simplified setting;
indeed, any move possible on the10× 16 board with the simplified setting would also be possible on the10× 20

board with the real Tetris game since the height of all Tetrispieces is lower than or equal to 4. More details
regarding how we built BCTS can be found in Thiery and Scherrer (2009).

Using the bibliographical work we present in this article, BCTS recently won the 2008 Reinforcement Learning
Competition. This competition made Tetris controllers play on modified instances of the problem, where some
properties of the game (for instance, the board size and the scoring function for making 1-2-3 or 4 lines) could
vary and the artificial players had to adapt themselves to each environment. The performance measure12 that was
used to compare the different players had much less variancethan the natural measure which we discussed in this
article. Though the problem was formulated in the reinforcement learning context for this competition, any kind
of method was allowed. We used a modified version of our controller discussed above, with an additional original
feature called “pattern diversity”, which looks at the pattern formed by the top part of two adjacent columns and
counts how many different patterns are present. This encourages the controller to ensure that the board can absorb
any piece without making a hole. We know that the artificial players that obtained the second and the third places
(personal communication with Marek Petrik and István Szita respectively) were also tuned by the cross-entropy
method. We believe that our choice of features was decisive to win the competition.

5. CONCLUSION AND OPEN QUESTIONS

To our knowledge, this article is the first in-depth review onthe problem of building a Tetris controller, summariz-
ing the most significant realizations (hand-written, reinforcement learning, general optimization) and providing a
list of the feature functions. This is meant to be a working base for anyone interested in the Tetris problem. Fur-
thermore, we showed that comparing results from different implementations may not make sense because small
differences have a significant effect on game scores. This warning may be applied to other games than Tetris too.

5.1 Two open questions

An observation of this review is that optimization approaches like the cross-entropy method (Szita and Lőrincz,
2006) or the evolutionary methods (Böhmet al., 2005; Llima, 2005) have been much more successful so far than
reinforcement learning approaches. However, the latter provide nice theoretical tools to calculate in particular
the expected score (thevalue function) of the best Tetris strategy. Thus, we were actually able to build the exact
optimal player for a reduced instance of Tetris (a5 × 5 board) using the Value Iteration algorithm (Puterman,
1994; Sutton and Barto, 1998). On this reduced board, the expected value of the score of the optimal strategy
is 13.7 lines. With the real size of the Tetris board, even if the reinforcement learning algorithms suffer from
the curse of dimensionality and have difficulties to estimate the future score when approximation is needed, an
advantage is that they estimate future scores instead of just trying to maximize them. Although the optimization
methods such as cross-entropy and genetic algorithms perform better on Tetris, they provide no information

12The performance was the total score after a fixed number of interactions, with no penalty for losing a game (except a reset to the initial
empty board).

Building Controllers for Tetris 11

about the optimal possible score. This leads us to our first open question. It would be interesting to continue
investigations in this direction in order to estimate an upper bound on the expected value of the optimal player’s
score owing to the reinforcement learning framework.

A second natural question that remains open after this review is to determine what optimization method is the most
suitable for Tetris. The state-of-the-art optimization approaches to tune the weights (Llima, 2005; Böhmet al.,
2005; Szita and L̋orincz, 2006) cannot be compared directly because they use different implementations and
different features. Furthermore, contrary to the two otherworks and the reinforcement learning approaches,
Böhmet al. (2005) only consider two-piece controllers. Hence, their performance compared to one-piece con-
trollers is still unknown. It would be interesting to implement and execute those methods under the same condi-
tions, to determine in what circumstances the cross-entropy method can perform better than genetic algorithms
(if it does), and whether such observations would be specificto Tetris or could apply to other problems as well.

6. REFERENCES

Bellman, R. E. (1957).Dynamic Programming. Princeton University Press, Princeton, NJ.

Bertsekas, D. and Tsitsiklis, J. (1996).Neurodynamic Programming. Athena Scientific.

Billingsley, P. (1995).Probability and measure. John Wiley & Sons, New York, N.Y., 3rd edition.

Boer, P. de, Kroese, D., Mannor, S., and Rubinstein, R. (2004). A tutorial on the cross-entropy method.Annals
of Operations Research, Vol. 1, No. 134, pp. 19–67.

Böhm, N., Ḱokai, G., and Mandl, S. (2005). An Evolutionary Approach to Tetris. The Sixth Metaheuristics
International Conference (MIC2005).

Burgiel, H. (1997). How to Lose at Tetris.Mathematical Gazette, Vol. 81, pp. 194–200.

Carr, D. (2005). Applying reinforcement learning to Tetris. Technical report, Computer Science department of
Rhodes University.

Demaine, E. D., Hohenberger, S., and Liben-Nowell, D. (2003). Tetris is hard, even to approximate.Proc. 9th
International Computing and Combinatorics Conference (COCOON 2003), pp. 351–363.

Fahey, C. P. (2003). Tetris AI, Computer plays Tetris.http://colinfahey.com/tetris/tetris_en.
html.

Farias, V. and Roy, B. van (2006).Tetris: A study of randomized constraint sampling. Springer-Verlag.

Kakade, S. (2001). A natural policy gradient.Advances in Neural Information Processing Systems (NIPS 14),
pp. 1531–1538.

Lagoudakis, M. G., Parr, R., and Littman, M. L. (2002). Least-squares methods in reinforcement learning for con-
trol. SETN ’02: Proceedings of the Second Hellenic Conference on AI, pp. 249–260, Springer-Verlag, London,
UK.

Llima, R. E. (2005). Xtris readme. http://www.iagora.com/˜espel/xtris/README.

Puterman, M. (1994).Markov Decision Processes. Wiley, New York.

Ramon, J. and Driessens, K. (2004). On the numeric stabilityof gaussian processes regression for relational
reinforcement learning.ICML-2004 Workshop on Relational Reinforcement Learning, pp. 10–14.

Sutton, R. and Barto, A. (1998).Reinforcement Learning, An introduction. BradFord Book. The MIT Press.

Szita, I. and L̋orincz, A. (2006). Learning Tetris Using the Noisy Cross-Entropy Method.Neural Computation,
Vol. 18, No. 12, pp. 2936–2941.

Thiery, C. and Scherrer, B. (2009). Construction d’un joueur artificiel pour Tetris.Revue d’Intelligence Artifi-
cielle, Vol. 23, pp. 387–407.

Tsitsiklis, J. N. and Roy, B. van (1996). Feature-Based Methods for Large Scale Dynamic Programming.Machine
Learning, Vol. 22, pp. 59–94.

