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Time-stepping numerical simulation of switched
circuits with the nonsmooth dynamical systems
approach

Vincent Acary, Olivier Bonnefon, and Bernard Brogliato

Abstract. The numerical integration of switching circuits is so that efficient numerical solvers can be applied. The nons-

known to be a tough issue when the number of switches is high,  mooth dynamical systems (NSDS) approach, which is the one
or when sliding modes exist. Then classical analog simidato

may behave poorly, or even fail. In this paper it is shown on C_hosen_'n this paper, appea_rs tQ be asu!table framewqrhéort
two examples that the nonsmooth dynamical systems (NSDS) simulation of nonsmooth circuits, allowing one to efficignt

approach, which is made of 1) a specific modelling of the  gjmulate systems with very large number of events, andngjidi
piecewise-linear electronic devices (ideal diodes, Zafedes, y y arg - andg

transistors), 2) the Moreau's time-stepping scheme, asg@)ific mode trajectories. It consists of modellm_g nonsmooth com-
iterative one-step solvers, supersedes simulators of BES ponents as piecewise linear functions, with possible cairti
family and hybrid simulators. An academic example constuic branches (inducing some unilaterality in the system, hence

in [Maffezzoni et al, IEEE Trans. on CADICS, Vol 25, No 11, . . P
November 2006], so that the Newton-Raphson scheme does not possible state jumps, when these branches are infinite). The

converge, and the buck converter, are used to make extensive time-discretization of such nonsmooth systems then yields

comparisons bgtween the N‘SD_S method and other methods of ygrious types of so-called One-Step NonSmooth Problems
the SPICE family and a hybrid-like method. The NSDS method,

implemented in the @oNos platform developed at INRIA, (OSNSP), for inStanCE‘_ (linear) Comple_mentarity_ pr_oblems_ o}
proves to be on these two examples much faster and more robust nonlinear (or quadratic) programs with equality-inequyali
with respect to the models parameters variations. constraints. The NSDS approach may then take advantage of

Index Terms—Switching circuits, complementarity problems, the quite important works that have been led by the Non-
gaCka;lfdl EU'i—‘f a|90fith|m, p9we|f tf;OHVGFtEitr_S, FOfgpleTentaﬁy linear Programming community concerning the development
namical systems, analog simulation, multivalued s - H H
lateral state constraints, IEEE EDICS: CAD160A0 T of efficient solvers for complementarity problems [27] and
optimization tools [35], and also by the Contact Mechanics
community [2], where Moreau and Jean developed the so-
|. INTRODUCTION called Nonsmooth Contact Dynamics (NSCD) method within
T is well know that conventional accurate analog simulatidfie theoretical framework of Moreau’s sweeping proces$ [36
tools, which are based on the Newton—Raphson nonlinda#], [45]. The numerical method that is used in this paper,
solver, can have serious drawbacks when they are used @gtes a lot to the NSCD method of mechanics, and will be
the integration of nonsmooth circuits, containing swikhad namedMoreau’s time-stepping schemas alluded to above,
piecewise linear components (like ideal diodes and treorsis nonsmooth components are often represented with piecewise
This is especially true when the number of events becom#ear functions, or with complementarity relations, orttwi
too large, or when sliding modes exist, which is common iificlusions into normal cones. The piecewise-linear maug!l
practice. Then analog (8ce-like) tools may become very approach in nonsmooth electrical circuits has been pieuaeer
time consuming, or provide very poor results with chattgrinby Chua et al in [17], [18], [37], and complementarity prob-
[31], or even fail [13], [19], [40], [41], [56]. The same ajgd lems have been introduced in [50]-[52], followed by the
to “hybrid” integrators that consider an exhaustive enwatien Works of Leenaerts and van Bokhoven [38], [39], Vlach et
of all the system’s modes, which have a very limited scope 8f [9], [54], [55], [59]. Camlibel et al [14], [28] studied ¢h
application because of the exponential growth of the numbggnvergence of backward Euler methods, and comparisons
of modes that have to be simulated separately. Along the sawigh other (analog and hybrid) integrators are proposed in
lines, event-driven schemes can hardly simulate systenis wip3]. Glocker et al [33], [42] led interesting developments
large number of events, because they soon become quite tigfeowing the analogy between mechanics and electricity for
consuming and do not allow for accumulations of events [2Jarious types of nonsmooth components, and also proposed
It is therefore clear that other types of numerical schem@stime-stepping method inspired by Moreau’s algorithm for
have to be applied for highly nonsmooth switching circuitgontact mechanics (consequently quite close to the akgorit
Since a numerical method always relies on a specific modsed in this paper). Variational inequalities of the second
elling approach, a logical path is to first reconsider the et®d kind and electrical superpotentials were recently intozdl
of nonsmooth components (diodes, switches, transiséags, in electronics in [6], [7], [34] to study the existence and
uniqueness of solutions for static circuits, or the equidilof

INRIA, Bipop team-project, Inovallée de Montbonnot, €5%eaue de dynamical circuits with nonsmooth devices. Other works may
I'Europe 38334 Saint Ismier cedex, France be f din [81. 126]. [32
Vincent. Acary@inrialpes.r, Olivier.Bonnefon@inrigpfr, € Touna in (8], [26], [32].

