J. A. Ainsa, H. D. Parry, and K. F. Chater, A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2), Molecular Microbiology, vol.14, issue.3, pp.607-619, 1999.
DOI : 10.1016/0378-1119(92)90669-G

T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc. 2nd Int. Conf. Intellig. Syst, pp.28-36, 1994.

L. E. Baum, T. Petrie, and G. Soules, A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains, The Annals of Mathematical Statistics, vol.41, issue.1, pp.164-171, 1970.
DOI : 10.1214/aoms/1177697196

S. D. Bentley, K. F. Chater, and A. M. Cerdeño-tárraga, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, vol.85, issue.6885, pp.141-147, 2002.
DOI : 10.1006/jmbi.1990.9999

H. O. Bertrand, T. Ha-duong, and S. Fermandjian, Flexibility of the B-DNA backbone: effects of local and neighbouring sequences on pyrimidine-purine steps, Nucleic Acids Research, vol.26, issue.5, pp.1261-1267, 1998.
DOI : 10.1093/nar/26.5.1261

J. Besemer, A. Lomsadze, and M. Borodovsky, GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions, Nucleic Acids Research, vol.29, issue.12, pp.2607-2183, 2001.
DOI : 10.1093/nar/29.12.2607

M. J. Bibb, V. Molle, and M. Buttner, sigma BldN, an Extracytoplasmic Function RNA Polymerase Sigma Factor Required for Aerial Mycelium Formation in Streptomyces coelicolor A3(2), Journal of Bacteriology, vol.182, issue.16, pp.4606-4616, 2000.
DOI : 10.1128/JB.182.16.4606-4616.2000

URL : https://hal.archives-ouvertes.fr/hal-00314427

L. Bize, F. Muri, and F. Samson, using hidden Markov models, Proceedings of the third annual international conference on Computational molecular biology , RECOMB '99, pp.43-49, 1999.
DOI : 10.1145/299432.299449

M. Blanchette and M. Tompa, Discovery of Regulatory Elements by a Computational Method for Phylogenetic Footprinting, Genome Research, vol.12, issue.5, pp.739-748, 2002.
DOI : 10.1101/gr.6902

J. Buhler and M. Tompa, Finding motifs using random projections, Proc. RECOMB, pp.69-76, 2001.
DOI : 10.1089/10665270252935430

URL : http://b.web.umkc.edu/bic/projection02.pdf

S. Burden, Y. Lin, and R. Zhang, Improving promoter prediction Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences, Bioinformatics, vol.21, issue.5, pp.601-607, 2005.
DOI : 10.1093/bioinformatics/bti047

M. J. Buttner, A. M. Smith, and M. J. Bibb, At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of streptomyces coelicolor A3(2), Cell, vol.52, issue.4, pp.599-607, 1988.
DOI : 10.1016/0092-8674(88)90472-2

A. M. Carvalho, A. T. Freitas, and A. L. Oliveira, Efficient extraction of structured motifs using box-links. String Process, Inform. Retriev. Conf, pp.267-278, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427510

K. F. Chater, C. J. Bruton, and K. A. Plaskitt, The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility ?? factor of B. subtilis, Cell, vol.59, issue.1, pp.133-143, 1989.
DOI : 10.1016/0092-8674(89)90876-3

Y. H. Cho, E. J. Lee, and B. E. Ahn, SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor, Molecular Microbiology, vol.178, issue.1, pp.205-214, 2001.
DOI : 10.1046/j.1365-2958.2001.02622.x

G. Churchill, Stochastic models for heterogeneous DNA sequences, Bulletin of Mathematical Biology, vol.45, issue.1, pp.79-94, 1989.
DOI : 10.1007/BF02458837

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Research, vol.16, issue.22, pp.10881-10890, 1988.
DOI : 10.1093/nar/16.22.10881

A. P. Dempster, N. M. Laird, and R. D. , Maximum likelihood from incomplete data via the EM algorithm, J. R. Statist. Soc, vol.39, pp.1-38, 1977.

