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Une méthode itérative pour I'extrapolation de
I'amplitude de diffusion du champ acoustique 2D

Résumé :Nous proposons une stratégie d’extrapolation de I'amgiditdie diffusion du
champ acoustique a partir de données mesurées sur un ptitrsé’observation. La
procédure de reconstruction du champ est de type itérdléf sEppuie sur trois étapes
et utilise la variation totale de I'amplitude de diffusiod@s fins de régularisation. Les
résultats numériques obtenus a partir de mesures synthstiliustrent I'efficacité de
la méthode proposée pour reconstruire entieremeng@@4) I'amplitude de diffusion
et cela a partir de trés peu de points de mesure ( méme un set)lgtgour différents
niveaux de bruits.

Mots-clés : probleme de diffraction acoustique, probléme inverselg@rae mal pose,
fenétre réduite d’observation,variation totale, régaktion de Tikhonov, méthode de
Newton
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1 Introduction

The development of efficient solution methodologies fovsg inverse problems is
very important to many technologies such as sonar, radaphysical exploration,
medical imaging and nondestructive testing [1]. A typicample of inverse problems
is the determination of the shape of an obstacle from the letye of some scattered
far-field patterns (FFP), and assuming some a priori knogdeabout the characteris-
tics of the surface of the obstacle. This inverse obstadblpm (IOP) is very difficult
to solve numerically because it is not only nonlinéar [2]; fmost importantly improp-
erly posed in the sense of Hadamdrd [3]. Because of its peddtnportance, the IOP
has received a great deal of attention by applied matheiaasi@and engineers during
the last three decades leading to the design of various catiqmal methods (see for
example the overview il ]4] and references therein). Thearigal results reported in
the literature indicate that the success in the recongdrucf the sought-after shape
of an obstacle by the current numerical methods dependsgiyron thequality of
the given FFP measurements: the aperture (range of obiseraaigles) and the level
of noise in the data (accuracy of measurements). More spaltjfiit has been ob-
served that it is possible to retrieve a unique and reasgmgdad solution of the IOP
when using onlyoneincident plane wave (one frequency and one incident doegti
and measured FFP around the entire obstacle (full-apgytaldem ), even when the
measurements are contaminated with a high level of whiteenip t020%) [B]. The
situation is quite different in the case of the limited apegtproblem([BL17.18.19] which
is of great importance and interest since in most applinattbe FFP cannot be mea-
sured entirely but only in a limited sector. Indeed, earlyneuical results (see for
example [[6[I0 11 12] among others) performed in the resmneegion — that is,
for a wavelength that is approximately equals to the dianodtihe obstacle —showed
that using anywhere from 13 to 24 incident waves and limépdrture far-field data
and as long as the aperture is larger thaone can achieve a good reconstruction of the
shape of the obstacle. For smaller apertures, the recatistibbecomes more difficult
and nearly impossible for apertures smaller thda, even when the measurements are
noise free. Later numerical resulis]14] demonstrateditligt-in fact— possible to ob-
tain a reasonable reconstruction of the shape of an obgtaahkethe knowledge of its
corresponding FFP when measured in an aperturg/®ffor one incident plane wave
only. The quality of the reconstruction can be significarthproved depending on
the number of incident plane waves (multiple incident dicets and/or frequencies)
as well as on the noise level]14].

Given that, it is of paramount to develop numerical proceduo enrich (increase
the size) the set of FFP measurements when given in a smatueme Note that a
procedure for denoising the FFP data while solving simelbausly the IOP has been
recently proposed ifi[15]. However, as it has been statditedhere is no hope —at
least with existing numerical methods— to solve the IOP wihenFFP data are given
in a small apertures (less thari4) even when the data are noise free. Consequently,
we propose a three-step solution methodology to extendatingerof FFP data when
measured in a small range of observation angles (smallapgriThe goal of the pro-
cedure is to extend the few measured FFP data to —at leastga o&r/2 in order to

be used for solving efficiently the IOP problem. From a mathgral point of view,

it is always possible to extend the FERiquelyto the entire circleS when given in

a (continuous) subset ¢f. This unique determination is due to the analyticity of the
FFP [2]. However, the numerical extension from the knowéedfja (discrete) subset
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4 Barucq & Bekkey & Dijelloul

of the FFP is a very challenging problem. Indeed, such eidarn be formulated
as an inverse problem that éxtremelyill-posed due precisely to the analyticity of
the FFP. Therefore, any numerical procedure for extendingd¢hing) the FFP mea-
surements must address efficiently the ill-posedness eatuthis inverse problem.
Previous attempts to solve this problem were based on usinstandard 2-Tikhonov
regularization techniqué&TlLB,114]. The extension was (fnesextent) successful only
when the range of measurements is given in an aperture ldrger /2. The proce-
dure fails to address situations of practical interest,igwvwhen only one measurement
(backscattering) or few measurements are available. Thepuotational method we
propose, in its first two steps, extends the data to an apdarger thanr/2. The third
step allows to extend of the FFP to its full aperture. The fwst steps of the proposed
procedure employ a regularized Newton-type algorithm whieetotal variation(TV)

