
HAL Id: inria-00423319
https://inria.hal.science/inria-00423319

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling XPath for Streaming Access Policy
Pierre Genevès, Kristoffer Rose

To cite this version:
Pierre Genevès, Kristoffer Rose. Compiling XPath for Streaming Access Policy. Proceedings of the
2005 ACM Symposium on Document Engineering, DocEng 2005, Nov 2005, Bristol, United Kingdom.
pp.52-54. �inria-00423319�

https://inria.hal.science/inria-00423319
https://hal.archives-ouvertes.fr

Compiling XPath for Streaming Access Policy

Pierre Genevès∗

INRIA Rhône-Alpes

pierre.geneves@inria.fr

Kristoffer Rose
IBM T. J. Watson Research Center

krisrose@us.ibm.com

ABSTRACT
We show how the full XPath language can be compiled into a min-
imal subset suited for stream-based evaluation. Specifically, we
show how XPath normalization into a core language as proposed
in the current W3C “Last Call” draft of the XPath/XQuery Formal
Semantics can be extended such that both the context state and re-
verse axes can be eliminated from the core XPath (and potentially
XQuery) language. This allows execution of (almost) full XPath
on any of the emerging streaming subsets.

Categories and Subject Descriptors:D.3.4 Processors

General Terms: Standardization, Languages, Theory.

Keywords: XPath, streaming, compilation, static rewriting.

1. INTRODUCTION
XPath [1] is emerging as the dominant notation for describing

selectionof nodes in XML data as well as for performing (basic)
computations over the values stored in the nodes. The idea of XPath
is to navigate XML data in “steps” that each move the “focus” from
one node to another. For instance, the XPath expression

/descendant::employee/ancestor::manager[1]

enumerates allemployee elements and then collects for each the
closestmanager ancestor element. The language for specifying
steps is very rich in what kind of node associations one can use to
navigate between them in order to make it as easy as possible to
reach any focus of interest from any other.

When XML is stored or transmitted then the system architecture
often imposes limitations on what kinds of navigation are efficient
for the XML data. Since XPath allows any conceivable access pol-
icy then current mainstream XPath implementations such as Xalan
implement XPath by copying the entire XML data contents into a
linked memory structure such as the Document Object Model. The
full XPath language can then easily be supported on top of this
in-memory structure by implementing navigation as described in
XPath denotational semantics [5]. This approach however suffers

∗Work done while visiting IBM T. J. Watson Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’05,November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011 ...$5.00.

from several major drawbacks. It implies heavy memory require-
ments since the XML data must first fit into memory in order for a
query to be processed, and second the entire XML content is loaded
whatever the actual query is. Eventually, complexity and efficiency
issues arise because the XML tree can be traversed multiple times
in different directions.

When storing XML data in a single XML document, then only
so-called “streaming” access, where the nodes are visited only once
in depth-first tree traversal order, is truly efficient. As such, this
access policy has attracted much attention. Several attempts have
studied various reduced XPath fragments. Certainly one of the
most advanced work is the XSQ streaming XPath engine [4] which
supports a significant fragment of XPath, except two hard features
that are generally left out of the considered XPath fragments in
other studies, although often used in practice. These features are
XPath context references (position() andlast() pseudo func-
tions) and reverses axes.

Our approach aims at supporting full XPath on top of a stream-
ing XML infrastructure. In this work we propose a translation of
the full XPath language into a minimal subset based on the core
expression language of the XPath/XQuery formal semantics [2] .
Specifically we show how an XPath expression containing context-
state references and/or reverse axes can be compiled into an equiv-
alent one with only forward axes and without context sensitive ref-
erences. This enables the use of full XPath 1.0 on any streaming
implementation. We propose the following staged approach as our
translation:

Normalization. Transform the XPath expression into an equiva-
lent expression in the minimal but fully expressive core lan-
guage specified in the XPath/XQuery formal semantics[2].
This makes the semantics much more explicit by expressing
the individual path steps.

Eliminate context position. Rewrite the core XPath expressions
to eliminate the implicitly updated context state. References
to the context position (and size) are replaced by an expres-
sion computing the context position from the context node.

Eliminate reverse axes.Refactor the expression in order to facil-
itate streaming. Steps involving a reverse axis are converted
to steps using the corresponding forward axis.

