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Abstract: We propose a three-step solution methodology toincreasethe discrete set
of acoustic far-field pattern (FFP) measurements, available in asmall range of obser-
vation angles (small aperture). The first two steps of the proposed procedure allow the
extension of the data to an aperture larger thanπ/2. They use a regularized Newton
algorithm where thetotal variationof the FFP is incorporated as a regularization term.
The third step consists in applying the standard Tikhonov regularization technique to
recover thefull aperture of the FFP from the previously extended field. Numerical re-
sults obtained using synthetic data illustrate the potential of the proposed procedure for
reconstructing the full aperture of the FFP from data given in an aperture as small as
backscattering measurements.
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Une méthode itérative pour l’extrapolation de
l’amplitude de diffusion du champ acoustique 2D

Résumé :Nous proposons une stratégie d’extrapolation de l’amplitude de diffusion du
champ acoustique à partir de données mesurées sur un petit secteur d’observation. La
procédure de reconstruction du champ est de type itératif. Elle s’appuie sur trois étapes
et utilise la variation totale de l’amplitude de diffusion àdes fins de régularisation. Les
résultats numériques obtenus à partir de mesures synthétiques illustrent l’efficacité de
la méthode proposée pour reconstruire entièrement (sur360o) l’amplitude de diffusion
et cela à partir de très peu de points de mesure ( même un seul point) et pour différents
niveaux de bruits.

Mots-clés : problème de diffraction acoustique, problème inverse, problème mal posè,
fenêtre réduite d’observation,variation totale, régularisation de Tikhonov, mèthode de
Newton



A Multi-Step Procedure for Enriching Limited 2D FFP Measurements 3

1 Introduction

The development of efficient solution methodologies for solving inverse problems is
very important to many technologies such as sonar, radar, geophysical exploration,
medical imaging and nondestructive testing [1]. A typical example of inverse problems
is the determination of the shape of an obstacle from the knowledge of some scattered
far-field patterns (FFP), and assuming some a priori knowledge about the characteris-
tics of the surface of the obstacle. This inverse obstacle problem (IOP) is very difficult
to solve numerically because it is not only nonlinear [2], but most importantly improp-
erly posed in the sense of Hadamard [3]. Because of its practical importance, the IOP
has received a great deal of attention by applied mathematicians and engineers during
the last three decades leading to the design of various computational methods (see for
example the overview in [4] and references therein). The numerical results reported in
the literature indicate that the success in the reconstruction of the sought-after shape
of an obstacle by the current numerical methods depends strongly on thequality of
the given FFP measurements: the aperture (range of observation angles) and the level
of noise in the data (accuracy of measurements). More specifically, it has been ob-
served that it is possible to retrieve a unique and reasonably good solution of the IOP
when using onlyone incident plane wave (one frequency and one incident direction)
and measured FFP around the entire obstacle (full-apertureproblem ), even when the
measurements are contaminated with a high level of white noise (up to20%) [5]. The
situation is quite different in the case of the limited aperture problem [6, 7, 8, 9] which
is of great importance and interest since in most applications the FFP cannot be mea-
sured entirely but only in a limited sector. Indeed, early numerical results (see for
example [6, 10, 11, 12] among others) performed in the resonance region — that is,
for a wavelength that is approximately equals to the diameter of the obstacle —showed
that using anywhere from 13 to 24 incident waves and limited-aperture far-field data
and as long as the aperture is larger thanπ, one can achieve a good reconstruction of the
shape of the obstacle. For smaller apertures, the reconstruction becomes more difficult
and nearly impossible for apertures smaller thanπ/4, even when the measurements are
noise free. Later numerical results [14] demonstrated thatit is –in fact– possible to ob-
tain a reasonable reconstruction of the shape of an obstaclefrom the knowledge of its
corresponding FFP when measured in an aperture ofπ/2 for one incident plane wave
only. The quality of the reconstruction can be significantlyimproved depending on
the number of incident plane waves (multiple incident directions and/or frequencies)
as well as on the noise level [14].

Given that, it is of paramount to develop numerical procedures to enrich (increase
the size) the set of FFP measurements when given in a small aperture. Note that a
procedure for denoising the FFP data while solving simultaneously the IOP has been
recently proposed in [15]. However, as it has been stated earlier, there is no hope –at
least with existing numerical methods– to solve the IOP whenthe FFP data are given
in a small apertures (less thanπ/4) even when the data are noise free. Consequently,
we propose a three-step solution methodology to extend the range of FFP data when
measured in a small range of observation angles (small aperture). The goal of the pro-
cedure is to extend the few measured FFP data to –at least– a range ofπ/2 in order to
be used for solving efficiently the IOP problem. From a mathematical point of view,
it is always possible to extend the FFPuniquelyto the entire circleS when given in
a (continuous) subset ofS. This unique determination is due to the analyticity of the
FFP [2]. However, the numerical extension from the knowledge of a (discrete) subset
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4 Barucq & Bekkey & Djellouli