of the FFP is incorporated to restore the stability to theine problem. The idea for
using the TV formulation is not neviZ[26]. It has already beecessfully used in im-
age deblurring applications [R7]-[B0]. However, it has heen employed by applied
mathematicians and engineers to other applications sifeads to the minimization
of a non-differentiable cost function. The lack of diffetiability prevents using ro-
bust minimization algorithms (such as Newton algorithnvpiming the computation
of jacobians. We employ a modified version of this reguldii@atechnique that leads
to the minimization of a differentiable cost function. Thwerd step of the proposed
procedure uses a Tikhonov-type regularization technijaeis known to be efficient
when the data are given on an aperture larger tty@n The numerical results reported
in this paper illustrate the efficiency of the proposed sotutmethodology for recon-
structing the FFP tdull aperture in the low frequency regime from noisy synthetic
measurements as few backscatteringlata.

The remainder of this paper is organized as follows. In 8ac#, we specify the
notations and assumptions adopted in this paper, and wk tieealirect and inverse
acoustic scattering problems. Section 3 is devoted to teerig¢ion of the proposed
multi-step solution methodology for enriching FFP data. iifeoduce the mathemat-
ical formulation of the inverse FFP problem (IFP). This gewb is then regularized
using the total variation of the FFP. Since the cost-fumctiorresponding to this reg-
ularized IFP problem is not differentiable, a modified vensof this regularization is
adopted in order to restore the regularity. Then, we deschie algorithm of the solu-
tion procedure and summarize its computational compleSiggtion 4 is devoted to the
numerical results obtained usisgntheticdata. These results illustrate the salient fea-
tures and demonstrate the performance characteristine pfoposed solution method-
ology. We state our conclusion in Section 5. Appendix A corgauxiliary properties
pertaining to the TV formulation.

2 Preliminaries

We specify in this section the nomenclature and assumptit@atisire adopted through-
out this paper.

INRIA



A Multi-Step Procedure for Enriching Limited 2D FFP Measuents 5

2.1 The Direct Acoustic Scattering Problem

We consider throughout this paper the class of acoustitestag problems in the case
of two-dimensionakound-sofscatterers. It consists in finding the scattered field
solution of the following boundary value problem (BVIE)[2]:

Au+k2u=0 in Q¢
u= —u"c onI’

ou
lim x — —dku | =0
oo VI@l2 <8llwllz )

whereu!"° is the incident plane wave given by

(BVP)

uinc _ eik x-d

and¢ is a homogeneous unbounded domain surrounding the sotinskatierer?,
that isQ® = R2\Q, I'is the boundary of the scatteréris a positive number represent-
ing the wavenumber, and is a unit vector representing the direction of the incident
plane wave. Note that the coufgle d) characterizes the incident plane wane. The
last equation of BVP is called the Sommerfeld radiation ddordl We point out that
the Dirichlet boundary condition is used only for simplcéand that the results pre-
sented herein apply to Neumann and Robin-type boundanyittmms] that are usually
encountered in acoustic scattering problems.

The far-field patterni., of the solutionu of BVP is defined on the unit circlg from
the asymptotic behavior of the scattered fielsee, for example[]2]),
eikr 0 o 1 1

@)= 2 (1a®) +0G)) 7t &
where(r, §) are the polar coordinates corresponding to the cartesiardt@tese;
r > 0andf € [0, 27). Note that the direct acoustic scattering problem BVP has be
extensively investigated mathematically, and a consldermmount of results pertain-
ing to the existence, uniqueness, regularity, and asymgtehavior of the solution
u can be found in[]2],[TT6]E19], among others. The readerrageed in the solution
methodologies for solving BVP is invited to read, for exaehe recent monograph

0.

2.2 The Inverse Obstacle Problem

First, we note that the solutianof BVP defines an operatdf : I' — u., which maps
the boundary’ of the scatteref) onto the far-field pattern... Hence, inverse obstacle
problems (IOP) can be formulated as follows:

Given one or several measured far-field pattefing(), corresponding to one or sev-
eral given directiongl and wavenumbers, findI" that satisfies:

FT)(0) = n(0); 6€S )

where the tilde notation designates a measured quantity

The following three observations are noteworthy

RR n° 7048



6 Barucq & Bekkey & Dijelloul

e Although IOP is one of the simplest problems arising in theeise scattering
field, it is still not completely solved from a mathematicéw point. Indeed,
only partial results pertaining to the uniqueness of thatgmh of IOP are avail-
able [2[IB[211]. On the other hand, numerous solution metlogies have been
proposed during the last three decades to solve numerl€ifly(see, for exam-
ple, the overview in[J4] and the references therein).

e The FFP measuremenis, (f) in the IOP problems are not available for &l
S (full-aperture). Indeed, for most applications, it is pbksto measur@oo(é)
in only an opensubsetof S (limited-aperture). Typicallyﬂoo(é) is given at
some observation poin% ; 1 < j < M for multiple incident directions and/or
frequencies. The important casebafckscatteringneasurements corresponds to
M =1.

e It is well known that the success for solving numerically |@&pends on the
quality of the FFP data, that is the number of measuremdretis Jbcation around
the sought-after obstacle, and the noise level in the meamnts.

