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Scaling Analysis of Affinity Propagation

Cyril Furtlehner,∗ Michèle Sebag,† and Xiangliang Zhang‡

(Dated: June 9, 2010)

We analyze and exploit some scaling properties of the Affinity Propagation (AP) clustering algo-
rithm proposed by Frey and Dueck (2007). Following a divide and conquer strategy we setup an
exact renormalization-based approach to address the question of clustering consistency, in particu-
lar, how many cluster are present in a given data set. We first observe that the divide and conquer
strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N (h+2)/(h+1)),
for a data-set of size N and a depth h of the hierarchical strategy. For a data-set embedded in a
d-dimensional space, we show that this is obtained without notably damaging the precision except
in dimension d = 2. In fact, for d larger than 2 the relative loss in precision scales like N (2−d)/(h+1)d.
Finally, under some conditions we observe that there is a value s∗ of the penalty coefficient, a free
parameter used to fix the number of clusters, which separates a fragmentation phase (for s < s∗)
from a coalescent one (for s > s∗) of the underlying hidden cluster structure. At this precise point
holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate
its position, as a result of an exact decimation procedure. From this observation, a strategy based
on AP can be defined to find out how many clusters are present in a given dataset.

I. INTRODUCTION

Clustering techniques are useful data-mining tools in
Machine Learning with many applications in biology,
astrophysics, pattern recognition, library archiving and
more generally for data processing. The question is how
to partition an ensemble of objects such that similar
ones pertain to the same classes. A precise statement
of the problem requires the definition of a similarity
measure between objects and of a cost function. As
such, it turns out to be an optimization problem, which
is generally NP-Hard. Many algorithms have been
proposed, ranging from expectation-maximization (EM)
types approaches [1] like k-centers and k-means [2]
to percolation-like methods for building hierarchies.
From the statistical physics viewpoint depending on
the form of the cost function, the clustering solution
may be reformulated as the ground sate of a q-states
Potts model which can be solved by Monte-Carlo based
methods [3]. This type of models are suitable for Bethe-
Peierls approximations, which algorithmic counterpart
is known to be the belief-propagation (BP) algorithm of
Pearl [4, 5]. This algorithm was initially introduced in
the context of Bayesian inference, but for optimization
problems this has a well defined zero temperature limit,
the so-called min-sum algorithm [6].

Considering a relaxed version of the cost function were
clusters are identified by exemplars, and only the simi-
larity of data to their exemplars are taken into account,
Frey and Dueck have recently proposed the affinity prop-

agation algorithm [7] as an instance of the min-sum al-
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gorithm to solve the clustering problem. Their algorithm
turns out to be very efficient compared to other center-
based methods like k-centers and k-means by avoiding of
getting stuck into some local minimum when the size of
the dataset increases. The price to pay for these under-
standability and stability properties is a quadratic com-
putational complexity, except if the similarity matrix is
made sparse with help of a pruning procedure. Neverthe-
less, a pre-treatment of the data would also be quadratic
in the number if item, which is severely hindering the
usage of AP on large scale datasets. The basic assump-
tion behind AP, is that cluster are of spherical shape.
This limiting assumption has actually been addressed by
Leone and co-authors in [8, 9], by softening a hard con-
straint present in AP, which impose that any exemplar
has first to point to itself as oneself exemplar. Another
drawback, which is actually common to most clustering
techniques, is that there is a free parameter to fix which
ultimately determines the number of clusters. Some
methods based on EM [10] or on information-theoretic
consideration have been proposed [11], but mainly use
a precise parametrization of the cluster model. There
exists also a different strategy based on similarity statis-
tics [12], that have been already recently combined with
AP [13], at the expense of a quadratic price.
In an earlier work [14, 15], a hierarchical approach, based
on a divide and conquer strategy was proposed, to de-
crease the AP complexity and adapt AP to the context
of Data Streaming. In this paper we basically analyze
in greater details the combination of AP with a divide
and conquer strategy from a scaling point of view and,
realizing that this can be restated as an exact renormal-
ization procedure by decimation of the dataset, we define
a new stability criteria to asses the validity of the clus-
tering solution. The main results of the paper are on
one hand, the information loss estimation when AP is
combined with this hierarchical procedure, and a simple
recipe to identify (almost for free after the hierarchical
treatment) the number of cluster present in the dataset,



on the other hand.
The paper is organized as follows. In Section II we start
from a brief description of BP and some of its properties.
We summarize how AP and its extension, soft constraint
affinity propagation (SCAP), originate from it. Then in
Section III, we define our hierarchical approach Hi-AP

and analyze its computational complexity. In Section IV
we compute the leading behavior, of the resulting error
measured on the distribution of exemplars, which de-
pends on the dimension and on the size of the subsets.
Based on these results we enforce the self-similarity of
Hi-AP in Section V to develop a renormalized version of
AP (in the statistical physics sense) and discuss how to
fix in a self-consistent way the penalty coefficient, conju-
gate to the number of clusters, present in AP. Finally
Section VI is devoted to experimental tests: we present
proof of principle of this method on artificial dataset and
analyze its robustness and limits on real-world dataset.

II. INTRODUCTION TO

BELIEF-PROPAGATION AND AP

A. Local marginal computation

The belief propagation algorithm is intended to comput-
ing marginals of joint-probability measure of the type

P (x) =
∏

a

ψa(xa)
∏

i

φ(xi), (II.1)

where x = (x1, . . . , xN ) is a set of variables, xa = {xi, i ∈
a} a subset of variables involved in the factor ψa, while
the φi’s are single variable factors. The structure of the
joint measure Pa is conveniently represented by a factor
graph [6], i.e. a bipartite graph with two set of vertices,
F associated to the factors, and V associated to the vari-
ables, and a set of edges E connecting the variables to
their factors. Computing the single variables marginals
scales in general exponentially with the size of the sys-
tem, except when the underlying factor graph has a tree
like structure. In that case all the single site marginals
may be computed at once, by solving the following iter-
ative scheme due to J. Pearl [4]:

ma→i(xi)←−
∑

xj
j∈a,j 6=i

ψa(xa)
∏

j

nj→a(xj)

ni→a(xi)←− φi(xi)
∏

b∋i,b6=a

mb→i(xi).