of the FFP is a very challenging problem. Indeed, such extension can be formulated
as an inverse problem that isextremelyill-posed due precisely to the analyticity of
the FFP. Therefore, any numerical procedure for extending (enriching) the FFP mea-
surements must address efficiently the ill-posedness nature of this inverse problem.
Previous attempts to solve this problem were based on using the standardL2-Tikhonov
regularization technique [13, 14]. The extension was (to some extent) successful only
when the range of measurements is given in an aperture largerthanπ/2. The proce-
dure fails to address situations of practical interest, that is when only one measurement
(backscattering) or few measurements are available. The computational method we
propose, in its first two steps, extends the data to an aperture larger thanπ/2. The third
step allows to extend of the FFP to its full aperture. The firsttwo steps of the proposed
procedure employ a regularized Newton-type algorithm where thetotal variation(TV)
of the FFP is incorporated to restore the stability to the inverse problem. The idea for
using the TV formulation is not new [26]. It has already been sucessfully used in im-
age deblurring applications [27]-[30]. However, it has notbeen employed by applied
mathematicians and engineers to other applications since it leads to the minimization
of a non-differentiable cost function. The lack of differentiability prevents using ro-
bust minimization algorithms (such as Newton algorithm) involving the computation
of jacobians. We employ a modified version of this regularization technique that leads
to the minimization of a differentiable cost function. The third step of the proposed
procedure uses a Tikhonov-type regularization technique that is known to be efficient
when the data are given on an aperture larger thanπ/2. The numerical results reported
in this paper illustrate the efficiency of the proposed solution methodology for recon-
structing the FFP tofull aperture in the low frequency regime from noisy synthetic
measurements as few asbackscatteringdata.

The remainder of this paper is organized as follows. In Section 2, we specify the
notations and assumptions adopted in this paper, and we recall the direct and inverse
acoustic scattering problems. Section 3 is devoted to the description of the proposed
multi-step solution methodology for enriching FFP data. Weintroduce the mathemat-
ical formulation of the inverse FFP problem (IFP). This problem is then regularized
using the total variation of the FFP. Since the cost-function corresponding to this reg-
ularized IFP problem is not differentiable, a modified version of this regularization is
adopted in order to restore the regularity. Then, we describe the algorithm of the solu-
tion procedure and summarize its computational complexity. Section 4 is devoted to the
numerical results obtained usingsyntheticdata. These results illustrate the salient fea-
tures and demonstrate the performance characteristics of the proposed solution method-
ology. We state our conclusion in Section 5. Appendix A contains auxiliary properties
pertaining to the TV formulation.

2 Preliminaries

We specify in this section the nomenclature and assumptionsthat are adopted through-
out this paper.

INRIA



A Multi-Step Procedure for Enriching Limited 2D FFP Measurements 5

2.1 The Direct Acoustic Scattering Problem

We consider throughout this paper the class of acoustic scattering problems in the case
of two-dimensionalsound-softscatterers. It consists in finding the scattered fieldu,
solution of the following boundary value problem (BVP)[2]:

(BVP)






∆u + k2u = 0 in Ωe

u = −uinc on Γ

lim
‖x‖2→∞

√
‖x‖2

(
∂u

∂‖x‖2
− iku

)
= 0

whereuinc is the incident plane wave given by

uinc = eik x·d

andΩe is a homogeneous unbounded domain surrounding the sound-soft scattererΩ,
that isΩe = R2\Ω, Γ is the boundary of the scatterer,k is a positive number represent-
ing the wavenumber, andd is a unit vector representing the direction of the incident
plane wave. Note that the couple(k, d) characterizes the incident plane waveuinc. The
last equation of BVP is called the Sommerfeld radiation condition. We point out that
the Dirichlet boundary condition is used only for simplicity and that the results pre-
sented herein apply to Neumann and Robin-type boundary conditions, that are usually
encountered in acoustic scattering problems.

The far-field patternu∞ of the solutionu of BVP is defined on the unit circleS from
the asymptotic behavior of the scattered fieldu (see, for example, [2]),

u(x) =
eikr

√
r

(
u∞(θ) + O(

1

r
)

)
, r −→ +∞ (1)

where(r, θ) are the polar coordinates corresponding to the cartesian coordinatesx;
r > 0 andθ ∈ [0, 2π). Note that the direct acoustic scattering problem BVP has been
extensively investigated mathematically, and a considerable amount of results pertain-
ing to the existence, uniqueness, regularity, and asymptotic behavior of the solution
u can be found in [2], [16]-[19], among others. The reader interested in the solution
methodologies for solving BVP is invited to read, for example, the recent monograph
[20].

2.2 The Inverse Obstacle Problem

First, we note that the solutionu of BVP defines an operatorF : Γ→ u∞ which maps
the boundaryΓ of the scattererΩ onto the far-field patternu∞. Hence, inverse obstacle
problems (IOP) can be formulated as follows:

Given one or several measured far-field patternsũ∞(θ̂), corresponding to one or sev-
eral given directionsd and wavenumbersk, findΓ that satisfies:

F (Γ)(θ̂) = ũ∞(θ̂); θ̂ ∈ S (2)

where the tilde notation designates a measured quantity.

The following three observations are noteworthy

RR n° 7048



6 Barucq & Bekkey & Djellouli

• Although IOP is one of the simplest problems arising in the inverse scattering
field, it is still not completely solved from a mathematical view point. Indeed,
only partial results pertaining to the uniqueness of the solution of IOP are avail-
able [2, 18, 21]. On the other hand, numerous solution methodologies have been
proposed during the last three decades to solve numericallyIOP (see, for exam-
ple, the overview in [4] and the references therein).