3 The Multi-Step Procedure for Enriching the FFP data

This section is devoted to the description of the solutiothmé@ology we propose to
extendthe FFP data to full aperture when given in a limited obséowasector. It is
organized as follows. First, we formulate the FFP extensimblem as an inverse
problem. Then, we introduce the regularized iterative @ailgm for solving this prob-
lem. Last, we describe the iterative extension processeoflittia. A summary of the
numerical procedure concludes this section.

As stated earlier in the introduction, the idea for extegdire measured FFP in a lim-
ited aperture to a wider range before solving the IOP prokitenot new [1B[1H4] .
A standardL?-Tikhonov regularization technique was used for this psgorhe ex-
tension was successful only when the range of measurengegigein in an aperture
larger thanr /2. The procedure fails to address situations of practicelrést where
backscattering or only few noisy measurements are availabl

We recall that it is possible to solve IOP, using regulariXed/ton-type methods, when
FFP data are measured in (a) an aperture larger or equalfts one incident plane
wave (one incident direction and one frequency), and (b)pentare as small as/2
but for multiple incident plane waves (several incidenediions and/or frequencies)
[6], [LO,[11,12]. Given that, the proposed multi-step soluproceduranustbe able
to extend the FFP data to a range of —at least; when given in an aperture as small
as backscattering measurements, in order to be of prautieadst.

3.1 Problem Statement

Since the FFR:, corresponding to the solutianof BVP is analytic on the unit circle
S, we can express it as a Fourier series as follows:

oo

Uoo(0) = Z (—=i)"cpe™; e S 3

n=—oo

where the complex constantsare the Fourier coefficients. The determination of these
constants allows to measure the FER on the entire unit circles.

INRIA



A Multi-Step Procedure for Enriching Limited 2D FFP Measuents 7

The computation of the Fourier coefficiemtswhen the FFR., is given at some (few)
observation points can be formulated as the follovimnvgrseFourier coefficients prob-
lem (IFP):

Given a set o/ far-field pattern measuremenis, = [tioo (61), -+, oo (Oar)]"
for one incident plane wave, find
¢ =arg ce@if{flﬂ |Ac — Uso|2 (4)

wherearg is used to denote thatis the minimizer of the cost functiohAc — U |2
overC2N+1 with N being the truncating order of the Fourier series given by(@y.
AisalM x (2N + 1) matrix given by:

(_i)—Ne—iNé1 R (_i)NeiNél 1
—i _Ne_iNé2 e 1 e —i NeiNég
a-| ; S . ; (5)
I (_i)—Ne—iNéM R (_i)NeiNéM |

The IFP problem given by Eq(4) is severely ill-posed. Thedition number of the
matrix A given by Eq.[b) increases exponentially as the number of$é¥ increases
[2]. Consequently, it is very difficult to solve numericaliP since the accuracy of the
solution requiresV to be relatively large, depending on the frequency. Forréason,
a stabilization technigue must be incorporated during ¢hetion of Eq. [#).

3.2 The total variation regularization technique: A modified pro-
cedure

As stated in the previous paragraph, the numerical solafitime IFP problem requires
first to restore the stability to EqL](4). Stabilization pedares such as Tikhonov's
regularization[[2R["23] are the primary candidates for tass of problems. Such
techniques consist in incorporatin@anorm penalty-like term in Eq14) to make the
resulting system better conditioned. Therefore, the miation problem is replaced
by the following regularized IFP problem:

1 ~
e arg_min, {3140~ el -+ ulT(0) 2} ©
whereyp > 0 is the regularization parameter afids a regularization operator.

The simplest choice of the operafbBiis the identity mappindl13] corresponding to the
standard Tikhonov regularization techniqui.can also be either the first- or second-
order derivative operatof [lL4]. The latter approach cannberpreted as a Tikhonov
regularization technique which balances a goodness-aiddasure and a roughness
penalty. The regularization parametecan be expected to play the role of a smoother
because it controls in this case the trade-off between gessdof-fit and roughness.
This parameter can be determined by theoretical considasasuch as Morozov’s
discrepancy principlé[24,25]. However, in both approadhe “optimal” value of the

RR n° 7048



8 Barucq & Bekkey & Dijelloul

regularization parameter was found simply with a trial and error procedure, as it is
often the case for most of regularized procedures. Lash tmgfularization strategies
exhibit poor performance as soon as the range of observatigies (aperture) is less
thanr/2, even in the case of noise free data. We must point out thatwe dbserved
that in the case of the standard regularizatibrbging the identity operator), the per-
formance deteriorates when the FFP measurements (evengivieerin an aperture of
) are tainted with onlyl % of white noise.