ma→i(xi) is called the message sent by factor node a to
variable node i, while ni→a(xi) is the message sent by
variable node i to a. These quantities would actually
appear as intermediate computations terms, while de-
conditioning (II.1). On a singly connected factor graph,
starting from the leaves, two sweeps are sufficient to ob-
tain the fixed points messages, and the beliefs (the local

marginals) are then obtained from these sets of messages
using the formulas:

bi(xi) =
1

Zi
φi(xi)

∏

a∋i

ma→i(xi)

ba(xa) =
1

Za
ψa(xa)

∏

i∈a

ni→a(xi)

with Zi and Za insuring normalization of the beliefs. On
a multiply connected graph, this scheme can be used as
an approximate procedure to compute the marginals, still
reliable on sparse factor graph, while avoiding the expo-
nential complexity of an exact procedure. Many connec-
tions with mean field approaches of statistical physics
have been recently unravelled, in particular the connec-
tion with the TAP equations introduced in the context
of spin glasses [16], and with the Bethe approximation of
the free energy[5].

B. AP and SCAP as min-sum algorithms

The AP algorithm is a message-passing procedure pro-
posed by Frey and Dueck [7] that performs a classifi-
cation by identifying exemplars. It solves the following
optimization problem

c∗ = argmin
(

E[c]
)

,

with

E[c]
def
= −

N
∑

i=1

S(i, ci)−
N

∑

µ=1

logχµ[c] (II.2)

where c = (c1, . . . , cN ) is the mapping between data and
exemplars, S(i, ci) is the similarity function between i
and its exemplar. For datapoints embedded in an Eu-
clidean space, the common choice for S is the negative
squared Euclidean distance. A free positive parameter is
given by

s
def
= −S(i, i), ∀i,

the penalty for being oneself exemplar. χ
(p)
µ [c] is a set of

constraints. They read

χµ[c] =

{

p, if cµ 6= µ, ∃i s.t. ci = µ,

1, otherwise.

p = 0 is the constraint of the model of Frey-Dueck.
Note that this strong constraint is well adapted to well-
balanced clusters, but probably not to ring-shape ones.
For this reason Leone et. al. [8, 9] have introduced the
smoothing parameter p. Introducing the inverse temper-
ature β,

P [c]
def
=

1

Z
exp(−βE[c])



represents a probability distribution over clustering as-
signments c. At finite β the classification problem reads

c∗ = argmax
(

P [c]
)

.

The AP or SCAP equations can be obtained from the
standard BP equation [7, 8] as an instance of the Max-
Product algorithm. For self-containess, let us sketch the
derivation here. The BP algorithm provides an approx-
imate procedure to the evaluation of the set of single
marginal probabilities {Pi(ci = µ)} while the min-sum
version obtained after taking β → ∞ yields the affinity
propagation algorithm of Frey and Dueck. The factor-
graph involves variable nodes {i, i = 1 . . .N} with cor-
responding variable ci and factor nodes {µ, µ = 1 . . .N}
corresponding to the energy terms and to the constraints
(see Figure II.1). Let Aµ→i(ci) the message sent by factor
µ to variable i and Bi→µ(ci) the message sent by variable
i to node µ. The belief propagation fixed point equations
read:

Aµ→i(ci = c) =
1

Zµ→i

∑

{cj}

∏

j 6=i

Bj→µ(cj)χ
β
µ[{cj}, c]

(II.3)

Bi→µ(ci = c) =
1

Zi→µ

∏

ν 6=µ

Aν→i(c)e
βS(i,c) (II.4)

Once this scheme has converged, the fixed points mes-
sages provide a consistency relationship between the two
sets of beliefs

bµ[{ci} = c] =
1

Zµ
χβ

µ[c]

N
∏

i=1

Bi→µ(ci) (II.5)

bi(ci = c) =
1

Zi

N
∏

µ=1

Aµ→i[c]e
βS(i,c) (II.6)

The joint probability measure then rewrites

P [c] =
1

Zb

∏N
µ=1 bµ[c]

∏N
i=1 b

N−1
i (ci)

with Zb the normalization constant associated to this set
of beliefs. In (II.3) we observe first that

Âµ→i
def
= Aµ→i(ci = ν 6= µ), (II.7)

is independent of ν and secondly that Aµ→i(ci = c) de-
pends only onBj→µ(cj = µ) and on

∑

ν 6=µBj→µ(cj = ν).
This means that the scheme can be reduced to the prop-
agation of four quantities, by letting

Aµ→i
def
= Aµ→i(ci = µ),

Âµ→i
def
=

1−Aµ→i

N − 1

Bi→µ
def
= Bi→µ(ci = µ)

B̄i→µ
def
= 1−Bi→µ,

which reduce to two types of messages Aµ→i and Bi→µ.
At this point we introduce the log-probability ratios,

FIG. II.1: Factor graph corresponding to AP. Small
squares represents the constraints while large ones are

associated to pairwise contributions in E(c).

aµ→i
def
=

1

β
log

(Aµ→i

Âµ→i

)

,

ri→µ
def
=

1

β
log

(Bi→µ

B̄i→µ

)

,

corresponding respectively to the “availability” and “re-

sponsibility” messages of Frey-Dueck. with q
def
= − 1

β log p.

Taking the limit β →∞ at fixed q yields

aµ→i = min
(

0,max
(

−q,min(0, rµ→µ)
)

+
∑

j 6=i

max(0, rj→µ)
)

,

µ 6= i, (II.8)

ai→i = min
(

q,
∑

j 6=i

max(0, rj→i)
)

, (II.9)

ri→µ = S(i, µ)−max
ν 6=µ

(

aν→i + S(i, ν)
)

. (II.10)

After reaching a fixed point, exemplars are obtained ac-
cording to

c∗i = argmax
µ

(

S(i, µ) + aµ→i

)

= argmax
µ

(

ri→µ + aµ→i

)

.

(II.11)
Altogether, II.8,II.9,II.10 and II.11 constitute the equa-
tions of SCAP which reduce to the equations of AP when
q tends to −∞.