• The FFP measurementsũ∞(θ̂) in the IOP problems are not available for allθ̂ ∈
S (full-aperture). Indeed, for most applications, it is possible to measurẽu∞(θ̂)

in only an opensubsetof S (limited-aperture). Typically,̃u∞(θ̂) is given at
some observation pointŝθj ; 1 ≤ j ≤M for multiple incident directions and/or
frequencies. The important case ofbackscatteringmeasurements corresponds to
M = 1.

• It is well known that the success for solving numerically IOPdepends on the
quality of the FFP data, that is the number of measurements, their location around
the sought-after obstacle, and the noise level in the measurements.

3 The Multi-Step Procedure forEnriching the FFP data

This section is devoted to the description of the solution methodology we propose to
extendthe FFP data to full aperture when given in a limited observation sector. It is
organized as follows. First, we formulate the FFP extensionproblem as an inverse
problem. Then, we introduce the regularized iterative algorithm for solving this prob-
lem. Last, we describe the iterative extension process of the data. A summary of the
numerical procedure concludes this section.
As stated earlier in the introduction, the idea for extending the measured FFP in a lim-
ited aperture to a wider range before solving the IOP problemis not new [13, 14] .
A standardL2-Tikhonov regularization technique was used for this purpose. The ex-
tension was successful only when the range of measurements is given in an aperture
larger thanπ/2. The procedure fails to address situations of practical interest where
backscattering or only few noisy measurements are available.
We recall that it is possible to solve IOP, using regularizedNewton-type methods, when
FFP data are measured in (a) an aperture larger or equal toπ, for one incident plane
wave (one incident direction and one frequency), and (b) an aperture as small asπ/2
but for multiple incident plane waves (several incident directions and/or frequencies)
[6], [10, 11, 12]. Given that, the proposed multi-step solution proceduremustbe able
to extend the FFP data to a range of –at least–π/2, when given in an aperture as small
as backscattering measurements, in order to be of practicalinterest.

3.1 Problem Statement

Since the FFPu∞ corresponding to the solutionu of BVP is analytic on the unit circle
S, we can express it as a Fourier series as follows:

u∞(θ) =

∞∑

n=−∞

(−i)ncneinθ ; θ ∈ S (3)

where the complex constantscn are the Fourier coefficients. The determination of these
constants allows to measure the FFPu∞ on the entire unit circleS.

INRIA



A Multi-Step Procedure for Enriching Limited 2D FFP Measurements 7

The computation of the Fourier coefficientscn when the FFPu∞ is given at some (few)
observation points can be formulated as the followinginverseFourier coefficients prob-
lem (IFP):

Given a set ofM far-field pattern measurementsũ∞ = [ũ∞(θ̂1), · · · , ũ∞(θ̂M )]T

for one incident plane wave, find

ĉ = arg min
c∈C2N+1

‖Ac− ũ∞‖2 (4)

wherearg is used to denote thatc is the minimizer of the cost function‖Ac− ũ∞‖2
overC2N+1 with N being the truncating order of the Fourier series given by Eq.(3).
A is aM × (2N + 1) matrix given by:

A =




(−i)−Ne−iNθ̂1 · · · 1 · · · (−i)NeiNθ̂1

(−i)−Ne−iNθ̂2 · · · 1 · · · (−i)NeiNθ̂2

...
...

...
...

...

(−i)−Ne−iNθ̂M · · · 1 · · · (−i)NeiNθ̂M




(5)

The IFP problem given by Eq. (4) is severely ill-posed. The condition number of the
matrixA given by Eq. (5) increases exponentially as the number of termsN increases
[2]. Consequently, it is very difficult to solve numericallyIFP since the accuracy of the
solution requiresN to be relatively large, depending on the frequency. For thisreason,
a stabilization technique must be incorporated during the solution of Eq. (4).

3.2 The total variation regularization technique: A modified pro-
cedure

As stated in the previous paragraph, the numerical solutionof the IFP problem requires
first to restore the stability to Eq. (4). Stabilization procedures such as Tikhonov’s
regularization [22, 23] are the primary candidates for thisclass of problems. Such
techniques consist in incorporating a2-norm penalty-like term in Eq. (4) to make the
resulting system better conditioned. Therefore, the minimization problem is replaced
by the following regularized IFP problem:

ĉ = arg min
c∈C2N+1

{
1

2
‖Ac− ũ∞‖22 + µ‖T(c)‖22

}
(6)

whereµ > 0 is the regularization parameter andT is a regularization operator.
The simplest choice of the operatorT is the identity mapping [13] corresponding to the
standard Tikhonov regularization technique.T can also be either the first- or second-
order derivative operator [14]. The latter approach can be interpreted as a Tikhonov
regularization technique which balances a goodness-of-fitmeasure and a roughness
penalty. The regularization parameterµ can be expected to play the role of a smoother
because it controls in this case the trade-off between goodness-of-fit and roughness.
This parameter can be determined by theoretical considerations such as Morozov’s
discrepancy principle [24, 25]. However, in both approaches the “optimal" value of the

RR n° 7048



8 Barucq & Bekkey & Djellouli

regularization parameterµ was found simply with a trial and error procedure, as it is
often the case for most of regularized procedures. Last, both regularization strategies
exhibit poor performance as soon as the range of observationangles (aperture) is less
thanπ/2, even in the case of noise free data. We must point out that we have observed
that in the case of the standard regularization (T being the identity operator), the per-
formance deteriorates when the FFP measurements (even whengiven in an aperture of
π) are tainted with only1% of white noise.