Given that, we propose to use the total variation (TV) of #efield pattern to restore
the stability to the IFP problem given by Edl (£)]26]. Sucthtieique has been used
widely and successfully in image deblurring applicatidag]{[30d]. It consists in re-
placing the minimization problenid(4) by the following TVegelarized IFP problem:

ceC2N+1

) (1 _
¢ =arg min {§|Ac—uoo||§+,u||Dc|1} (7)

whereD is a(2N + 1) x (2N + 1) matrix representing the central discrete first-order
derivative operator (see appendik).is given by:

-2 2 0 0 -+ 0
-1 0 1 0 - 0
D-_- :
T 2h :
0 0 -1 0 1
0 0 0 -2 2

andh is a positive parameter that results from the discrete aqapiation of the total
variation (see appendix A).
Observe that this regularized formulation incurs a nofedétiable cost function due
to the presence of thenorm term||Dc||,. The lack of the regularity is a serious de-
fect in the cost function since it rules out the use of effitieamerical procedures,
such as Newton algorithms, that require the evaluationejabobians. Consequently,
we modify the TV formulation, using a perturbation-type gedure suggested in[30],
to restore the regularity. More specifically, we replace &).by the following mini-
mization problem:

boow®

1

wheree is a vector inC2M 1 introduced to restore the regularity to thé norm term.
e is given by:

. . 1 ~ 2 2 o \1/2
¢=arg min < -[|Ac—U|5+p ((Dc) +4 e)

ceC2N+1 | 2

e=1, -, 1"

The bold face exponents in Ef (8), and for the remainingisfdéction, are pointwise
operations. The positive constahis theregularity parameter. Indeed, the presence of
3 (3 large enough) ensures the differentiability of thenorm term in the cost func-
tion given by Eq. [B). The optimal value of the couif}e 3) is obtained using — at
this point of the study— a trial and error strategy since aimary goal is to investigate
the feasibility of the proposed method. Note that there im@ed for computing the
positive parametér since, in practice, it is “absorbed" into the parameteasnd 5.

INRIA



A Multi-Step Procedure for Enriching Limited 2D FFP Measuents 9

We note that a serious shortcoming of the standzdegularization techniques is
that they do not allow discontinuous solutions, whereas adviputed solution could
be discontinuous. Therefore, the proposed TV formulatesithe potential to be more
robust in the presence of noisy data due to measuremens emdfor roundoff.

3.3 The Newton Algorithm

We propose to apply the Newton method to solve the nonlinéainmization problem
given by [B) since the corresponding cost function is nofeditiable. Consequently,
at each iteratiom, we solve the linear system:

F'(cm))se™ = — F'(c(m) 9)

and then update

cmtl) — o(m) 4 5.(m) (10)

The matrix 7" is the Hessian of the regularized cost function given[@y (B). is a
(2N + 1) x (2N + 1) matrix given by [30]:

F'(e™) = A*A + p <D*\111D D" [(Dc(m))r \I/3D> (11)

where(c) is a(2N + 1) x (2N + 1) diagonal matrix whose diagonal entries are the
components of the vecter € C2V+1. Wisa(2N + 1) x (2N + 1) diagonal matrix

given by [30]: e
U= (HDc<m>] g 52’6} ) (12)

The vectorF is the jacobian of the regularized cost function given[y (8)(c™))
is a vector inC2N*! defined by[[3D]:

Observe that the Newton algorithm requires to solve —at gadtion— a2V + 1) x
(2N + 1) linear system which is, in practice saallsystem that can be solved with a
direct method such as the LU factorization.

3.4 The Multi-Step Solution Procedure: Algorithm Description

A preliminary numerical investigation performed by thelars reveals that the New-
ton algorithm given by equationgl (41={10) delivers a faldfigattern with a high level
of accuracy at points close to the given observation andtesvever, such an accu-
racy deteriorates dramatically at points far from the messdata. For this reason, the
following three-step procedure for extending the FFRutbaperture is proposed.

Step 1. The given data in this step are the frequency regkudga characterizes the
dimension of the scatterer), the truncation order of theieoseires (see EJ1(3))
is NV, and the number of FFP measuremehtsThe value ofV depends oika.
Typically, N ~ ka, which mean® ka 4+ 1 modes are left in the truncated series.

~ ~ T
The FFP datai., = [ﬂm(()l), cee ﬂoo(GM)} are measured at/ points in

RR n° 7048



10 Barucq & Bekkey & Dijelloul

a given observation sector, as depicted in Fidiire 1. Nextlyap multi-stage
strategy to enrich -at each stage- the FFP measuremewotslyiwo additional
adjacent values. More specifically, do the following:

Step 1.1. Solve the TV-regularized minimization problef (8) usingitien iteration
equations[{9)EI0). Proceed as follows:
— Initialize the Fourier coefficient vecter= ¢(©) and compute the FFP
u'? corresponding te(©).

— For a giverp, andg, apply the Newton algorithm to the solution of the
regularized IFP problem given by Efl (8) until convergesanation
of the residual which is th-norm of the relative error on the FFP, i.e.

M A ~ 1
(O ul?(05) = dac(05)%)2
j=1

< €

M R )
(D [ase(@5)*)
j=1

whereugf‘) is the computed FFP at Newton iterationande; is a
prescribed tolerance; is typically the noise level in the original data.