III. DECREASING THE COMPLEXITY OF

AFFINITY PROPAGATION

As already mentioned the AP computational complexity
is expected to scale like O(N2); it involves the matrix S



of pair distances, with quadratic complexity in the num-
ber N of items, severely hindering its use on large-scale
datasets[17]. This AP limitation which is for example not
adapted to streaming of data, can be overcome through a
Divide-and-Conquer heuristics inspired from [18], which
we have proposed in [14, 15]. Let us describe here this
approach.

A. Hierarchical affinity propagation

The basic procedure goes as follows: The dataset E of
size N is randomly partitioned into

√
N subsets. AP

is launched on every subset and outputs a set of exem-
plars, which in turn are clustered to yield the final result.
The complexity is then

√
N × (

√
N)2 = N3/2 as long

as the number of exemplars K produced by each indi-
vidual subset is o(N1/4) because the last clustering step

costs (K
√
N)2 in complexity. This Divide-and-Conquer

strategy could be actually combined with any other ba-
sic clustering algorithm, and this procedure can be easily
extended to have more than one hierarchical levels, thus
reducing further the computational cost as follows.

Dataset

WAP

WAP

Exemplars
WAP

h=1

h=2

h=0

FIG. III.2: Sketch of the Hi-AP procedure for 2
hierarchical levels. At each elementary clustering steps,
items are weighted in proportion to what they represent

as exemplars, i.e. WAP is in use instead of AP.

Let h be the total number of hierarchical levels, starting
at h = 0 for the basic dataset so that by convention
Hi-AP with h = 0 simply reduces to AP. At each level
of the hierarchy, the penalty parameter s is set such that
the expected number of exemplars extracted along each
clustering step is a constant K. If b is the ratio of subset
number between two hierarchical levels, M = N/bh is
the size of each subset to be clustered at level h; at level
h − 1, each clustering problem thus involves bK = M
exemplars with corresponding complexity

C(0) = K2
(N

K

)
2

h+1 .

The total number Ncp of clustering procedures involved

is

Ncp =

h
∑

i=0

bi =
bh+1 − 1

b− 1
,

with overall computational complexity:

C(h) = K2
(N

K

)
2

h+1

N
K − 1

(

N
K

)
1

h+1 − 1
≈

N≫K
K2

(N

K

)

h+2
h+1 .

It is seen that C(0) = N2, C(1) ∝ N3/2,. . . , and C(h) ∝
N for h≫ 1 .
Note that this procedure is naturally implemented in a
streaming context; the partition is made automatically
by buffering the data as they arrive in a buffer of size M .
When it is full, AP is run on this set, and the exemplars
are stored in another buffer of identical size M but cor-
responding to the next hierarchical level. The procedure
can be continued indefinitely as long as the data flow is
not too large, i.e. the run-time taken by AP to treat one
single buffer at lowest hierarchical level should not exceed
the time needed for the same buffer to be full again.

B. AP clustering of aggregated data points

The exemplars at some level may not represent a fixed
number of data points from lower levels, so a slight ad-
justment may be needed in some cases. The question
then is how should we adapt the update rules of AP

when the data points are the result of some prior ag-
gregation. Assuming that a subset S ⊂ E of n points,
supposed to be at average mutual distance ǫ is aggre-
gated into a single point c ∈ S, how should we change
the update rules so as to keep the result stable when ǫ is
small? This is done by rewriting the similarity matrix as
follows:

S(c, i) −→ nS(c, i), ∀i ∈ S̄ (III.1)

S(i, c) −→ S(i, c), ∀i ∈ S̄ (III.2)

S(c, c) −→
∑

i∈S

S(i, c), (III.3)

and all lines and columns with index i ∈ S\{c} are sup-
pressed from the similarity matrix. The first transforma-
tion (III.1) simply states that c as a datapoint accounts
now for n former points in S, while (III.2) reflects that c
taken as exemplar accounts for himself only in (II.2). In
the last transform (III.3) it is implicitly assumed that if c
is its own exemplar, then all points in S would adopt him
as their exemplar too. This redefinition of the similarity
matrix is not anymore symmetric and yields non-uniform
penalty coefficients. In the basic update equations (II.8),
(II.9), (II.10) and (II.11), nothing prevents from having
different self-similarities because the key property (II.7)
for deriving these equations is not affected by this. For



FIG. III.3: Aggregation of data points into single
weighted items.

a valid clustering with the hard constraint of AP, the
energy cost per data point obtained from (II.2) reads

e[c] =
1

N

n
∑

c=1

(

s+
∑

i∈c

d2(i, c)
)

=
n

N
s+

1

N

N
∑

i=1

d2(i, ci),

(III.4)
if n is the total number of cluster found by the solution,
and we specify the similarity measure with help of the
Euclidean distance

d(i, j) = |ri − rj |, ∀(i, j) ∈ E2.

To insure a basic scale invariance of the result, i.e. that
the same solution is recovered, when the number of points
in the dataset is rescaled we see that s has to scale like N .
Now, if we deal directly with weighted data points in an
Euclidean space, the preceding considerations concerning
the re-weighting of the similarity matrix suggests that
one may start directly from the following cost function:

e[c]
def
= ns+

1

Z

n
∑

c=1

∑

i∈c

wid
2(i, c). (III.5)

Z being the normalization constant

Z
def
=

∑

i∈E

wi.

The {wi, ∀i ∈ S} is a set of weights attached to each dat-
apoint and the self-similarity has been rescaled uniformly

s −→
∑

i∈E

wi s.

with respect to the total weight of the dataset. Update
rules of AP will be modified accordingly to III.5 and will
be referred as to weighted affinity propagation (WAP) in
the following. This along with the partitioning mecha-
nism defines in principle completely our hierarchical affin-
ity propagation algorithm (Hi-AP). However, as we shall
see in V, the penalty s may be force to scale differently
between hierarchies, under some additional constraints
related to clustering stability. Beforehand we have to
analyse some scaling effects associated to Hi-AP, moti-
vated by the estimation of the error caused by the Divide-
and-Conquer strategy.