Given that, we propose to use the total variation (TV) of the far-field pattern to restore
the stability to the IFP problem given by Eq. (4) [26]. Such technique has been used
widely and successfully in image deblurring applications [27]-[30]. It consists in re-
placing the minimization problem (4) by the following TV-regularized IFP problem:

ĉ = arg min
c∈C2N+1

{
1

2
‖Ac− ũ∞‖22 + µ ‖Dc‖1

}
(7)

whereD is a(2N + 1)× (2N + 1) matrix representing the central discrete first-order
derivative operator (see appendix).D is given by:

D =
1

2h




−2 2 0 0 · · · 0
−1 0 1 0 · · · 0
...

...
...

...
...

...
0 · · · 0 −1 0 1
0 · · · 0 0 −2 2




andh is a positive parameter that results from the discrete approximation of the total
variation (see appendix A).
Observe that this regularized formulation incurs a non-differentiable cost function due
to the presence of the1-norm term‖Dc‖1. The lack of the regularity is a serious de-
fect in the cost function since it rules out the use of efficient numerical procedures,
such as Newton algorithms, that require the evaluation of the jacobians. Consequently,
we modify the TV formulation, using a perturbation-type procedure suggested in [30],
to restore the regularity. More specifically, we replace Eq.(7) by the following mini-
mization problem:

ĉ = arg min
c∈C2N+1

{
1

2
‖Ac− ũ∞‖22 + µ

∥∥∥∥
(
(Dc)

2
+ β2

ẽ

)1/2
∥∥∥∥

1

}
(8)

whereẽ is a vector inC2N+1 introduced to restore the regularity to theL1 norm term.
ẽ is given by:

ẽ = [1, · · · , 1]
T

The bold face exponents in Eq. (8), and for the remaining of this section, are pointwise
operations. The positive constantβ is theregularityparameter. Indeed, the presence of
β (β large enough) ensures the differentiability of theL1-norm term in the cost func-
tion given by Eq. (8). The optimal value of the couple(µ, β) is obtained using – at
this point of the study– a trial and error strategy since our primary goal is to investigate
the feasibility of the proposed method. Note that there is noneed for computing the
positive parameterh since, in practice, it is “absorbed" into the parametersµ andβ.

INRIA



A Multi-Step Procedure for Enriching Limited 2D FFP Measurements 9

We note that a serious shortcoming of the standardL2 regularization techniques is
that they do not allow discontinuous solutions, whereas a TV-computed solution could
be discontinuous. Therefore, the proposed TV formulation has the potential to be more
robust in the presence of noisy data due to measurement errors and/or roundoff.

3.3 The Newton Algorithm

We propose to apply the Newton method to solve the nonlinear minimization problem
given by (8) since the corresponding cost function is now differentiable. Consequently,
at each iterationm, we solve the linear system:

F ′′(c(m))δc(m) = −F ′(c(m)) (9)

and then update

c
(m+1) = c

(m) + δc(m) (10)

The matrixF ′′ is the Hessian of the regularized cost function given by (8).F ′′ is a
(2N + 1)× (2N + 1) matrix given by [30]:

F ′′(c(m)) = A
∗
A + µ

(
D

∗Ψ−1
D−D

∗
[(

Dc
(m)
)]2

Ψ−3
D

)
(11)

where(c) is a (2N + 1) × (2N + 1) diagonal matrix whose diagonal entries are the
components of the vectorc ∈ C2N+1. Ψ is a(2N + 1) × (2N + 1) diagonal matrix
given by [30]:

Ψ =

([[
Dc

(m)
]2

+ β2
ẽ

]1/2
)

(12)

The vectorF ′ is the jacobian of the regularized cost function given by (8). F ′(c(m))
is a vector inC2N+1 defined by [30]:

F ′(c(m)) = A
∗
(
Ac

(m) − ũ∞

)
+ µD

∗Ψ−1
Dc

(m) (13)

Observe that the Newton algorithm requires to solve –at eachiteration– a(2N + 1)×
(2N + 1) linear system which is, in practice, asmallsystem that can be solved with a
direct method such as the LU factorization.

3.4 The Multi-Step Solution Procedure: Algorithm Description

A preliminary numerical investigation performed by the authors reveals that the New-
ton algorithm given by equations (9)-(10) delivers a far-field pattern with a high level
of accuracy at points close to the given observation angles.However, such an accu-
racy deteriorates dramatically at points far from the measured data. For this reason, the
following three-step procedure for extending the FFP tofull aperture is proposed.

Step 1. The given data in this step are the frequency regimeka (a characterizes the
dimension of the scatterer), the truncation order of the Fourier seires (see Eq. (3))
is N , and the number of FFP measurementsM . The value ofN depends onka.
Typically,N ≈ ka, which means2 ka + 1 modes are left in the truncated series.