— Compute the new FFP and store its valueifat 2 observation points.
These points are the ones located at the origihaheasurements and
2 additional points that are adjacent to the initial ones,g@aled in
Figureg[2(d). Note that the values of the original FFP dataepkaced
by the computed ones. Hence, at the end of this step, the RERuda
enriched by twaewobservation points and the original measurements
areupdatedby the computed ones. Also, store the Fourier coefficients

T
vector denoted byt = c[f]N, c e c%] corresponding

to the FFP computed at the last iteration of the Newton algari

"
"
"~
L
"
~
.
......
"~
.
.
L
"
LN

[
.
..
Py
.
.
..
..
Py
..
Py
..
.
.

Figure 1: The given (few) FFP measurements for Step 1 arédda points repre-
sented by o 7.

INRIA
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Bm+2
N
Om+1
B
N
01
S
(a) The Given FFP data are extended atthe end  (b) The computed FFP measurements in[Fig] 2(a)
of Step 1.1 by2 measurements locatedéatand are extended at the end of Step 1.2byeasure-
Onryo. ments located at; andfps 4.

Figure 2: Extension process of the FFP in Step 1.

Step 1.2. Repeat the solution procedure described in Step 1.1 whéis tine—
the FFP measurements (the reference solution for the Neatmmithm)
are theM + 2 values of the FFP computed and stored in Step 1.1, i.e.,

. . . . T
oo = [foo(B1), o Tioo(Br), T (Brr41), line(Bari2)| . Note that
the stopping criterion of the Newton algorithm now is th@orm of the
residual at thel/ + 2 observation points, that is:

M+2 . )
(O [ul) (05) — s (0)2) %

Jj=1

M+2
1

(D lase(8)1)2
j=1

Then,

— Compute the new FFP and store its valuek/at 4 observation points.
These points are the ones located atthe- 2 previous measurements
and?2 additional points that are adjacent to the previous onedgas
picted in Figurd 2(®). Hence, the values of the origifal+ 2 FFP
data areupdatedby the computed ones. Observe that, at the end of
this step, theoriginal M FFP data areipdatedandenrichedby four

measurements.
T
— Store the Fourier coefficients vector denotea 3y = c[_Q]N, cee c{f], cee cg\ﬂ
corresponding to the FFP computed at the last iterationeoNgawton
algorithm.

Step 1.3. Repeat this multi-stage process until its stagnation, the. values of the
Fourier coefficients vector —stored each time— are no loolganging:

2

N
et ey = 37 el R ) <e
j=—N

RR n° 7048
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Step 2.

Step 3.

3.5

wheree, is a fixed tolerance. Typically, ~ 10~°. At stagnation, com-
pute the new FFP and store its values in apertur@0éf that isu,, =
(ﬂoo(él), . ﬂm(égl)). These values are located in the sector of the
original measurements, as depicted in Fidure 3(a).

Repeat the multi-stage procedure described in Step 1 Usimgrme the follow-
ing initial data:

— The number of Fourier coefficients is increased by 2, Nes- (V + 1).

— The FFP measurements are the values the computed FFP atitbEXtep
1.3. These measurements are given in an aperte’dfe. M «— 91 (see

Figure[3(@)).

At stagnation (at the end of Step 2), compute the new FFP amé ¢ values
at91 + 2P new observation points ( the number of extended FFP measuitsm
is alwaysever). These points are the ones located in the region of the quisvi
90° aperture measurements plB additional points that are adjacent to them.
Hence, at the end of step 2, the FFP is computed over an apeft(®0 + 2P)°

(for P = 1, see Figurg3[b)) .

The full aperture of the FFP is computed in this step usingkadnov regular-
ization technique. The FFP data are the values stored anthefeStep 2, i.e.

. R T
U = [ﬁoo(al), s 1700(991+2p):| . Proceed as follows:

— First, compute th&nalvalues of the Fourier coefficients= [¢_y_1, - -+, o,
. 6N+1]T by solving the linear system:

e =(A"A+pul) " Aty
wherey is the regularization parameter chosen using a trial arat strat-
egy.

— Then, evaluate thiuill aperture of the FFP using the Fourier series expan-

sion:
N+1

Uoo(0) = > (=)"eae™; 0 €]0,2m)
n=—N-—1

Computational Complexity

The multi-stage methodology outlined previously for exlieg the FFP data to full
aperture requires solving main(§.V + 1) x (2N + 1) linear systems which asmall-
scalesystems sinc€ N + 1 is the number of Fourier modes in the truncated series.
Therefore, these linear system can be easily solved usiegtdnethods such as the
standardLU factorization. The number of these linear systems depeods\Ver on
the number of Newton iterations (typically no more thanterations) and the number
of trials —at each Newton iteration— to select the “bestligalof the parametefsand

£ (about40 trials).
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S
(a) The initial FFP measurements in Step 2 are givend9A% (b) The computed FFP measurements in
aperture. These data are obtained at the end of Step 1. Fig[3(a) are extended at the end of Step
2.1 by2 measurements locatedét and
993.

Figure 3: Extension process of the FFP in Step 2.