IV. INFORMATION LOSS OF HI-AP

Assessing the error made by Hi-AP is not an easy task
for a general distribution of data points and for an ar-
bitrary setting of the penalty s, because this requires
in principle the knowledge, or at least a good estima-
tion of the joint distribution of exemplars found by AP.
Nevertheless, we can say something in the following rel-
evant situation, where the underlying dataset presents
well separated clusters and by assuming that the penalty
s is correctly tuned: this means that AP do not frag-
ment or merge these underlying clusters, it is selecting
exactly one single exemplar per existing true cluster. In
such a case, clusters can be considered independently. In
what follows we consider a single cluster with finite vari-

ance, with its center of mass inside the cluster, and make
the assumption that the exemplar selected by AP is the
nearest neighbor to the center of mass (see Figure. IV.4).
Indeed, by construction, AP aims at finding the cluster
exemplar rc nearest to the center of mass of the sample
points noted rcm:

e(c) = s+
1

N

N
∑

i=1

|ri − rc|2 = |rcm − rc|2 + Cst.

A. No loss in dimension d 6= 2 for a well-tuned

dilute AP clustering

To assess the information loss incurred by Hi-AP it turns
out to be more convenient to compare the results in dis-
tribution, i.e. the distribution Pc of the cluster exem-
plars computed by AP, and the distribution Pc(h) of the
cluster exemplar computed by Hi-AP with hierarchy-
depth h, by considering for example their relative Kull-
back Leibler distance, or more basically by comparing
their variance.

Center of Mass

Exemplar

FIG. IV.4: The point minimizing the energy cost for a
single cluster distribution

Let

r̃c = rc − rcm.

denotes the relative position of exemplar rc with respect
to the center of mass rcm. Assuming a spherical symme-
try for the cluster (in fact this has to be true only locally
near the center of mass as shown in the next subsection),



the probability distribution of r̃c conditionally to rcm is
cylindrical; the cylinder axis supports the segment (0,
rcm), where 0 is the origin of the d-dimensional space.
As a result, the probability distribution of rcm+ r̃c is
the convolution of a spherical distribution, governed by
the central limit theorem, with a cylindrical one governed
by extreme value events.
In the sequel, subscripts sd refers to sample data, ex to
the exemplar, and cm to center of mass, x

�
denotes the

corresponding square distances to the origin, f
�
the cor-

responding probability densities and F
�
their cumulative

distribution. With these notations, the variance of the
bare sample data distribution reads

σ
def
= E[xsd] =

∫ ∞

0

xfsd(x)dx, (IV.1)

and we assume it to be finite, as well as the following
quantity,

α
def
= − lim

x→0

log(Fsd(x))

x
d
2

, (IV.2)

which encodes the short distance behaviour of the sample
data distribution. The cumulative distribution of xcm of
a sample of size M then satisfies

lim
M→∞

Fcm(
x

M
) =

Γ
(

d
2 ,

dx
2σ

)

Γ
(

d
2

) ,

where Γ(x, y) is the incomplete gamma function, by
virtue of the central limit theorem. Meanwhile, xfex=
|rex − rcm|2 has a universal extreme value distribution
(up to rescaling, see e.g. [19] for general methods):

lim
M→∞

Ffex(
1

M2/d
x) = exp

(

−αx d
2

)

. (IV.3)

To see how the clustering error propagates along with
the hierarchical process, we proceeds by induction. At
hierarchical level h, one exemplar is selected out of M
sample data spherically distributed with variance σ(h);
it is the closest one to the center of mass and become a
sample data at next level. Therefore, at hierarchical level
h+ 1, the sample data distribution is the convolution of
two spherical distributions, the exemplar and center of
mass distributions obtained at level h. Assuming α and σ

are given by α
(h)
d and σ(h) at level h, the following scaling

recurrence property holds at level h+1 (See appendix A
for details):

lim
M→∞

F
(h+1)
sd (

x

M (h+1)
) =











Γ(1
2 ,

x
2σ(h+1) )

Γ(1
2 )

d = 1

exp(−α(h+1)
2 x) d = 2

lim
M→∞

F
(h+1)
sd (

x

M2(h+1)/d
) = exp

(

−α(h+1)
d x

d
2

)

d > 2.

with σ(h+1) = σ(h) for d = 1, α
(h+1)
d = α

(h)
d for

d > 2, while α
(h+1)
2 = α

(h)
2 /2 in dimension 2. As a result
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FIG. IV.5: Radial distribution plot of exemplars
obtained by clustering of Gaussian distributions of

N = 106 samples in IRd in one single cluster exemplar,
with hierarchical level h ranging in 0,1,2,5, for diverse
values of d: d = 1 (upper left), d = 2 (upper right),
d = 3 (bottom left) and d = 4 (bottom right). Fitting
functions are of the form f(x) = Cxd/2−1 exp(−αxd/2).

the distortion loss incurred by Hi-AP does not depend
on the hierarchy depth h except in dimension d = 2.
Figure IV.5 shows the radial distribution of exemplars
obtained with different hierarchy-depth h and depending
on the dimension d of the dataset. The curve for h = 0
corresponds to the AP situation, so the comparison with
h > 0 shows that the information loss due to the hier-
archical approach is moderate to negligible in dimension
d 6= 2 provided that the number of samples per cluster at
each clustering level is “sufficient” (say, M > 30 for the
law of large numbers to hold). In dimension d > 2, the
distance of the center of mass to the origin is negligible
with respect to its distance to the nearest exemplar; the
behaviour of the cost is thus governed by the Weibull dis-
tribution which is stable by definition (with an increased
sensitivity to small sample size M as d approaches 2). In
dimension d = 1, the distribution is dominated by the
variance of the center of mass, yielding the gamma law
which is also stable with respect to the hierarchical pro-
cedure. In dimension d = 2 however, the Weibull and
gamma laws do mix at the same scale; the overall effect
is that the width of the distribution increases like 2h, as
shown in Fig. IV.5 (top right).