The full core language and the precise normalization rules are given
in the XPath/XQuery formal semantics [2]. Leveraging our transla-
tion on the XPath 2 normalization translation makes our job much
easier and more transparent. The following two sections explain the
transformations: “statelessness” in Section 2 and “forward-only” in
Section 3. Figure 4 presents the minimal subset generated by the
transformations applied to full XPath 1.0. Finally we conclude in
Section 4.

in
ria

-0
04

23
31

9,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9
Author manuscript, published in "Proceedings of the 2005 ACM Symposium on Document Engineering, DocEng 2005 (2005) 52-54"

http://hal.inria.fr/inria-00423319/fr/
http://hal.archives-ouvertes.fr

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

Figure 1: Axis partition for context node.

SJ·K : Expr→ (Var → Expr) → Expr

SJlet $Varseq :=ForwardAxis::NodeTestreturn ExprKρ = let $Varseq :=ForwardAxis::NodeTestreturn
SJExprK(ρ[Varseq 7→ ForwardAxis::NodeTest])

SJlet $Varseq :=ddo(ReverseAxis::NodeTest) return ExprKρ = let $Varseq :=ReverseAxis::NodeTestreturn
SJExprK(ρ[Varseq 7→ ReverseAxis::NodeTest])

SJlet $Varseq :=ddo(Expr1) return Expr2Kρ = let $Varseq :=ddo(SJExpr1Kρ) return SJExpr2K(ρ[Varseq 7→ SJExpr1Kρ])

SJfor $Vardot at $Varpos in $Varseq return ExprKρ = for $Vardot in $Varseq return let $Varpos :=Exprposreturn SJExprKρ

whereExprpos is given by the following table:

ρ(Varseq) Exprpos
self::NodeTest 1
child::NodeTest count(preceding-sibling::NodeTest)+1
parent::NodeTest 1
ancestor::NodeTest count(ancestor-or-self::NodeTest)
ancestor-or-self::NodeTest count(ancestor-or-self::NodeTest)
otherExpr let $Vard :=$Vardot return count(for $Vardot in $Varseq return

if node-before($Vardot,$Vard) then $Vardot else ())+1
where$Vard is a fresh variable

Figure 2: Transformation to state-less form.

F J·K : Expr→ Expr

F JReverseAxis::NodeTestK =
let $Varseq := J/descendant-or-self::NodeTestKExpr return

let $Vard :=$Vardot return
for $Vardot in $Varseq return
if exists(intersect($Vard, ForwardAxis::node()))
then $Vardot
else ()

whereJKExpr denotes the normalization described in XPath
formal semantics[2];Vard should be chosen fresh; and the
ForwardAxisis determined from theReverseAxisby this table:

ReverseAxis ForwardAxis
parent child

ancestor descendant
ancestor-or-self descendant-or-self
preceding-sibling following-sibling

preceding following

Figure 3: Converting reverse steps to forward steps.

Path p ::= let $seq:=p1 return p2 | let $en:=e return p | let $dn:=$dot return p
| for $dot in $seq return p | if b then $dot else () | union(p1,p2)
| distinct-doc-order(p) | a::node() | self::nt | root(self::node())
| subsequence($seq,$en,1) | subsequence($seq,e,1) | ()

Axis a ::= self | attribute | namespace | fa
ForwardAxis fa ::= child | descendant | descendant-or-self | following | following-sibling
NodeTest nt ::= * | nn | node() | text()
Boolean b ::= b1 or b2 | b1 and b2 | not(b) | node-before($dot,$dn)

| exists(intersect($dn, fa::node())) | exists(p) | pc
PathComparison pc ::= some $dn in p satisfies pc | eq(e1,e2) | eq(s1,s2)
Expr e ::= plus(e1,e2) | minus(e1,e2) | count(p) | count($seq) | $en | number(s) | i

wheres denotes a string,i an integer, andnn, en, anddn are disjoint identifiers.

Figure 4: XPath subset generated by the transformations.

in
ria

-0
04

23
31

9,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

2. ELIMINATING CONTEXT POSITION
Normalized expressions coming out of the first stage are basi-

cally nested “for” constructs where context position occurs implic-
itly. Specifically, the

for $dot at $pos in $seq return Expr

construct [2] iterates over the sequence$seq (which must be given
as a variable) and concatenates all the results of computing the ex-
pression,Expr, with $dot bound to each of the members of the
sequence value, in order, and$pos bound to the index number of
each member in the sequence (corresponding to the value of the
position() pseudo-function in XPath).

The elimination of the context position is important because it
frees implementations from following the notion of “iteration over
a sequence” operationally since index numbers are just values like
any other – in a sense the expressions that come out of the context
position elimination stage are as data access policy independent as
possible.