The FFP datãu∞ =
[
ũ∞(θ̂1), · · · , ũ∞(θ̂M )

]T
are measured atM points in

RR n° 7048



10 Barucq & Bekkey & Djellouli

a given observation sector, as depicted in Figure 1. Next, apply a multi-stage
strategy to enrich -at each stage- the FFP measurements byonly two additional
adjacent values. More specifically, do the following:

Step 1.1. Solve the TV-regularized minimization problem (8) using Newton iteration
equations (9)-(10). Proceed as follows:

– Initialize the Fourier coefficient vectorc = c
(0) and compute the FFP

u
(0)
∞ corresponding toc(0).

– For a givenµ andβ, apply the Newton algorithm to the solution of the
regularized IFP problem given by Eq. (8) until convergence/stagnation
of the residual which is the2-norm of the relative error on the FFP, i.e.

(

M∑

j=1

|u(m)
∞ (θ̂j)− ũ∞(θ̂j)|2)

1
2

(

M∑

j=1

|ũ∞(θ̂j)|2)
1
2

< ǫ1

whereu
(m)
∞ is the computed FFP at Newton iterationm andǫ1 is a

prescribed tolerance.ǫ1 is typically the noise level in the original data.

– Compute the new FFP and store its values atM +2 observation points.
These points are the ones located at the originalM measurements and
2 additional points that are adjacent to the initial ones, as depicted in
Figure 2(a). Note that the values of the original FFP data arereplaced
by the computed ones. Hence, at the end of this step, the FFP data are
enriched by twonewobservation points and the original measurements
areupdatedby the computed ones. Also, store the Fourier coefficients

vector denoted byc[1] =
[
c
[1]
−N , · · · , c

[1]
0 , · · · , c

[1]
N

]T
corresponding

to the FFP computed at the last iteration of the Newton algorithm.

●

Ω

S

●

●

●

●

θΜ

θ1

^

^

Figure 1: The given (few) FFP measurements for Step 1 are located at points repre-
sented by” • ”.
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(a) The Given FFP data are extended at the end
of Step 1.1 by2 measurements located atθ̂1 and
θ̂M+2.

Ω

S

O

O

O

O

O

O
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O
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θ

θ

θ1
^

Μ+1

Μ+2

Μ+3
^

^

^

θΜ
^

Μ+4θ̂

(b) The computed FFP measurements in Fig.2(a)
are extended at the end of Step 1.2 by2 measure-
ments located at̂θ1 andθ̂M+4.

Figure 2: Extension process of the FFP in Step 1.

Step 1.2. Repeat the solution procedure described in Step 1.1 where –this time–
the FFP measurements (the reference solution for the Newtonalgorithm)
are theM + 2 values of the FFP computed and stored in Step 1.1 , i.e.,

ũ∞ =
[
ũ∞(θ̂1), · · · , ũ∞(θ̂M ), ũ∞(θ̂M+1), ũ∞(θ̂M+2)

]T
. Note that

the stopping criterion of the Newton algorithm now is the2-norm of the
residual at theM + 2 observation points, that is:

(

M+2∑

j=1

|u(m)
∞ (θ̂j)− ũ∞(θ̂j)|2)

1
2

(

M+2∑

j=1

|ũ∞(θ̂j)|2)
1
2

< ǫ1

Then,

– Compute the new FFP and store its values atM +4 observation points.
These points are the ones located at theM +2 previous measurements
and2 additional points that are adjacent to the previous ones, asde-
picted in Figure 2(b). Hence, the values of the originalM + 2 FFP
data areupdatedby the computed ones. Observe that, at the end of
this step, theoriginal M FFP data areupdatedandenrichedby four
measurements.

– Store the Fourier coefficients vector denoted byc
[2] =

[
c
[2]
−N , · · · , c

[2]
0 , · · · , c

[2]
N

]T

corresponding to the FFP computed at the last iteration of the Newton
algorithm.

Step 1.3. Repeat this multi-stage process until its stagnation, i.e., the values of the
Fourier coefficients vector –stored each time– are no longerchanging:

||c[m+1] − c
[m]||2 =




N∑

j=−N

|c[m+1]
−N − c

[m]
−N |2





1
2

< ǫ2
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12 Barucq & Bekkey & Djellouli

whereǫ2 is a fixed tolerance. Typically,ǫ2 ≈ 10−6. At stagnation, com-
pute the new FFP and store its values in aperture of90o, that is ũ∞ =(
ũ∞(θ̂1), · · · , ũ∞(θ̂91)

)
. These values are located in the sector of the

original measurements, as depicted in Figure 3(a).

Step 2. Repeat the multi-stage procedure described in Step 1 using this time the follow-
ing initial data:

– The number of Fourier coefficients is increased by 2, i.e.,N ← (N + 1).

– The FFP measurements are the values the computed FFP at the end of Step
1.3. These measurements are given in an aperture of90o i.e. M ← 91 (see
Figure 3(a)).