B. Corrections for finite size dataset

In practice the number of data points per cluster might
be not so large, hence it would be interesting to have
an estimation of the error made by Hi-AP when M is
finite. In order to limit the assumption on the shape of
the underlying cluster we observe first that the parameter
α defined in the preceding section is related to density at



the center of the cluster psd(0) by

α = psd(0)
Ωd

d
, (IV.4)

with Ωd = 2πd/2/Γ(d/2) the d-dimensional solid angle,
as long as the distribution is locally spherical around this
point. Still, the shape of the cluster has some influence
on the final result and we characterize it by defining the
following ad hoc shape factor:

ω
def
=

σα2/d

Γ
(

1 + 2
d

) . (IV.5)

This dimensionless coefficient, relating α i.e. the density
at the center of cluster to its variance σ prove to be useful
for our purpose. By definition it reduces to ω = 1 for
the universal Weibull distribution (IV.3) and some other
values depending on the spatial dimension are displayed
in Table I. For d > 2, assuming α = α(h), σ = σ(h)

Weibull Gaussian Uniform Uniform

(IV.3) L1-sphere L2-sphere
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d
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π
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`
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d

´
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`

d
2
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d
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Γ
`

d
2

´´2/d

d
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1

Γ
`

1 + 2
d

´

TABLE I: Different values of ω for various distributions

and ω = ω(h) at level h we find the following recurrence
property (see Appendix B for details):

σ(h+1) = σ(h) + o
(

M2/d−1
)

,

=
σ(0)

ω(0)

(

1 +
1

M1−2/d

)

+ o
(

M2/d−1
)

For a dataset of size N , M = N1/h when there are h− 1
hierarchical levels, so if we now compare the variance

σ(h) =
σ(0)

ω(0)

(

1 +N2/dh−1/h
)

+ o
(

N2/hd−1/h
)

,

of the exemplar distribution in that case, to

σ(1) =
σ(0)

ω(0)

(

1 +
ω(0)

N1−2/d

)

+ o
(

N2/d−1
)

,

obtained directly with AP , we get

σ(h)

σ(1)
− 1 = N2/dh−1/h + o

(

N2/dh−1/h
)

,

when d is larger than 2. This is consistent with the nu-
merical check shown on Figure IV.6.

V. RENORMALIZING AFFINITY

PROPAGATION

In Section III we left aside the question concerning the
penalty coefficient s, how should it be modified from one
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FIG. IV.6: σ(h+1)/σ(1) − 1 for h = 1, 2, 5 as a function
of the dimension, when finding exemplars of a single

cluster of 106 points (repeated 104 times)

hierarchical level to the next one. We address this ques-
tion in the present section by applying a simple and exact
renormalization principle to AP , based on the results of
the preceding section, to yield a way to determine the
number of true underlying clusters in a dataset.
By convenience we setup a thermodynamic limit where
data point and clusters are distributed in a large spatial
volume V and go to infinity independently with a fixed
density of underlying clusters. After dividing s by V , the
clustering cost per datapoint (III.5) reads for large n and
N , n << N :

e(ρ) = σ(ρ) + sρ, (V.1)

with ρ = n/V denoting a fixed density of clusters found
by AP;

σ(ρ)
def
=

ρV
∑

c=1

νcσc, (V.2)

denotes the distortion function, with νc = Nc/N the frac-
tion of points in cluster c and σc the corresponding vari-
ance of the AP-cluster c.
Let us consider a one level Hi-AP where the N -size
dataset is randomly partitioned into M = 1/λ subsets
of λN points each and where the reduced penalty s is
fixed to some value such that each clustering procedure
yields n exemplars on average. Considering the n/λ-size
set of exemplars, the question is to adjust the value s(λ)

for clustering this new dataset, in order to recover the
same result as obtained by clustering the initial dataset
with penalty s. Let us make some assumptions on the
dataset:
• (i): the initial dataset samples n∗ non-overlapping

distributions, with common shape factor ω.
• (ii): there exists a value s∗ of s for which AP yields

the n∗ true underlying clusters when N tends to
infinity.
• (iii): σ(ρ), the mean square distance of the sam-

ple data to their exemplars in the thermodynamic
limit, is assumed to be a smooth decreasing con-
vex function of the density ρ = n/V of exemplars
(obtained by AP) with possibly a cusp at ρ = ρ∗.
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Assumption (i) can be approximately measured through
parameter η, where dmin is the minimal distance between
cluster centers and Rmax is the maximal value of cluster
radius:

η
def
=

dmin

2Rmax
, (V.3)

Indeed clusters are expected to be separable for η > 1.
In practice, gradually increasing s decreases the number
of clusters, one by one, either merging two clusters frag-
ments of a true cluster (de-fragmenting phase) or merging
two (truly distinct) clusters (coalescent phase). Assump-
tion (ii) implies that merging two truly distinct clusters
entails a higher cost than fragmenting a true cluster. It
follows that, by gradually increasing s, one first observes
the de-fragmenting phase − until some threshold value
s∗ is reached. At that point the de-fragmentation phase
ends and is replaced by the coalescent one.
Performing the clustering using one or two hierarchi-
cal levels should yield the same result. This basic re-
quirement indicates how s should be renormalized. It is
obtained by reinterpreting the Divide-and-Conquer as a
decimation procedure by enforcing the self-consistency of
Hi-AP as illustrated in Figure V.8. Let n1 [resp. n2] be
the number of clusters obtained after the first [resp. sec-
ond] clustering stage. Depending on s the proper rescal-
ing may vary, but for s ≃ s∗ this is supposed to behave
in a universal way, because in that case, the clusters are
preserved while their variance, as shown in the preceding

section is simply multiplied by
(

Nλ/n1

)−2/d
/ω = λ2/d/ω

in dimension d > 2. Therefore we choose to rescale s as

s(λ) =
λ2/d

ω
s. (V.4)

When λ2/d/ω ≪ 1, i.e. when there is a sufficient amount
of data points per cluster, we expect the following prop-
erty of Hi-AP to hold:

if



















s < s∗ then n2 ≥ n1 ≥ n∗

s = s∗ then n2 = n1 = n∗.

s > s∗ then n2 = n1 ≤ n∗

(V.5)

FIG. V.8: Divide-and-Conquer strategy translated in a
Kadanoff decimation procedure.

s = s*

s >> s*

s << s*

FIG. V.9: Transformation of the clusters after the first
Hi-AP step depending on s. s(λ) is defined to insure

clustering stability when s ≃ s∗.

The reason is the following. In the thermodynamic limit
the value n1 for n, which minimizes the energy is obtained
for ρ1 = n1/V as the minimum of (V.1):

s+ σ′(ρ1) = 0.