Bernard.Brogliato@inrialpes.fr The objective of this paper is twofold: firstly it is shown
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on an academic example taken from [40] that the NSDS O
approach allows one to simulate a nonsmooth system faotice that a solution to the MCP satisfies the inclusion
which conventional analog methods fail (roughly speaking; F(z) € N ,j(2). If the F(-) in (3) is affine,i.e.
the iterative solver for complementarity problems conesrg

whereas Newton-Raphson’'s method does not); secondly, nu- | Mz+¢=w —wv

merical results for a buck converter are presented and coempa I<z<u, (z-DTw=0, (u—2)Tv=0
isons with other (analog and hybrid) tools are done. The buck

converter example in fact demonstrates on a significant c3gg¢ some matrix)/ € IRP*? and some vectog € IR"™, the

study that the proposed time-stepping method is efficient fyycp (3) defines a Mixed Linear Complementarity Problem
systems with a large number of events. Compared to previqus_cp).

works [33], [53], the ideal switches are here modelled and

simulated for the first time in a completely implicit way, the

advantage of which will be explained. The simulations arell- THE NONSMOOTH DYNAMICAL SYSTEMS APPROACH

done with the &0NOs software platforrh of the INRIA [2], A, nonsmooth electronic devices modelling

[4], [5], that is an open-source software package dedicated

to nonsmooth dynamical systems. The paper is organizedlhe NSDS approach for the modelling of piecewise linear

as follows: in Section Il the modelling and general timecomponents in electrical circuits has been described iaildet

discretization frameworks are recalled; in Section Il th#® several of the above cited publications [2], [33], [36],

automatic circuit equation generation and software aspeet [44], [45], and will just be recalled here for the sake of

outlined; in Section IV an elementary closed-loop switchinfeadability. The NSDS approach is a package that consists of

circuit taken from [40] is simulated; in Section V the bucld) honsmooth models, b) Moreau’s time-stepping algorithm,

converter example is treated and comparisons are presenf@dOSNSP solvers. The current-voltage laws of nonsmooth

Conclusions end the paper. electronic devices may all be represented as inclusioms int
Notation: The following tools will be used in this paper. Leta normal cone to a convex sht, i.e.0 € ®(y, A, 1) + Nk (}),

K C IR" be a non empty convex set. The normal con&tat Where ®(-) is a function,y and A are implicitly defined

€ R"is Ng(z) = {z € R"|(z,( —z) <Oforall ¢ e K}. from0=H(X A t)andy = G(X,A,t) for some functions

The projection in the euclidean metric of a vectore IR" H(-) and G(-), and X is the state vector of the circuit,

onto K is denoted as prpi; z]. A singleton is denoted ascomposed of branch voltages and currents. A crucial point

{t}. The identity matrix of R™*™ is denoted byl,, and the for simulation efficiency, however, is to keep as less slack

4

zero vector inR™ by 0,,. variables,\ and y as possible in the device representation.
The following standard mathematical programming protd addition some efficient OSNSP solvers (as they will be
lems will be used throughout this paper. described in Section 1I-D) use directly such inclusion® iat

Definition 1 (Variational Inequality [27]):Given a func- Normal cone to a convex set, or the equivalent VI formulation
tion F : IR? — IRP, andQ) a non empty subset ai”, the This is the case for the direct MCP solvers that we used in
Variational Inequality (V1) problem is to find a vectere R our simulations. Finally, it is noteworthy that the incloi
such that modelling of the devices allows for nonlinear charactersst

FI(2)(y — 2) = 0,Vy € Q. 1) which may not be represented by complementarity relations.
Let us illustrate this on the above four examples (ideal
O diode, switch, transistor, comparator).

Definition 2 (Inclusion into a normal cone [47])Given a 1) nonsmooth diodesThe notation for the currents and the
function F : IR” — IR?, and K a non empty convex subsetpotentials at the ports of the diode is depicted in Fig. 1.rFou
of IR”, the inclusion into a normal cone problem is to find aodels of diodes are depicted in Fig. 2:

P
vectorz € [R" such that a) the smooth exponential Shockley model in Fig. 2(a)

0 € F(z) + Nk (2) 2) defined by the smooth constitutive equation,
_ _ . O i(t) = is exp(fﬂ —1), (5)
If K =Q is a convex set, the inclusion (2) and the VI (1) o
are equivalent. . wherei, and« are physical parameters of the diode,
Definition 3 (Mixed Complementarity Problem [24]): b) ideal diodes with possible residual current and volt-
The Mixed Complementarity Problem (MCP) is defined as  age —b in Fig. 2(b) defined by the following comple-
follows. Given a functionF : IRP — IRP, lower and upper mentarity condition
bounds!, u € (IR U {400, —00})?, find z € R?, w,v € RY,
such that 0<i(t)+aLo(i)+b=0, (6)
Flz) =w—w 3) where thez L y means thatt”y = 0 anda andb are
I<z<u, (z-DTw=0, (u—2)Tv=0 the threshold values farandv,

c) the “hybrid” model which considers the two modes
Lhttp://siconos.gforge.inria.fr/ separately with for instance an associated Modelica [25]
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; i(t) uc(t)
N i(t)

v(t)