4 |llustrative Numerical Results

In this section, we illustrate the potential of the proposeldition methodology for en-
riching FFP data from the knowledge of few observation mibiackscattering mea-
surements and a two-degree aperture. For this purpose,weekaormed numerical
experiments to illustrate the sensitivity of the perforrmanf the proposed methodol-
ogy to the noise level and the frequency regime. All the nicaéexperiments were
performed using synthetic FFP data corresponding to thesticoscattered field by
a sound-softlisk-shaped scatterer. This synthetic field can be companadtically
using the following Fourier serieBl[2]:

NOESY 7,1(—1)"2"1((’;;?) cos(nf) ; 6€l0,2r) (14)

n=—0

whereyy = 1 and~, = 2; VYn > 1. a is the radius of the considered disk-shaped
obstacle.J,, (resp. H}) is the Bessel function (resp. Hankel function) of first kisfd
ordern [32]. Note that the Dirichlet boundary condition charaizielg a sound-soft
scatterer is used here only for simplicity and that the tesaresented herein apply to
all types of admissible boundary conditions.

4.1 FFP Extension from Backscattering Measurements

We consider the case where the data are measurediraperture, i.e. the FFP is
measured at one point only{ = 1). First, we present numerical results to assess the
sensitivity to the noise level of the reconstruction praged We consider four level of
white noise (the-norm sense): noise fre6%), low level (1%), medium level §%),

and high level {0%). In all the experiments, we have dat = 1. The results are
reported in Figured14J(7) and Tallle 1. The following oba&pns are noteworthy:

i. In all cases, the proposed procedure is able to recongtrad-FP. The recon-
struction accuracy is much more better oveéd0&-aperture, which is of a great

RR n° 7048



14 Barucq & Bekkey & Dijelloul

Table 1: Sensitivity of th@-norm relative error of the enriched FFP to the noise level.
Case of backscattering daté/(= 1) andka = 1.

Noise level || Extension ovef0° | Extension oveB60°

0% 51121 % 10.5880 %
1% 6.2285 % 11.9970 %
5% 6.0375% 21.3259 %
10 % 8.2838 % 24.7173 %

1.8

===Computed FFP

1.6f = Exact FFP

1.4¢

1.2r

1,
O'§4 -2 0 2 4

(a) Comparison between absolute values of exact
and computed FFP at the end of Step 1 (at stagna-
tion, i.e.,M = 8).

80

0 5 10 15 20 25 30
Observation sector (in degrees)

(b) Convergence history of the solution procedure at
Step 1. The algorithm stagnates wheh= 8.

Figure 4: Enrichment of the FFP from a backscattering measent (// = 1) using
Step 1 only. Caséka = 1 and noise leved%.

interest when solving IOP problems with regularized Newtgre methods. In-
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18
===Computed FFP
1.6t — Exact FFP b
.
1.4f !
"
1.2 .
.
.
:
1t
“ 0" s "
08 . . .
-4 -2 0 2 4

(a) Comparison between absolute values of exact
and computed FFP at the end of Step 1 (at stagna-

tion, i.e., M = 8).

80

70

2
[}
o

n+1, n
lle ™ = ™)
n w B a
o o o o
L]

=
o

0 . o« ® o o .~ o o o o o
0 5 10 15 20 25 30
Observation sector (in degrees)

(b) Convergence history of the solution procedure at
Step 1. The algorithm stagnates wheh= 8.

Figure 5: Enrichment of the FFP from a backscattering memssent (/ = 1) using
Step 1 onlyka = 1 and noise level %.

deed, as stated earlier, it is possible to succeed in sol@fgproblems using
regularized iterative-type methods when the FFP data aesuned over 80°-

aperture only.

ii. Inthe case of a noise free backscattering measurenientetonstruction of the
FFP is already pretty good at the end of Step 1 of the procdtheeelative error
on the full aperture is aboui0% (see Figuré&l4 and Tablg 1). In fact, we have
noticed that, in the case of backscattering measurementeng as the noise
level is low (less than%), Step 1 suffices to reconstruct accurately the FFP (see
Figure[® and TablEl1). For higher noise levé¥(and10%), we have noticed
that the procedure at Step 2 does not enrictdtiteaperture delivered by Step 1
(the algorithm stagnates in Step 2). Therefore, Step 3 hsesomputed FFP at
Step 1 in thed0°-aperture, and delivers the field depicted in FigukesI)-(7

iii. As expected, the accuracy of the FFP reconstructioeritaiates with the in-
crease of the noise level. However, such a loss of accura@jdtvely slow,
as indicated in TablEl 1. In addition, the reconstructionhef EFP over &0°-
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aperture remains accurate up to the noise level (see Mhbiehich is, as men-
tioned above, of practical interest.
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18 i . !
===Computed FFP

1.67 = Exact FFP 1

1.4¢ 1

1.2¢ 1

1t J

0'§4 -2 0 2 4

(a) Comparison between absolute values of exact
and computed FFP at the end of Step 1 (at stagna-
tion, i.e., M = 12).

100

80

2

60

401 e

lle™™ = ™

20 .

0 L e ® o o 6 06 0o 0o 0o o o

0 5 10 15 20 25 30
Observation sector (in degrees)

(b) Convergence history of the solution procedure at
Step 1. The algorithm stagnates wheh= 12.

2 ; . .

===Computed FFP
= Exact FFP

L)
1.8¢ K
1.6t
1.4+

1.2r

(c) Comparison between absolute values of exact
and computed FFP at the end of Step 3. Initial data
from Step 1: M=90.

