Algebraic Characterizations of Complexity-Theoretic Classes of Real Functions

Abstract : Recursive analysis is the most classical approach to model and discuss computations over the reals. It is usually presented using Type 2 or higher order Turing machines. Recently, it has been shown that computability classes of functions computable in recursive analysis can also be defined (or characterized) in an algebraic machine independent way, without resorting to Turing machines. In particular nice connections between the class of computable functions (and some of its sub- and sup-classes) over the reals and algebraically defined (sub- and sup-) classes of $\R$-recursive functions à la Moore 96 have been obtained. However, until now, this has been done only at the computability level, and not at the complexity level. In this paper we provide a framework that allows us to dive into the complexity level of functions over the reals. In particular we provide the first algebraic characterization of polynomial time computable functions over the reals. This framework opens the field of implicit complexity of functions over the reals, and also provide a new reading of some of the existing characterizations at the computability level.
Document type :
Reports
[Research Report] 2009


https://hal.inria.fr/inria-00421561
Contributor : Walid Gomaa <>
Submitted on : Monday, October 5, 2009 - 4:02:33 PM
Last modification on : Friday, October 23, 2009 - 4:52:36 PM

File

submission.pdf
fileSource_public_author

Identifiers

  • HAL Id : inria-00421561, version 1

Collections

Citation

Olivier Bournez, Walid Gomaa, Emmanuel Hainry. Algebraic Characterizations of Complexity-Theoretic Classes of Real Functions. [Research Report] 2009. <inria-00421561>

Export

Share

Metrics

Consultation de
la notice

196

Téléchargement du document

49