At stagnation (at the end of Step 2), compute the new FFP and store its values
at91 + 2P new observation points ( the number of extended FFP measurements
is alwayseven). These points are the ones located in the region of the previous
90o aperture measurements plus2P additional points that are adjacent to them.
Hence, at the end of step 2, the FFP is computed over an aperture of (90 + 2P )o

(for P = 1, see Figure 3(b)) .

Step 3. The full aperture of the FFP is computed in this step using a Tikhonov regular-
ization technique. The FFP data are the values stored at the end of Step 2, i.e.

ũ∞ =
[
ũ∞(θ̂1), · · · , ũ∞(θ̂91+2P )

]T
. Proceed as follows:

– First, compute thefinalvalues of the Fourier coefficientŝc = [ĉ−N−1, · · · , ĉ0,

· · · , ĉN+1]
T by solving the linear system:

ĉ = (A∗
A + µ I)

−1
A

∗
ũ∞

whereµ is the regularization parameter chosen using a trial and error strat-
egy.

– Then, evaluate thefull aperture of the FFP using the Fourier series expan-
sion:

ũ∞(θ) =
N+1∑

n=−N−1

(−i)nĉneinθ ; θ ∈ [0, 2π)

3.5 Computational Complexity

The multi-stage methodology outlined previously for extending the FFP data to full
aperture requires solving mainly(2N +1)× (2N +1) linear systems which aresmall-
scalesystems since2N + 1 is the number of Fourier modes in the truncated series.
Therefore, these linear system can be easily solved using direct methods such as the
standardLU factorization. The number of these linear systems depends however on
the number of Newton iterations (typically no more than10 iterations) and the number
of trials –at each Newton iteration– to select the “best" values of the parametersµ and
β (about40 trials).
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2.1 by2 measurements located atθ̂1 and
θ̂93.

Figure 3: Extension process of the FFP in Step 2.

4 Illustrative Numerical Results

In this section, we illustrate the potential of the proposedsolution methodology for en-
riching FFP data from the knowledge of few observation points: backscattering mea-
surements and a two-degree aperture. For this purpose, we have performed numerical
experiments to illustrate the sensitivity of the performance of the proposed methodol-
ogy to the noise level and the frequency regime. All the numerical experiments were
performed using synthetic FFP data corresponding to the acoustic scattered field by
a sound-softdisk-shaped scatterer. This synthetic field can be computedanalytically
using the following Fourier series [2]:

u∞(θ) =
∞∑

n=−0

γn(−1)n Jn(ka)

H1
n(ka)

cos(nθ) ; θ ∈ [0, 2π) (14)

whereγ0 = 1 andγn = 2; ∀n ≥ 1. a is the radius of the considered disk-shaped
obstacle.Jn (resp.H1

n) is the Bessel function (resp. Hankel function) of first kindof
ordern [32]. Note that the Dirichlet boundary condition characterizing a sound-soft
scatterer is used here only for simplicity and that the results presented herein apply to
all types of admissible boundary conditions.

4.1 FFP Extension from Backscattering Measurements

We consider the case where the data are measured in a0o-aperture, i.e. the FFP is
measured at one point only (M = 1). First, we present numerical results to assess the
sensitivity to the noise level of the reconstruction procedure. We consider four level of
white noise (the2-norm sense): noise free (0%), low level (1%), medium level (5%),
and high level (10%). In all the experiments, we have setka = 1. The results are
reported in Figures (4)-(7) and Table 1. The following observations are noteworthy:

i. In all cases, the proposed procedure is able to reconstruct the FFP. The recon-
struction accuracy is much more better over a90o-aperture, which is of a great
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14 Barucq & Bekkey & Djellouli

Table 1: Sensitivity of the2-norm relative error of the enriched FFP to the noise level.
Case of backscattering data (M = 1) andka = 1.

Noise level Extension over90o Extension over360o

0 % 5.1121 % 10.5880 %
1 % 6.2285 % 11.9970 %
5 % 6.0375 % 21.3259 %
10 % 8.2838 % 24.7173 %
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and computed FFP at the end of Step 1 (at stagna-
tion, i.e.,M = 8).
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(b) Convergence history of the solution procedure at
Step 1. The algorithm stagnates whenM = 8.

Figure 4: Enrichment of the FFP from a backscattering measurement (M = 1) using
Step 1 only. Case:ka = 1 and noise level0%.

interest when solving IOP problems with regularized Newton-type methods. In-
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(b) Convergence history of the solution procedure at
Step 1. The algorithm stagnates whenM = 8.

Figure 5: Enrichment of the FFP from a backscattering measurement (M = 1) using
Step 1 only.ka = 1 and noise level1%.

deed, as stated earlier, it is possible to succeed in solvingIOP problems using
regularized iterative-type methods when the FFP data are measured over a90o-
aperture only.