Figure 6: Enrichment of the FFP from a backscattering measent (/ = 1). No
extension is obtained from Step 2. Cake:= 1 and noise leve}%.
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1.8 i ; .
===Computed FFP
16y — Exact FFP
1.4}
1.2r
1t
0.8 . . .
-4 -2 0 2 4

(a) Comparison between absolute values of exact
and computed FFP at the end of Step 1 (at stagna-
tion, i.e.,M = 12).

120

100 °

”c(n+l) _ c(n)”2
=2} ©
S, o

N
.
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o

0 . e ® o o 6 0.0 0o o o o
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Observation sector (in degrees)

(b) Convergence history of the solution procedure at
Step 1. The algorithm stagnates wheh= 12.

1.8t “. = ==Computed FFP K
a — Exact FFP y

1.6r

1.4

1.2r

(c) Comparison between absolute values of exact
and computed FFP at the end of Step 3. Initial data
from Step 1: M=90.

Figure 7: Enrichment of the FFP from a backscattering measent (/ = 1). No
extension is obtained from Step 2. Cake:= 1 and noise level 0%.
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Table 2: Sensitivity of th@-norm relative error of the enriched FFP to the noise level.
Case of a two-degree aperturd (= 3) andka = 1

Noise level || Extension ovef0° | Extension oveB60°

1% 5.4452 % 12.5250 %
5% 6.2115% 11.3946 %
10 % 10.2960 % 19.3652 %

4.2 FFP Extension from a two-degree aperture

Next, we analyze the sensitivity of the reconstruction prhae to the size of the
FFP data (the number of measurements). We consider the chBdgsrest, that is,
where FFP data are still not enough to solve IOP problemgukim existing numeri-
cal methods. For illustration purpose, we present the caszerthe FFP is measured
from backscattering in a two-degree aperture, i.e. threasmmements are available
(M = 3). This is a typical (and practical) situation where the emment of the data
is aprerequisitestep for solving successfully IOP problems. Similarly te tackscat-
tering case, we have performed numerical experiments wieddta are tainted with
three different levels of white noise: low level’), medium level §%), and high level
(10%). In all the experiments, we have det = 1. The results are reported in Figures
@3)-(10) and TablEl2. The following observations are notgmo

i. Inall cases, the proposed procedure is successful imstaccting the field over
a90°-aperture, as indicated in Talile 2, which is (again) verymsing for solv-
ing efficiently IOP problems.

ii. Unlike the case of backscattering reconstruction, weehabserved that Step
2 does play a role in the reconstruction for data given in aewaperture, re-
gardless of the noise level as illustrated in Figukés[[8)-(However, we have
observed that the extension of & -aperture at Step 2 does not exceed a sector
of 2°. In fact, our numerical investigation reveals that Step @dwot extend the
90°-aperture more thaér.

iii. For low noise level {%), the accuracy is comparable to the case of the re-
construction from backscattering data (see TalEs 1-2)th@mther hand, for
medium noise level5%), the procedure is sensitive to the size of the data. In-
deed, we observe that the relative error on the full recaostd FFP from a
2°-aperture is reduced by a factdicompared to the reconstruction when start-
ing from a0°-aperture, as indicated in Table 1 and 2.

iv. For higher noise level, the procedure performs slightyter when the size of
the FFP data is increased. Indeed, as illustrated in TaHR<He accuracy is
improved by abou6% in the case of an extension over a full aperture from a
2°-aperture compared to the reconstruction fighaperture. Applying filtering
procedures, as suggested inl[15] could be a possible diterria reduce the
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level of errors on the reconstructed full aperture, andefoge to improve the
accuracy.
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4.3 Sensitivity of the FFP Extension to the Frequency

We have investigated the performance of the proposed puoeéal reconstructing the
FFF field in the high frequency regime. We have found the Yalhg:

i. The proposed procedure performs poorly in the cagalbéxtension (ove360°
aperture) of the FFP field from few noisy measurements.

ii. The procedure solution methodology remains efficientartial enrichment of
the FFP field using Step 1 only. More specifically, at the etaffsation) of Step
1, the procedure delivers the FFP field ovelod-aperture with a good level of
accuracy, as illustrated in Talll 3. The results reportdeinel3 are the relative
errors of the FFP extension ovep@’-aperture from backscattering (resp. two-
degree) measurements corresponding to five frequenaies: 1,2, 3,4 and5.
The original FFP measurements in these experiments wetaroorated with
5% of white noise. The following observation are noteworthy.

e As clearly illustrated in TablEl3, the level of accuracy ie #xtension re-
mains acceptable (given the level of noise in the data) fagufencies val-
ueska < 4. This observation is very important to regularized itesti
solvers that require data to be given in -at leagio@aperture for solving
successfully IOP problems.

e As expected, the extension of the FFP field from a two-degpestare
measurements is more accurate than from backscatteringunesaents.

e The level accuracy in the extension deteriorates draniigtica high val-
ues of the frequencyk@ > 5). Yet, the reconstructed field for such fre-
guencies can be incorporated in an IOP iterative solver aducing -if
possible- the level of errors by applying a noise filterigge procedure

[15].