M. Dsouza, N. Larsen, and R. Overbeek, Searching for patterns in genomic data, Trends in Genetics, vol.13, issue.12, pp.597-498, 1997.
DOI : 10.1016/S0168-9525(97)01347-4

D. Preez and J. A. , Efficient training of high-order hidden Markov models using first-order representations, Computer Speech & Language, vol.12, issue.1, pp.23-39, 1998.
DOI : 10.1006/csla.1997.0037

D. B. Emmert, P. J. Stoehr, and G. Stoesser, The European Bioinformatics Institute (EBI) databases, Nucleic Acids Research, vol.22, issue.17, pp.3445-3449, 1994.
DOI : 10.1093/nar/22.17.3445

E. Eskin and P. A. Pevzner, Finding composite regulatory patterns in DNA sequences, Bioinformatics, vol.18, issue.Suppl 1, pp.354-363, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S354

J. J. Gordon, M. W. Towsey, and J. M. Hogan, Improved prediction of bacterial transcription start sites, Bioinformatics, vol.22, issue.2, pp.142-148, 2006.
DOI : 10.1093/bioinformatics/bti771

Y. He, Extended Viterbi algorithm for second-order hidden Markov process, Proc. IEEE Int. Conf. Pattern Recogn, pp.718-720, 1988.

S. Hergalant, B. Aigle, and B. Decaris, Intragenomic reiterations detection using Hidden Markov models, Intellig. Syst. Mol. Biol, vol.120, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00100914

S. Hiard, R. Maree, and S. Colson, PREDetector: A new tool to identify regulatory elements in bacterial genomes, Biochemical and Biophysical Research Communications, vol.357, issue.4, pp.861-865, 2007.
DOI : 10.1016/j.bbrc.2007.03.180

M. Hoebeke and S. Schbath, R'MES: finding exceptional motifs. User guide, 2006.

J. Hu, B. Li, and D. Kihara, Limitations and potentials of current motif discovery algorithms, Nucleic Acids Research, vol.33, issue.15, pp.4899-4913, 2005.
DOI : 10.1093/nar/gki791

H. Ikeda, J. Ishikawa, and A. Hanamoto, Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis, Nature Biotechnology, vol.21, issue.5, pp.526-531, 2003.
DOI : 10.1038/nbt820

P. E. Jacques, S. Rodrigue, and L. Gaudreau, Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs, BMC Bioinformatics, vol.7, issue.1, p.423, 2006.
DOI : 10.1186/1471-2105-7-423

H. Jarmer, T. S. Larsen, and A. Krogh, Sigma A recognition sites in the Bacillus subtilis genome, Microbiology, vol.147, issue.9, pp.2417-2424, 2001.
DOI : 10.1099/00221287-147-9-2417

R. Jáuregui, C. Abreu-goodger, and G. Moreno-hagelsieb, Conservation of DNA curvature signals in regulatory regions of prokaryotic genes, Nucleic Acids Research, vol.31, issue.23, pp.6770-6777, 2003.
DOI : 10.1093/nar/gkg882

A. Kanhere and M. Bansal, A novel method for prokaryotic promoter prediction based on DNA stability, BMC Bioinform, vol.6, issue.1, 2005.

A. Krogh, M. Brown, and I. Mian, Hidden Markov Models in Computational Biology, Journal of Molecular Biology, vol.235, issue.5, pp.1501-1531, 1994.
DOI : 10.1006/jmbi.1994.1104

S. Kullback and R. A. Leibler, On Information and Sufficiency, The Annals of Mathematical Statistics, vol.22, issue.1, pp.79-86, 1951.
DOI : 10.1214/aoms/1177729694

F. Kunst, N. Ogasawara, and I. Moszer, The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, vol.141, issue.6657, pp.249-256, 1997.
DOI : 10.1038/36786

C. Lawrence, S. Altschul, and M. Boguski, Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment, Science, vol.262, issue.5131, pp.208-214, 1993.
DOI : 10.1126/science.8211139

L. Ber, F. Beno??tbeno??t, M. Schott, and C. , Studying crop sequences with CarrotAge, a HMM-based data mining software, Ecological Modelling, vol.191, issue.1, pp.170-195, 2006.
DOI : 10.1016/j.ecolmodel.2005.08.031

URL : https://hal.archives-ouvertes.fr/hal-00017169

H. Li, V. Rhodius, and C. Gross, Identification of the binding sites of regulatory proteins in bacterial genomes, Proc. Natl. Acad. Sci. USA 99, pp.11772-11777, 2002.
DOI : 10.1073/pnas.112341999

X. Liu, D. L. Brutlag, and J. S. Liu, BIOPROSPECTOR: DISCOVERING CONSERVED DNA MOTIFS IN UPSTREAM REGULATORY REGIONS OF CO-EXPRESSED GENES, Biocomputing 2001, pp.127-138, 2001.
DOI : 10.1142/9789814447362_0014

G. Loots, I. Ovcharenko, and L. Pachter, rVista for Comparative Sequence-Based Discovery of Functional Transcription Factor Binding Sites, Genome Research, vol.12, issue.5, pp.832-839, 2002.
DOI : 10.1101/gr.225502

S. R. Maetschke, M. W. Towsey, and J. M. Hogan, Bacterial promoter modelling and prediction for E. coli and B. subtilis with Beagle, Proc. WISB?, pp.43-49, 2006.