ii. In the case of a noise free backscattering measurement, the reconstruction of the
FFP is already pretty good at the end of Step 1 of the procedure(the relative error
on the full aperture is about10% (see Figure 4 and Table 1). In fact, we have
noticed that, in the case of backscattering measurements, as long as the noise
level is low (less than1%), Step 1 suffices to reconstruct accurately the FFP (see
Figure 5 and Table 1). For higher noise level (5% and10%), we have noticed
that the procedure at Step 2 does not enrich the90o-aperture delivered by Step 1
(the algorithm stagnates in Step 2). Therefore, Step 3 uses the computed FFP at
Step 1 in the90o-aperture, and delivers the field depicted in Figures (6)-(7)

iii. As expected, the accuracy of the FFP reconstruction deteriorates with the in-
crease of the noise level. However, such a loss of accuracy isrelatively slow,
as indicated in Table 1. In addition, the reconstruction of the FFP over a90o-
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aperture remains accurate up to the noise level (see Table 1), which is, as men-
tioned above, of practical interest.
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Figure 6: Enrichment of the FFP from a backscattering measurement (M = 1). No
extension is obtained from Step 2. Case:ka = 1 and noise level5%.
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Figure 7: Enrichment of the FFP from a backscattering measurement (M = 1). No
extension is obtained from Step 2. Case:ka = 1 and noise level10%.
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Table 2: Sensitivity of the2-norm relative error of the enriched FFP to the noise level.
Case of a two-degree aperture (M = 3) andka = 1

Noise level Extension over90o Extension over360o

1 % 5.4452 % 12.5250 %
5 % 6.2115 % 11.3946 %
10 % 10.2960 % 19.3652 %

4.2 FFP Extension from a two-degree aperture

Next, we analyze the sensitivity of the reconstruction procedure to the size of the
FFP data (the number of measurements). We consider the casesof interest, that is,
where FFP data are still not enough to solve IOP problems using the existing numeri-
cal methods. For illustration purpose, we present the case where the FFP is measured
from backscattering in a two-degree aperture, i.e. three measurements are available
(M = 3). This is a typical (and practical) situation where the enrichment of the data
is aprerequisitestep for solving successfully IOP problems. Similarly to the backscat-
tering case, we have performed numerical experiments when the data are tainted with
three different levels of white noise: low level (1%), medium level (5%), and high level
(10%). In all the experiments, we have setka = 1. The results are reported in Figures
(8)-(10) and Table 2. The following observations are noteworthy:

i. In all cases, the proposed procedure is successful in reconstructing the field over
a90o-aperture, as indicated in Table 2, which is (again) very promising for solv-
ing efficiently IOP problems.

ii. Unlike the case of backscattering reconstruction, we have observed that Step
2 does play a role in the reconstruction for data given in a wider aperture, re-
gardless of the noise level as illustrated in Figures (8)-(10). However, we have
observed that the extension of the90o-aperture at Step 2 does not exceed a sector
of 2o. In fact, our numerical investigation reveals that Step 2 does not extend the
90o-aperture more than6o.

iii. For low noise level (1%), the accuracy is comparable to the case of the re-
construction from backscattering data (see Tables 1-2). Onthe other hand, for
medium noise level (5%), the procedure is sensitive to the size of the data. In-
deed, we observe that the relative error on the full reconstructed FFP from a
2o-aperture is reduced by a factor2 compared to the reconstruction when start-
ing from a0o-aperture, as indicated in Table 1 and 2.

iv. For higher noise level, the procedure performs slightlybetter when the size of
the FFP data is increased. Indeed, as illustrated in Tables 1-2, the accuracy is
improved by about6% in the case of an extension over a full aperture from a
2o-aperture compared to the reconstruction from0o-aperture. Applying filtering
procedures, as suggested in [15] could be a possible alternative to reduce the
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level of errors on the reconstructed full aperture, and therefore to improve the
accuracy.
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4.3 Sensitivity of the FFP Extension to the Frequency

We have investigated the performance of the proposed procedure for reconstructing the
FFF field in the high frequency regime. We have found the following:

i. The proposed procedure performs poorly in the case offull extension (over360o

aperture) of the FFP field from few noisy measurements.

ii. The procedure solution methodology remains efficient for partial enrichment of
the FFP field using Step 1 only. More specifically, at the end (stagnation) of Step
1, the procedure delivers the FFP field over a90o-aperture with a good level of
accuracy, as illustrated in Table 3. The results reported inTable 3 are the relative
errors of the FFP extension over a90o-aperture from backscattering (resp. two-
degree) measurements corresponding to five frequencies:ka = 1, 2, 3, 4 and5.
The original FFP measurements in these experiments were contaminated with
5% of white noise. The following observation are noteworthy.

• As clearly illustrated in Table 3, the level of accuracy in the extension re-
mains acceptable (given the level of noise in the data) for frequencies val-
ueska ≤ 4. This observation is very important to regularized iterative
solvers that require data to be given in -at least- a90o-aperture for solving
successfully IOP problems.

• As expected, the extension of the FFP field from a two-degree aperture
measurements is more accurate than from backscattering measurements.

• The level accuracy in the extension deteriorates dramatically for high val-
ues of the frequency (ka ≥ 5). Yet, the reconstructed field for such fre-
quencies can be incorporated in an IOP iterative solver after reducing -if
possible- the level of errors by applying a noise filtering-type procedure
[15].

Table 3: Effect of the frequency on the2-norm relative error of the FFP extension over
a90o-aperture. Original measurements tainted with5% of white noise.