Table 3: Effect of the frequency on tRenorm relative error of the FFP extension over
a90°-aperture. Original measurements tainted \§fth of white noise.

Frequencyca Extension from Extension from
Backscattering Measurementa Two-Degree Aperture
M=1 M=3
1 4.5782 % 3.6299 %
2 15.0690 % 9.8891 %
3 20.7420 % 11.2520%
4 20.8970 % 21.6600 %
5 32.4070 % 31.0140 %
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5 Summary and Conclusion

In response to the pressure need for FFP data in large age€i0t-apertures at least)
for solving efficiently inverse obstacle problems with @ve solution methodologies,
we have designed a procedure that extends few noisy FFP measts to larger aper-
tures. The proposed method is a three-stage procedure tiect@tal variation of the
FFP field is used for regularization. Using synthetic FFRadate have perofrmed
numerical experiments to assess the performance of thegedpmethod. The nu-
merical results indicate that the procedure extends ssftdsnoisy backscattering
measurements tiull aperure §60°-aperture). Such an efficiency is achieved even in
the presence of high level of noise, but for measured dat@sponding to relatively
small frequency values. Note that in the particular caseagkbcattering measure-
ments and low noise level (less thaft), the field is reconstructed accurately over
the full aperture at the end of Step 1 of the proposed proeedeor higher level of
noise, the three steps of the procedure are crucial for a&ssftd extension. For rela-
tively high frequency values, the procedure performs pduorl full aperture extension.
However, the proposed procedure remains efficient for eerthe FFP field over a
90°-aperture after applying Step 1 only.
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Appendix A
We present in this section auxiliary properties of the tetalation (TV) formula-
tion in the simple case of one-dimensional functions. Thesmentary properties are
included only for illustration. For completeness, moreutesscan be found in[26]-
[30], among other references.

Let f(¢t) : I € R — R be a regular function (for example, continuously differen-
tiable) on an interval. Then, the total variation of, denoted by7rv (f), is given
by:

Trv(f) = / POl = [0 (15)

Observe that7ry (f) is the integral of the “variations}’ of the functionf over the
entiredomain/. For this reasonyry (f) is called the total variation of.

Next, we illustrate the effect of the total variation furctal when employed as a
Tikhonov-like regularization term (penalty-type termhig is achieved by comparing
the L' penalty term| /|1 introduced by7rv ( f) to the classical.? penalty term|| £/ ||
(standard Tikhonov regularization).

Consider the functiorf depicted in the figure below. It is easy to verify thfatt) = 0

if ¢t >landf'(t) = % if 0 <t <. Inaddition, we have:

Iflh=d and |f’|2=% (16)

Eqg. (I8) reveals the following two features:

i. When using thel'-norm, a constant penalty is associated with the variatidns
f, since|| || = d. However, with thel?-norm, the penalty associated with the
variations of f is inversely proportional ta/I, hence rapid variations of are
more penalized.

ii. The semi-norm? admits a unique minimizer (i.e. agoes to infinity), whereas
L' is minimized by an infinite number of functions, which could & great
advantage since the function of interest (or a close appratxon of it) could be
among these functions.

As stated in the introduction of this paper, because of thedifferentiability of
the operatot7ry, the TV formulation has not been used by applied mathenaatsci
and engineers as a penalty term whenever numerical methatsegjuire the compu-
tation of the jacobians are employed. This difficulty can lbevéated by perturbing the
operatorJry [30]. More specifically, we replace the operatéry by Jrv. s given

by:
Trv. o(f) = /I PR + st 17)

where the positive real numbgiis introduced as eegularity coefficient. Observe that,
for a fixed functionf, we have:

Irv, g(f) — Jrv(f) as B—0F

RR n° 7048



26 Barucq & Bekkey & Dijelloul

Last, the computation Qf’ry, 5(f) requires the evaluation of the derivative faf
Unfortunately, it is not possible or easy to evaluate théveéve f’ for most practical
inverse problems. For such cases, one can use finite diffesminemes to approximate
the derivative off. For example, the use of the central discrete scheme leattis to
following algebraic expression approximating the perddariV operato7rv, s:

2

2, o\
Trv o) = Jrv.o(f) = | (D + %) (18)
1
with
-2 2 0 0 0
-1 0 1 O 0
D= -
2k :
0 0 -1 0 1
o -~ 0 0 =2 2

Here,D is the central discrete first derivative operator, useddepto eliminate highly
oscillating regularized solutionsf is assumed to vary only in an interval containing
the uniformly spread points < --- < t,, with¢,,; — ¢t; = h, ande is a vector of
ones. In the Tikhonov setting, there is no need for computingince it is absorbed
into the regularization coefficient and the regularity ¢ieefnt 3. Finally, the bold face
exponents in EqLT18) are pointwise operations.
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(c) Comparison between absolute values of exact
and computed FFP at the end of Step 2 (at stagna-
tion, i.e.,M = 92).

3

25

||C(n+1) _ C(n)”2
N

[

0.5 .

L] r'y rY
%0 95 100 105 110
Observation sector (in degrees)

(d) Convergence history of the solution procedure at
Step 2. The algorithm stagnates wheh= 92.
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