To eliminate state we must modify the XPath expression into
another expression without any use of theat binder infor con-
structions. This is achieved by:

• Keeping track for every node sequence variable what the
defining step is.

• For every occurrence ofat replace it with an explicitlet
binding to a computation of the index.

The basic idea is that the position can be calculated from expres-
sions relative to the current node and the node that generated the
context sequence. This is because these two nodes define a clean
partitioning of the complete collection of nodes as illustrated on fig-
ure 1. The translationS is formally specified as a “derivor” shown
on figure 2 and writtenSJExprKρ, where:

• The Expr parameter is the one that is rewritten (and since
it is source language syntax we surround it with the special
“syntax” bracesJK).

• The additional parameterρ maps all node sequence variables
that are in scope to the axis and node-test used.

The environmentρ supports two operations:

• ρ[Var 7→ Axis::NodeTest] returns a new environment which
is like theρ environment except it includes a description that
the Var variable is a node sequence constructed using the
Axis::NodeTestpath step.

• ρ(Var) denotes the most recent pairAxis::NodeTestadded
to theρ environment for$Var.

The translations show how the position index can be recomputed
for every node by counting the nodes in the context sequence that
occur before the context node except in the (few but common) cases
where the XPath axis symmetries provide a more direct way to
compute the count, as shown on table of figure 2.

Note that the derivor is only specified formally for the interesting
cases; for all other expression forms it is just distributed over the
subexpressions,e.g.,

SJExpr1+Expr2K ρ = SJExpr1Kρ + SJExpr2Kρ

Finally, we observe the inherent limitation in this approach: the
global context state is not eliminated. Thus instances ofposition()
andlast() used at the top level of XPath queries should not be
translated but merely return the global context’s position and size,
respectively.

3. ELIMINATING REVERSE AXES
The third and final transformation is about making sure that only

forward axes are used. The elimination of reverse axes also relies
on the symmetries illustrated in Figure 1. In fact it is closely based
on equivalences like those of the “looking forward” analysis [3]
extended to handle variable binding. The nodes in the sequence
constructed by the reverse axis are instead obtained bysearching
for ways to reach the context node from any node, using the sym-
metric forward axis. The search succeeds for a reverse axis node if
the intersection of the converse forward axis finds the context node
from the candidate node. Again we have only specified the inter-
esting case on figure 3: the translation of an actual reverse step.

4. CONCLUSION
We have shown how a XPath 1.0 node selection (path expres-

sion) can be translated into a form with no explicit use of non-
top-level context position (or size) and using only forward axes.
The subset of the core language generated by the transformations
is shown on figure 4.

Our approach has however certain limitations. First, the context
position elimination transformation relies on the property of XPath
1.0 that all sequences that are indexed (withposition()) must be
defined by a single XPath “step” expression with an explicit axis
and node test. Second, we rely on the efficiency of a few primi-
tive operations that are not in XPath 1.0, namely document order
comparison (node-before) and intersection (intersect). These
are highly efficient in streaming implementations but may be costly
in other contexts. Thus while the approach is certainly viable for
a streaming XPath 1.0 implementation it is not clear how useful
the framework could be for other combinations of primitives. We
would like to investigate in particular how much of the full core
XPath 2.0/XQuery [2] can be implemented in this way.

In future work we will relate the translation to the formal seman-
tics of XPath (and XQuery) [2] as well as the classical semantics
of Wadler [5]: in terms of a formal semantics we would like to
prove thatFJSJExprK /0K evaluates to the same values asExpr in
any context, that is, in any dynamic environment where an XPath
expression evaluates to a result value, the same result value can be
obtained from the transformed XPath.

We also plan to report runtimes of using the performance results
in connection with streaming by using the various streaming sub-
sets as backends for the transformation.

5. REFERENCES
[1] J. Clark and S. DeRose. XML path language (XPath) version

1.0, W3C recommendation, November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

[2] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siḿeon, and P. Wadler. XQuery 1.0 and
XPath 2.0 formal semantics, W3C working draft, June 2005.
http://www.w3.org/TR/xquery-semantics/.

[3] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
forward. InProc. of the EDBT Workshop on XML Data
Management (XMLDM), volume 2490 ofLNCS, pages
109–127. Springer, 2002.

[4] F. Peng and S. S. Chawathe. Xpath queries on streaming data.
In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 431–442, New
York, NY, USA, 2003. ACM Press.

[5] P. Wadler. Two semantics for XPath, January 2000.
http://homepages.inf.ed.ac.uk/wadler/
papers/xpath-semantics/xpath-semantics.pdf.

in
ria

-0
04

23
31

9,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

