R. E. Bellman, Dynamic Programming, 1957.

D. Bertsekas and J. Tsitsiklis, Neurodynamic Programming, 1996.

P. Billingsley, Probability and measure, N.Y, 1995.

P. Boer, . De, D. Kroese, S. Mannor, and R. Rubinstein, A tutorial on the cross-entropy method, Annals of Operations Research, vol.1, issue.134, pp.19-67, 2004.

N. Böhm, G. Kókai, and S. Mandl, An Evolutionary Approach to Tetris, The Sixth Metaheuristics International Conference (MIC2005), 2005.

H. Burgiel, How to Lose at Tetris, The Mathematical Gazette, vol.81, issue.491, pp.194-200, 1997.
DOI : 10.2307/3619195

D. Carr, Applying reinforcement learning to Tetris, 2005.

E. D. Demaine, S. Hohenberger, and D. Liben-nowell, Tetris is Hard, Even to Approximate, Proc. 9th International Computing and Combinatorics Conference, pp.351-363, 2003.
DOI : 10.1007/3-540-45071-8_36

C. P. Fahey, Tetris AI, Computer plays Tetris, 2003.

V. Farias, B. Roy, and . Van, Tetris: A Study of Randomized Constraint Sampling, 2006.
DOI : 10.1007/1-84628-095-8_6

S. Kakade, A natural policy gradient, Advances in Neural Information Processing Systems (NIPS 14), pp.1531-1538, 2001.

M. G. Lagoudakis, R. Parr, and M. L. Littman, Least-Squares Methods in Reinforcement Learning for Control, SETN '02: Proceedings of the Second Hellenic Conference on AI, pp.249-260, 2002.
DOI : 10.1007/3-540-46014-4_23

R. E. Llima, Xtris readme, 2005.

M. Puterman, Markov Decision Processes, 1994.
DOI : 10.1002/9780470316887

J. Ramon and K. Driessens, On the numeric stability of gaussian processes regression for relational reinforcement learning, ICML-2004 Workshop on Relational Reinforcement Learning, pp.10-14, 2004.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

I. Szita, L. Orincz, and A. , Learning Tetris Using the Noisy Cross-Entropy Method, Neural Computation, vol.18, issue.12, pp.2936-2941, 2006.
DOI : 10.1007/s10479-005-5732-z

C. Thiery and B. Scherrer, Construction d'un joueur artificiel pour Tetris, Revue d'intelligence artificielle, vol.23, issue.2-3, pp.387-407, 2009.
DOI : 10.3166/ria.23.387-407

URL : https://hal.archives-ouvertes.fr/inria-00418922

J. N. Tsitsiklis, B. Roy, and . Van, Feature-Based Methods for Large Scale Dynamic Programming, Machine Learning, vol.22, pp.59-94, 1996.