At the second stage one has to minimize with respect to
ρ,

e(λ)(ρ) =
λ2/d

ω

[ ω

λ2/d
σ(λ)(ρ, ρ1) + ρs

]

,

where σ(λ)(ρ, ρ1) denotes the distortion function of the
second clustering stage when the first one yields a density
ρ1 of clusters. This amounts to find ρ = ρ2 such that

s+
ω

λ2/d

∂σ(λ)

∂ρ
(ρ, ρ1) = 0, (V.6)

We need now to see how, depending on ρ1,

σ̃(λ)
ρ1

(ρ)
def
= λ−2/dσ(λ)(ρ, ρ1)

compares with σ(ρ). This is depicted on Figure V.10.a.
The qualitative justification of this plot is given in Ap-
pendix C. The point which is selected then graphically
corresponds to the one for which the slope of σ(ρ) is −s,



which results in the behaviour depicted on Figure V.10.b.
from which this property (V.5) holds. The true number
of clusters n∗ = ρ∗V is then easily identified as the junc-
tion point of the two curves in this figure.

ρρ∗Coalescence Fragmentation

σ(ρ)

Fragmentation

Coalescence

σ(ρ)

σ (ρ)λ
ρ1

(a)

s

h=0

h=1

s*

(s)

*ρ

ρ

(b)

FIG. V.10: Sketch of the rescaling property.
Comparison of the distortion function between two

stages of Hi-AP (a). Corresponding result in terms of
the number of clusters as a function of s (b).

VI. NUMERICAL EXPERIMENTS

We have tested this renormalized procedure both on arti-
ficial and real-world datasets, for proofs of principle and
to discuss the robustness and limits of the approach.

A. Artificial datasets

The study conducted on artificial datasets investigates
the impact of the cluster shapes, their overlapping, the
dimensionality and the size of the dataset. The typical
observed behaviour is the one shown on Figure VI.11.a
VI.11.c and VI.11.d . The self-similar point is clearly
identified when plotting the number of clusters against
the bare penalty, when η is not to small. As expected
from the scaling (V.4), the effect is less sensible when

the dimension increases, but remains perfectly visible and
exploitable at least up to d = 30. The absence of infor-
mation loss of the hierarchical procedure can be seen on
the mean-error plots on Figure VI.11.b , in the region of s
around the critical value s∗. The results are stable, when
we take into account at the first stage of the hierarchical
procedure the influence of the shape of the clusters. This
is done by fixing the value of the factor form ω to the
correct value. In that case, at subsequent levels of the
hierarchy the default value ω = 1 is the correct one to
give consistent results. Nevertheless if the factor form is
unknown and set to false default value, the results are
spoiled at subsequent levels, and the underlying num-
ber of clusters turns out to be more difficult to identify,
depending on the discrepancy of ω with respect to its de-
fault value. We have observed also that the identification
of the transition point is still possible when the number
of datapoints per cluster get smaller, down to 6 in these
tests. To obtain these curves e.g. with two hierarchi-
cal levels the total number of clustered items vary in the
range 104 − 106 which is out of the range of a single AP

run on a complete graph.
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FIG. VI.11: Number of clusters obtained at each
hierarchical level as a function of s, with fixed size of

individual partition λN = 300, for various spatial
dimension, separability indexes and number of

underlying clusters (a), (c) and (d), for the EGEE
dataset (e) and of a jpeg image (f) of 1.5 105 pixels size.

Error distance of the exemplars from the true
underlying centers (b) corresponding to clustering (a).



B. Real-world datasets

On real data the situation is different since we have no
direct way to know whether the conditions of validity
of the approach are satisfied. To be of interest a real
dataset has to be very large, typically 105 − 106 items,
to let several hierarchical comparisons. In addition the
data have to be embedded in Rd.
The EGEE dataset, publicly available from [15] and com-
prising 5 million datapoints, has been used. Each data-
point, originally describing a job submitted on the EGEE
grid, is described by 6 continuous variables and 6 boolean
ones. For the sake of the study, boolean values have
been replaced by continuous values in [0, 1], with addi-
tion of a small amount of noise uniformly distributed in
[0, 0.1]. Finally all components are rescaled such as to fit
in a window of identical unit size and the standard Eu-
clidean distance is used. The output of Hi-AP is shown
on Figure VI.11.e. It is seen that the curves join near
s = 4[20], yielding then basically n = 4 different clusters.
When looking more carefully at the exemplars, we see
that the clusters correspond to different combinations of
labels (the initially binary components), while in the con-
tinuous subspace Hi-AP does not detect any structure;
all exemplars found at s = 4 share the same continu-
ous components. Looking at distributions of the whole
dataset along the axes shows instead well defined struc-
tures; unfortunately these clusters are very unbalanced
by a factor of ≃ 100 − 1000, which certainly prevents
the condition (ii) from being satisfied. By contrast the
structures on the (initially) discrete features are perfectly
identified, although clusters seem also unbalanced by a
factor of ≃ 10 in this subspace.
The strategy to circumvent this limitation of the algo-
rithm is certainly related to redefining the distance, ac-
counting for the spatial variation of densities [21].
A second large image dataset has been considered, where
the datapoints actually reflect the pixels in the im-
ages. Each datapoint lies in a (almost) continuous
5−dimensional space, the 2 first components correspond-
ing to the pixel spatial position while the 3 other corre-
sponding to RGB encoding of the colors. We rescale as
before each variable to fit in a window of size one, and
consider as well the Euclidean distance. On the example
seen on Figure VI.11.f we again see a point of convergence
of the three curves indicating a number of cluster equal
to 5. We observe this despite the little offset between
h = 1, 2 and h = 2, 3, showing that these clusters are far
from being spherical. Looking then again at the distri-

bution along some axes (color axes) reveal on one hand
that we should probably identify more detailed clusters,
but also how far we are from the working assumptions
made and supporting the renormalization approach on
the other hand, as these clusters do overlap quite signif-
icantly. While a similar situation is observed on most
pictures we have been testing, Hi-AP is found to yield a
rather relevant selection of clusters though.

