Skip to Main content Skip to Navigation
Conference papers

Compressed Least-Squares Regression

Odalric-Ambrym Maillard 1 Rémi Munos 1
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : We consider the problem of learning, from K data, a regression function in a linear space of high dimension N using projections onto a random subspace of lower dimension M. From any algorithm minimizing the (possibly penalized) empirical risk, we provide bounds on the excess risk of the estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate built in the high-dimensional space (initial domain). We show that solving the problem in the compressed domain instead of the initial domain reduces the estimation error at the price of an increased (but controlled) approximation error. We apply the analysis to Least-Squares (LS) regression and discuss the excess risk and numerical complexity of the resulting ``Compressed Least Squares Regression'' (CLSR) in terms of N, K, and M. When we choose M=O(\sqrt{K}), we show that CLSR has an estimation error of order O(\log K / \sqrt{K}).
Document type :
Conference papers
Complete list of metadatas

Cited literature [26 references]  Display  Hide  Download
Contributor : Rémi Munos <>
Submitted on : Friday, October 30, 2009 - 2:56:20 PM
Last modification on : Tuesday, November 24, 2020 - 2:18:20 PM
Long-term archiving on: : Wednesday, September 22, 2010 - 1:34:57 PM


Files produced by the author(s)


  • HAL Id : inria-00419210, version 2



Odalric-Ambrym Maillard, Rémi Munos. Compressed Least-Squares Regression. NIPS 2009, Dec 2009, Vancouver, Canada. ⟨inria-00419210v2⟩



Record views


Files downloads