O. Beaumont, An algorithm for symmetric interval eigenvalue problem, Institut de recherche en informatique et systèmes aléatoires, 2000.

H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, Interval Mathemantics: Proceedings of the International Symposium on Interval Mathemantics, pp.150-159, 1975.
DOI : 10.1007/3-540-07170-9_12

D. Chablat, P. Wenger, F. Majou, and J. Merlet, An Interval Analysis Based Study for the Design and the Comparison of Three-Degrees-of-Freedom Parallel Kinematic Machines, The International Journal of Robotics Research, vol.23, issue.6, pp.615-624, 2004.
DOI : 10.1177/0278364904044079

P. Comon, Independent component analysis, a new concept? Signal processing, pp.287-314, 1994.

A. S. Deif, The Interval Eigenvalue Problem, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.35, issue.1, pp.61-64, 1991.
DOI : 10.1002/zamm.19910710117

A. D. Dimarogonas, Interval analysis of vibrating systems, Journal of Sound and Vibration, vol.183, issue.4, pp.739-749, 1995.
DOI : 10.1006/jsvi.1995.0283

F. Gioia and C. N. Lauro, Principal component analysis on interval data, Computational Statistics, vol.104, issue.1, pp.343-363, 2006.
DOI : 10.1007/s00180-006-0267-6

G. H. Golub and C. F. Van-loan, Matrix computations, 1996.

D. Hertz, The extreme eigenvalues and stability of real symmetric interval matrices, IEEE Transactions on Automatic Control, vol.37, issue.4, pp.532-535, 1992.
DOI : 10.1109/9.126593

M. Hladík, D. Daney, and E. Tsigaridas, An algorithm for addressing the real interval eigenvalue problem, Journal of Computational and Applied Mathematics, vol.235, issue.8, 2008.
DOI : 10.1016/j.cam.2010.11.022

M. Hladík, D. Daney, E. Tsigaridas, I. , and F. , Bounds on Real Eigenvalues and Singular Values of Interval Matrices, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.4, 2009.
DOI : 10.1137/090753991

R. A. Horn and C. R. Johnson, Matrix analysis, 1985.

R. A. Horn and C. R. Johnson, Topics in matrix analysis, 1994.
DOI : 10.1017/CBO9780511840371

O. Knüppel, D. Husung, and C. Keil, PROFIL/BIAS ? a C++ class library

L. V. Kolev, Outer Interval Solution of the Eigenvalue Problem under General Form Parametric Dependencies, Reliable Computing, vol.39, issue.1, pp.121-140, 2006.
DOI : 10.1007/s11155-006-4875-1

H. Leng and Z. He, Computing eigenvalue bounds of structures with uncertain-but-non-random parameters by a method based on perturbation theory, Communications in Numerical Methods in Engineering, vol.282, issue.1, pp.973-982, 2007.
DOI : 10.1002/cnm.936

C. D. Meyer, Matrix analysis and applied linear algebra, 2000.
DOI : 10.1137/1.9780898719512

Z. Qiu, S. Chen, and I. Elishakoff, Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters, Chaos, Solitons & Fractals, vol.7, issue.3, pp.425-434, 1996.
DOI : 10.1016/0960-0779(95)00065-8

Z. Qiu, P. C. Müller, and A. Frommer, An approximate method for the standard interval eigenvalue problem of real non-symmetric interval matrices, Communications in Numerical Methods in Engineering, vol.31, issue.4, pp.239-251, 2001.
DOI : 10.1002/cnm.401

G. Rex and J. Rohn, Sufficient Conditions for Regularity and Singularity of Interval Matrices, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.2, pp.437-445, 1998.
DOI : 10.1137/S0895479896310743

J. Rohn, Interval Matrices: Singularity and Real Eigenvalues, SIAM Journal on Matrix Analysis and Applications, vol.14, issue.1, pp.82-91, 1993.
DOI : 10.1137/0614007

J. Rohn, Bounds on Eigenvalues of Interval Matrices, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.78, issue.S3, pp.1049-1050, 1998.
DOI : 10.1002/zamm.19980781593

]. J. Rohn, A handbook of results on interval linear problems, 2005.

J. Rohn and A. Deif, Zur Einschliessung der Eigenwerte einer Intervallmatrix, Computing, vol.70, issue.3-4, pp.373-377, 1992.
DOI : 10.1007/BF02320205

S. M. Rump, Solving algebraic problems with high accuracy A new approach to scientific computation, Proc. Symp, pp.51-120, 1983.

J. Wilkinson, The algebraic eigenvalue problem. 1. paperback ed, 1988.

Q. Yuan, Z. He, and H. Leng, An evolution strategy method for computing eigenvalue bounds of interval matrices, Applied Mathematics and Computation, vol.196, issue.1, pp.257-265, 2008.
DOI : 10.1016/j.amc.2007.05.051