VII. DISCUSSION AND PERSPECTIVES

The present analysis of the scaling properties of AP,
within a divide-and-conquer setting gives us a simple way
to identify a self-similar property of the special point s∗,
for which the exact structure of the clusters is recovered.
Our main contribution hence is a principled approach
for identifying the true cluster structure when using AP.
While earlier work has been intensively examining the
stability of k-means or PCA approaches (see e.g. [22]),
to our best knowledge, the use of a renormalization
approach is original in this context. This property can
be actually exploited, when the dimension is not too
large and when the clusters are sufficiently far apart
and sufficiently populated. The separability property
is actually controlled by the parameter η introduced in
V.3, and in the vicinity of s∗, the absence of information
loss, deduced from the single cluster analysis is effective.
The approach can be turned into a simple line-search
algorithm and this perspective will be investigated
further on real data sets to obtain an on-line self-tuning
of s, i.e. during the hierarchical treatment itself.

From the theoretical viewpoint, this renormalization ap-
proach to the self-tuning of algorithm parameter could
be applied in other context, where self-similarity is a key
property at large scale. First it is not yet clear how we
could adapt our method to the SCAP context. The prin-
cipal component analysis and associated spectral clus-
tering provide other examples, where the fixing of the
number of selected components is usually not obtained
by some self-consistent procedure and where a similar
approach to the one presently proposed could be used.
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Appendix A: Proof of loss estimate

The influence between the center of mass and extreme
value statistics distribution corresponds to corrections
which vanish when M tends to infinity (see Appendix B.
Neglecting these corrections, enables us to use a spheri-
cal kernel instead of cylindrical kernel and to making no
distinction between ex and ẽx, to write the recurrence.
Between level h and h+ 1, one has:

f
(h+1)
sd (x) =

∫ ∞

0

K(h,M)(x, y)f (h,M)
ex (y)dy (A.1)

with

lim
M→∞

M−1K(h,M)(
x

M
,
y

M
) =

d

σ(h)
K(

dx

σ(h)
,
dy

σ(h)
) (A.2)

whereK(x, y) is the d-dimensional radial diffusion kernel,

K(x, y)
def
=

1

2
x

d−2
4 y

2−d
4 I d−2

2

(√
xy

)

e−
x+y
2 .

with I d
2−1 the modified Bessel function of index d/2− 1.

The selection mechanism of the exemplar yields at level
h,

F (h,M)
ex (x) =

(

F
(h)
sd (x)

)M
,

and with a by part integration, (A.1) rewrites as:

f
(h+1)
sd (x) = K(h,M)(x, 0) +

∫ ∞

0

(

F
(h)
sd (y)

)M ∂K(h,M)

∂y
(x, y)dy,

with
lim

M→∞
M−1K(h,M)(

x

M
, 0) =

d

2Γ(d
2 )σ(h)

( dx

2σ(h)

)
d
2−1

exp
(

− dx

2σ(h)

)

.

At this point the recursive hierarchical clustering is de-
scribed as a closed form equation. The result of Sec-
tion IVA is then based on (A.2) and on the following
scaling behaviors,

lim
M→∞

F (h,M)
ex

( x

M
2
d

)

= exp
(

−α(h)x
d
2

)

,

so that

lim
M→∞

F
(h+1)
sd (

x

Mγ
) = lim

M→∞
M1−γ

∫ ∞

0

dy

∫ ∞

x

σ(h)

duf (h,M)
ex (

y

M
2
d

)K(M1−γu,
M1− d

2 y

σ(h)
).

Basic asymptotic properties of Id/2−1 yield with a proper
choice of γ, the non degenerate limits of the scaling result.
In the particular case d = 2, taking γ = 1, it comes:

lim
M→∞

F
(h+1)
sd (

x

M
) =

∫ ∞

0

dy

∫ ∞

x

σ(h)

duf (h)
ex (σ(h)y)K(u, y)



= −
∫ ∞

0

dy

∫ ∞

x

σ(h)

du
de−α(h)σ(h)x

dy
I0(2
√
uy)e−(u+y)

= exp
(

− α(h)

1 + α(h)σ(h)
x
)

,

with help of the identity

∫ ∞

0

dxxνe−αxI2ν(2β
√
x) =

1

α

(β

α

)2ν
e

β
α .

Again in the particular case d = 2, by virtue of the expo-
nential law one further has α(h) = 1/σ(h), finally yielding:

β(h+1) =
1

2
β(h). (A.3)

Appendix B: Finite size corrections

We consider a given hierarchical level h, r denotes sample
points, rcm their corresponding center of mass, and rc
the exemplar, which in turn becomes a sample point at
level h+ 1. We have

p
(h+1)
sd (r)ddr = P (rc ∈ ddr) = ddr

∫

ddrcm

p
(h)
sd,cm(r, rcm)P

(

|rsd − rcm| ≥ |r− rcm|
∣

∣rcm

)M−1
.

We analyse this equation with the help of a generating
function:

φ
�
(Λ) =

∫

ddrp
�
(r)e−Λr.

where � may be indifferently sd, c or cm and Λr is the
ordinary scalar product between two d-dimensional vec-
tors. Let λ = |Λ|, by rotational invariance, p

�
depends

only on r and φ
�
depends solely on λ, so we have

g
�
(λ)

def
= log(φ

�
(Λ))

= log
(

2πd/2

∫ ∞

0

drrd−1p
�
(r)

(λr

2

)1−d/2
Id/2−1(λr)

)

.

The joint distribution between rsd and rcm takes the fol-
lowing form

psd,cm(r, rcm) = psd(r)pcm|sd(|rcm −
r

M
|)

where by definition pcm|sd is the conditional density of
rcm to rsd, with

gcm|sd(λ) = (M − 1)gsd

( λ

M

)

, (B.1)

while

gcm(λ) = Mgsd

( λ

M

)

, (B.2)

where gsd is assumed to have a non zero radius Taylor
expansion of the form

gsd(λ) =
σ(h)

2d
λ2 +

∞
∑

n=2

g(2n)(0)

2n!
λ2n, (B.3)

since by rotational symmetry all odd powers of λ van-
ish and where σ(h) represents the variance at level h of
the sample data distribution. In addition the conditional
probability density of rsd to rcm reads

psd|cm(r, rcm) =
psd(r)

pcm(rcm)
pcm|sd(|rcm −

r

M
|)

def
= psd|cm(u, θ, rcm)

where u = r−rcm and θ is the angle between u and rcm.
Let

f(u, rcm)
def
= P (|rsd − rcm| ≥ u

∣

∣rcm).