Frequencyka Extension from Extension from
Backscattering Measurementa Two-Degree Aperture

M = 1 M = 3

1 4.5782 % 3.6299 %
2 15.0690 % 9.8891 %
3 20.7420 % 11.2520 %
4 20.8970 % 21.6600 %
5 32.4070 % 31.0140 %
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5 Summary and Conclusion

In response to the pressure need for FFP data in large apertures (90o-apertures at least)
for solving efficiently inverse obstacle problems with iterative solution methodologies,
we have designed a procedure that extends few noisy FFP measurements to larger aper-
tures. The proposed method is a three-stage procedure wherethe total variation of the
FFP field is used for regularization. Using synthetic FFP data, we have perofrmed
numerical experiments to assess the performance of the proposed method. The nu-
merical results indicate that the procedure extends successfully noisy backscattering
measurements tofull aperure (360o-aperture). Such an efficiency is achieved even in
the presence of high level of noise, but for measured data corresponding to relatively
small frequency values. Note that in the particular case of backscattering measure-
ments and low noise level (less than1%), the field is reconstructed accurately over
the full aperture at the end of Step 1 of the proposed procedure. For higher level of
noise, the three steps of the procedure are crucial for a successful extension. For rela-
tively high frequency values, the procedure performs poorly for full aperture extension.
However, the proposed procedure remains efficient for extending the FFP field over a
90o-aperture after applying Step 1 only.
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Appendix A
We present in this section auxiliary properties of the totalvariation (TV) formula-

tion in the simple case of one-dimensional functions. Theseelementary properties are
included only for illustration. For completeness, more results can be found in [26]-
[30], among other references.

Let f(t) : I ⊆ R −→ R be a regular function (for example, continuously differen-
tiable) on an intervalI. Then, the total variation off , denoted byJTV (f), is given
by:

JTV (f) =

∫

I

|f ′(t)|dt = ‖f ′(t)‖1 (15)

Observe thatJTV (f) is the integral of the “variations"f ′ of the functionf over the
entiredomainI. For this reason,JTV (f) is called the total variation off .

Next, we illustrate the effect of the total variation functional when employed as a
Tikhonov-like regularization term (penalty-type term). This is achieved by comparing
theL1 penalty term‖f ′‖1 introduced byJTV (f) to the classicalL2 penalty term‖f ′‖2
(standard Tikhonov regularization).

Consider the functionf depicted in the figure below. It is easy to verify thatf ′(t) = 0

if t > l andf ′(t) =
d

l
if 0 < t < l. In addition, we have:

‖f ′‖1 = d and ‖f ′‖2 =
d√
l

(16)

Eq. (16) reveals the following two features:

i. When using theL1-norm, a constant penalty is associated with the variationsof
f, since‖f ′‖1 = d. However, with theL2-norm, the penalty associated with the
variations off is inversely proportional to

√
l, hence rapid variations off are

more penalized.

ii. The semi-normL2 admits a unique minimizer (i.e. asl goes to infinity), whereas
L1 is minimized by an infinite number of functions, which could be a great
advantage since the function of interest (or a close approximation of it) could be
among these functions.

As stated in the introduction of this paper, because of the non differentiability of
the operatorJTV , the TV formulation has not been used by applied mathematicians
and engineers as a penalty term whenever numerical methods that require the compu-
tation of the jacobians are employed. This difficulty can be alleviated by perturbing the
operatorJTV [30]. More specifically, we replace the operatorJTV by JTV, β given
by:

JTV, β(f) =

∫

I

√
|f ′(t)|2 + β2dt (17)

where the positive real numberβ is introduced as aregularitycoefficient. Observe that,
for a fixed functionf , we have:

JTV, β(f) −→ JTV (f) as β −→ 0+
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Last, the computation ofJTV, β(f) requires the evaluation of the derivative off .
Unfortunately, it is not possible or easy to evaluate the derivativef ′ for most practical
inverse problems. For such cases, one can use finite difference schemes to approximate
the derivative off . For example, the use of the central discrete scheme leads tothe
following algebraic expression approximating the perturbed TV operatorJTV, β :

JTV, β(f) ≈ JTV, β(f) =

∥∥∥∥
(
(Df)2 + β2

ẽ

)1/2
∥∥∥∥

1

(18)

with

D =
1

2h




−2 2 0 0 · · · 0
−1 0 1 0 · · · 0
...

...
...

...
...

...
0 · · · 0 −1 0 1
0 · · · 0 0 −2 2




Here,D is the central discrete first derivative operator, used in order to eliminate highly
oscillating regularized solutions.f is assumed to vary only in an interval containing
the uniformly spread pointst1 < · · · < tn, with ti+1 − ti = h, andẽ is a vector of
ones. In the Tikhonov setting, there is no need for computingh, since it is absorbed
into the regularization coefficient and the regularity coefficientβ. Finally, the bold face
exponents in Eq. (18) are pointwise operations.
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(a) Comparison between absolute values of exact
and computed FFP at the end of Step 1 (at stagna-
tion, i.e.,M = 16).
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(b) Convergence history of the solution procedure at
Step 1. The algorithm stagnates whenM = 16.
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(c) Comparison between absolute values of exact
and computed FFP at the end of Step 2 (at stagna-
tion, i.e.,M = 92).
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(d) Convergence history of the solution procedure at
Step 2. The algorithm stagnates whenM = 92.
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