Y. Makita, M. Nakao, and N. Ogasawara, DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics, Nucleic Acids Research, vol.32, issue.90001, pp.75-77, 2004.
DOI : 10.1093/nar/gkh074

J. F. Mari, J. P. Haton, and A. Kriouile, Automatic word recognition based on second-order hidden Markov models, IEEE Transactions on Speech and Audio Processing, vol.5, issue.1, pp.22-25, 1997.
DOI : 10.1109/89.554265

J. F. Mari, L. Ber, and F. , Temporal and spatial data mining with second-order hidden markov models, Soft Computing, vol.10, issue.5, pp.406-414, 2006.
DOI : 10.1007/s00500-005-0501-0

URL : https://hal.archives-ouvertes.fr/inria-00099573

L. Mccue, W. Thompson, and C. Carmack, Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes, Nucleic Acids Research, vol.29, issue.3, pp.774-782, 2001.
DOI : 10.1093/nar/29.3.774

A. M. Mcguire, J. D. Hughes, and G. M. Church, Conservation of DNA Regulatory Motifs and Discovery of New Motifs in Microbial Genomes, Genome Research, vol.10, issue.6, pp.744-757, 2000.
DOI : 10.1101/gr.10.6.744

R. Munch, K. Hiller, and A. Grote, Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes, Bioinformatics, vol.21, issue.22, pp.4187-4189, 2005.
DOI : 10.1093/bioinformatics/bti635

M. M. Mwangi and E. D. Siggia, Genome wide identification of regulatory motifs in Bacillus subtilis, BMC Bioinform, vol.16, pp.4-18, 2003.

P. Nicolas, L. Bize, and F. Muri, Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models, Nucleic Acids Research, vol.30, issue.6, pp.1418-1426, 2002.
DOI : 10.1093/nar/30.6.1418

URL : http://doi.org/10.1093/nar/30.6.1418

R. Osada, E. Zaslavsky, and M. Singh, Comparative analysis of methods for representing and searching for transcription factor binding sites, Bioinformatics, vol.20, issue.18, pp.3516-3525, 2004.
DOI : 10.1093/bioinformatics/bth438

M. S. Paget, J. G. Kang, and J. H. Roe, sigma R, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2), The EMBO Journal, vol.17, issue.19, pp.5776-5782, 1998.
DOI : 10.1093/emboj/17.19.5776

M. S. Paget, E. Leibovitz, and M. J. Buttner, A putative two-component signal transduction system regulates sigmaE, asigma factor required for normal cell wall intergrity in Streptomyces coelicolor, Mol. Microbiol, vol.3, issue.33, pp.97-107, 1999.

M. S. Paget, V. Molle, and G. Cohen, Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon, Defining the disulphide stress response in Streptomyces coelicolor A3, pp.1007-1020, 2001.
DOI : 10.1126/science.279.5357.1718

URL : https://hal.archives-ouvertes.fr/hal-00314425

L. Petersen, T. S. Larsen, and D. W. Ussery, RpoD Promoters in Campylobacter jejuni Exhibit a Strong Periodic Signal Instead of a ???35 Box, Journal of Molecular Biology, vol.326, issue.5, pp.1361-1372, 2003.
DOI : 10.1016/S0022-2836(03)00034-2

L. Potuckova, G. H. Kelemen, and K. C. Findlay, is required for the late stages of morphological differentiation in Streptomyces spp., Molecular Microbiology, vol.17, issue.1, pp.37-48, 1995.
DOI : 10.1111/j.1365-2958.1995.mmi_17010037.x

N. Rajewsky, N. D. Socci, and M. Zapotocky, The Evolution of DNA Regulatory Regions for Proteo-Gamma Bacteria by Interspecies Comparisons, Genome Research, vol.12, issue.2, pp.298-308, 2002.
DOI : 10.1101/gr.207502