We have

f(u,rcm) =

1− Ωd−1

∫ u

0

dxxd−1

∫ π

0

dθ sin θd−2psd|cm(x, θ, rcm).

with

Ωd =
2πd/2

Γ
(

d
2

) ,

the d-dimensional solid angle. Let

h(u, rcm)
def
= log(f(u, rcm)).

We have

p
(h+1)
sd (r) = p

(h)
sd (r)

∫

ddrcm

pcm|sd(|rcm −
r

M
|) exp

(

(M − 1)h(|r− rcm|, rcm)
)

.

From the expansion (B.3) we see that corrections in
gcm and gcm|sd to the Gaussian distribution are of or-

der 1/M3, σcm = σ/M as expected from the central limit
theorem and σcm|sd = (M−1)σ/M2. Letting y = rcm−r

we have

p
(h+1)
sd (r) =

p
(h)
sd (0)

( dM

2πσ(h)

)d/2
∫

ddy exp
(

−Mψ(M)(r,y)
)

,

with

ψ(M)(r,y)
def
= −d

2
log

M

M − 1
− dr2

2σ(h)
+ log

p
(h)
sd (r)

p
(h)
sd (0)

+
dM

2(M − 1)σ(h)
|y + r|2 + (M − 1)h

(

y, |y + r|
)

.



As observed previously p
(h+1)
sd (r/M1/d) converges to a

Weibull distribution when M goes to infinity, and the
corrections to this are obtained with help of the following
approximation:

ψ(M)(
r

M1/d
,y) =

d

2σ(h)
|y +

r

M1/d
|2 + α(h)yd +O

( 1

M

)

,

with

α(h) = p
(h)
sd (0)

Ωd

d
.

As a result, computing the normalization constant

p
(h+1)
sd (0) and the corresponding variance σ(h+1), yields

the following recurrence relations:























α(h+1) = α(h) + O
(

1
M

)

.

σ(h+1) = Γ
(

1 + 2
d

)

α(h)−2/d
(

1 + σ(h)α2/d

Γ
(

1 + 2
d

)

1
M1−2/d

)

+o
(

M2/d−1
)

.

Letting

ω(h) def
=
σ(h)α(h)2/d

Γ
(

1 + 2
d

) ,

we get

ω(h+1) = 1 +
ω(h)

M1−2/d
+ o

(

M2/d−1
)

.

Consequently, for h = 0, we have

σ(1) =
σ(0)

ω(0)

(

1 +
ω(0)

M1−2/d

)

+ o
(

M2/d−1
)

,

while for h > 1 we get

σ(h+1) = σ(h)
(

1 +
ω(h) − ω(h−1)

M1−2/d

)

+ o
(

M2/d−1
)

.

For h = 1 this reads

σ(2) = σ(1)
(

1 +
1− ω(0)

M1−2/d

)

+ o
(

M2/d−1
)

,

and thereby

σ(h+1) = σ(h) + o
(

M2/d−1
)

, for h > 1.

Appendix C: Clustering stability in Hi-AP

Assume first that ρ1 = ρ∗, which is obtained if we set
s = s∗ in the first clustering stage. This means that each
cluster which is obtained at this stage is among the exact
clusters with a reduced variance, resulting from the ex-
treme value distribution properties (IV.3) combined with
definition (IV.5) of the shape factor ω:

σ(λ)
c =

1

ω

(λN

n1

)−2/d

σc =
λ2/d

ω
σc. (C.1)

Note at this point that

ω

λ2/d
≫ 1,

is required to be in the conditions of getting a cluster
shaped by the extreme value distribution. For ρ > ρ∗, the
new distortion involves only the inner cluster distribution
of exemplars which is simply rescaled by this (ρ1/λ)

2/d

factor, so from (V.2) we conclude that

σ̃
(λ)
ρ∗ (ρ) = σ(ρ), for ρ ≥ ρ∗.

Instead, for ρ < ρ∗, the new distortion involves the merg-
ing of clusters, which inter distances, contrary to their
inner distances, are not rescaled and are the same as in
the original data set. This implies that

dσ̃
(λ)
ρ∗

dρ
(ρ) ≤ σ′(ρ), for ρ < ρ∗.

As a result the optimal number of clusters is unchanged,
ρ1 = ρ∗.
For ρ1 < ρ∗, which is obtained when s > s∗, the new dis-
tribution of data points, formed of exemplars, is also gov-
erned by the extreme value distribution, and all cluster
at this level are intrinsically true clusters, with a shape
following the Weibull distribution. We are then neces-
sary at the transition point at this stage: ρ∗ = ρ1[23]. In
addition, the cost of merging two clusters, i.e. when ρ is
slightly below ρ1, is actually greater now after rescaling,

dσ̃
(λ)
ρ1

dρ
(ρ) ≤ σ′(ρ), for ρ = (ρ1)−,

because mutual cluster distances appear comparatively
larger. Instead, for ρ slightly above ρ1, the gain in dis-
tortion when ρ increases is smaller, because it is due to
the fragmentation of Weibull shaped cluster, as compared
to the gain of separating clusters in the coalescence phase
at former level,

dσ̃
(λ)
ρ1

dρ
(ρ) ≥ σ′(ρ), for ρ = (ρ1)+.

As a result, from the convexity property of σ(λ)(ρ), we
then expect again that the solution of (V.6) remains un-
changed ρ2 = ρ1 in the second step with respect to the
first one.
Finally, for ρ1 > ρ∗, the new distribution of data points
is not shaped by the extreme value statistics when the
number of fragmented clusters increases, because in that
case the fragments are distributed in the entire volume
of the fragmented cluster. In particular,

σ̃(λ)
ρ1

(ρ) ≃ ω

λ2/d
σ(ρ), when ρ1 >> ρ∗.

The rescaling effect vanishes progressively when we get
away from the transition point, so we conclude that the
optimal density of clusters ρ2 is displaced toward larger
values in this region.