V. Rangannan and M. Bansal, Identification and annotation of promoter regions in microbial genome sequences on the basis of DNA stability, Journal of Biosciences, vol.10, issue.S1, pp.851-862, 2007.
DOI : 10.1007/s12038-007-0085-1

K. Robison, A. M. Mcguire, and G. M. Church, A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome, Journal of Molecular Biology, vol.284, issue.2, pp.241-254, 1998.
DOI : 10.1006/jmbi.1998.2160

S. Robin, J. Daudin, and H. Richard, Occurrence Probability of Structured Motifs in Random Sequences, Journal of Computational Biology, vol.9, issue.6, pp.761-773, 2002.
DOI : 10.1089/10665270260518254

URL : https://hal.archives-ouvertes.fr/hal-00427461

K. Rutherford, J. Parkhill, and J. Crook, Artemis: sequence visualization and annotation, Bioinformatics, vol.16, issue.10, pp.944-945, 2000.
DOI : 10.1093/bioinformatics/16.10.944

N. J. Ryding, G. H. Kelemen, and C. A. Whatling, A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2), Molecular Microbiology, vol.29, issue.1, pp.343-357, 1998.
DOI : 10.1046/j.1365-2958.1998.00939.x

E. Segal, S. , and R. , A Discriminative Model for Identifying Spatial cis-Regulatory Modules, Journal of Computational Biology, vol.12, issue.6, pp.822-834, 2005.
DOI : 10.1089/cmb.2005.12.822

L. Servin-gonzalez, M. R. Jensen, and J. White, Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3 (2), Microbiology, vol.140, issue.10, pp.2555-2565, 1994.
DOI : 10.1099/00221287-140-10-2555

R. Siddharthan, E. Siggia, and E. Van-nimwegen, PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny, PLoS Computational Biology, vol.425, issue.7, p.67, 2005.
DOI : 10.1371/journal.pcbi.0010067.st001

T. F. Smith and M. S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, pp.195-197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

G. D. Stormo, DNA binding sites: representation and discovery, Bioinformatics, vol.16, issue.1, pp.16-23, 2000.
DOI : 10.1093/bioinformatics/16.1.16

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/16/1/16

D. J. Studholme, S. D. Bentley, and J. Kormanec, Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor, BMC Microbiology, vol.4, issue.1, p.14, 2004.
DOI : 10.1186/1471-2180-4-14

G. Thijs, M. Lescot, and K. Marchal, A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling, Bioinformatics, vol.17, issue.12, pp.1113-1122, 2001.
DOI : 10.1093/bioinformatics/17.12.1113

M. Tompa, N. Li, and T. L. Bailey, Assessing computational tools for the discovery of transcription factor binding sites, Nature Biotechnology, vol.5, issue.1, pp.137-144, 2005.
DOI : 10.1002/prot.10556

F. Touzain, S. Schbath, and I. Debled-rennesson, SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics, BMC Bioinformatics, vol.9, issue.1, p.73, 2008.
DOI : 10.1186/1471-2105-9-73

URL : https://hal.archives-ouvertes.fr/inria-00580657

A. Typas and R. Hengge, Differential ability of ??s and ??70 of Escherichia coli to utilize promoters containing half or full UP-element sites, Molecular Microbiology, vol.32, issue.1, pp.250-260, 2005.
DOI : 10.1111/j.1365-2958.2004.04382.x

J. Van-helden, D. Olmo, M. Pérez-ortín, and J. E. , Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals, Nucleic Acids Research, vol.28, issue.4, pp.1000-1010, 2000.
DOI : 10.1093/nar/28.4.1000

A. Vanet, L. Marsan, and A. Labigne, Inferring regulatory elements from a whole genome. an analysis of Helicobacter pylori??80 family of promoter signals, Journal of Molecular Biology, vol.297, issue.2, pp.335-53, 2000.
DOI : 10.1006/jmbi.2000.3576

URL : https://hal.archives-ouvertes.fr/hal-00427110

T. Wang and G. D. Stormo, Combining phylogenetic data with co-regulated genes to identify regulatory motifs, Bioinformatics, vol.19, issue.18, pp.2369-80, 2003.
DOI : 10.1093/bioinformatics/btg329

J. H. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-244, 1963.
DOI : 10.1007/BF02289263

T. Yada, Y. Totoki, and M. Ishikawa, Automatic extraction of motifs represented in the hidden Markov model from a number of DNA sequences, Bioinformatics, vol.14, issue.4, pp.317-325, 1998.
DOI : 10.1093/bioinformatics/14.4.317