Fig. 1. Diode symbol.

script in Fig. 2(c) Fig. 3. Ideal switch symbol.
off = s<0
v(t) = if off then —s else 0 (7)) OSNSP. Inclusions as in (9) will be preferred as they can
i(t) = if off then 0 else s, be directly used in the numerical algorithm for MCP, yielglin

well-posed and well-conditioned MCPs.
2) nonsmooth switchesThe notation for the currents and
=R, i(t) ifo(t) <0 the potentials at the ports of the ideal switch is depicted on
u(t) = Ry i(t) i u(t) >0’ (8) Fig. 3. The switches are modelled in two ways in this paper.
o - The first model, that is applied to the elementary example of

with R,, < 1 and Ry, >> 1 are the equivalent resistive Section IV, consists of:
values of each branches. { R i(t) i ue(t) <0

d) a piecewise-linear model in Fig. 2(d) defined by

The ideal diode model in Fig. 2(b) is chosen in this paper. u(t) = (12)

The drawbacks of the Shockley law is that it introduces
high stiffness in the dynamical equations. The hybrid modglare the voltageu.(-) is a state variable of the overall
becomes rapidly unusable if the numbeiof diodes increases, dynamical systemy( - ) is the voltage of the switch and-)
since the number of modes to be described in the associqga%e current through the switch. The resistéts > 1 and
script varies as2™. This will be shown on .the convert.erROn < 1 are chosen by the designer. In the case of the buck
example. The model 2(d) leads a badly conditionned algurithy e rter of Section V, the switch is modelled with trarmist

used to solve the OSNSP in Section II-D. On the contrafy js most common in the industrial practice. The switch in
the ideal model of Fig. 2(b) yields, when introduced in th&z) is modeled as follows:

dynamics, well-conditioned complementarity problemstth

Ry i(t) if ue(t) =0

yield time-stepping methods for which efficient solverssexi o(t) = 2(14 7())Roni(t) + 3(1 — 7()) Reyi(2)
Showing the efficiency of these methods is the object of this (13)
ot 7(t) € Sguc(t)) & uc(t) € —Ni_11)(7(t))

Quite similar developments and comments may be made
for ideal Zener diodes, piecewise linear practical diodes aThe difference with respect to the diode (10) is that the titip
practical Zener diodes, see e.g. [2], [7]. From basic convéx the inclusion is an external voltage. It is noteworthyttha
analysis one deduces that the ideal diode of Fig. 2 (b) has the voltagev(t) in (12) is discontinuous at.(t) = 0 for any
following current/voltage law: i(t) # 0, the jump magnitude being equal (@R, — R.,)i(t)]-
The choice that is made in (13) implies that the discontiesiit
. . are “filled-in” and the model is consequently multivalued at
i(t) € b} + Np—oo o (v(1)) & 0(t) € {a} +N}*°°="](Z(t2%) uc(t) = 0, i(t) # 0. This is precisely what allows one to

Similar inclusions for ideal Zener diodes may be found irs]moothly simulate the sliding-modes [3].

Remark 1:The ideal switch is modelled in [33] with a

[2], [7], that take the formi(t) € Nig,v,)(v(t)) for someV, > . }
0. The piecewise-linear diode of Fig. 2 (d) can be representreec!ay multlfuncthn w_hose threshold may vary between 0 and
as: +oo, and the switch is controlled by a current variable of the

circuit, in an explicit way. Compared to [53] our approach
v(t) = 5(7(t) = 1) Regi(t) — 5(1 + 7(t)) Roni(¢) (10) differs a lot since [53] models the switch through a so-
7(t) € sgn(v(t)) < v(t) € =Nj_1q)(7(t)) called cone complementarity problems, with an exogenous
) ) ) o excitation that makes the cones switch betwgeh and IR
that is consistent with the MLCP formulation in (4). The), »+ The choice we made in this paper is motivated by
function sgri-) is the multi-valued sign function defined by yhe industrial practice and the way switches are modelled in

lifz>0 Mentor Graphics’ELDO software packade that is one of
) the main analog simulation tool of the market and may be
sgn(z) = 4 —1if 2 <0 ‘ (11)  considered as a reference for simulation results compeiso
[-1,1]if =0 Another way to model switches is to compute the topology

, o . . changes after each “open” and “close” operation. As pointed
The piecewise-linear model yields a condition number of the

resulting MLCP matrix close tdR,/R.,, that causes trouble 2http:/ww. mentor.com/productsfiaanometerdesign/
with the numerical algorithms that are used to solve th@alog-mixed-signal-verification/eldo/
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i(t) i(t)

it) i(t) i(t)

i v(t)
v(t) ———
0| —— 0 0 0

v(t) —b o(t) v(t)

(a) smooth modeling (b) nonsmooth modeling (c) hybrid modelling (d) equivalent resistor model

Fig. 2. Four models of diodes.

DRAIN
out above such an approach rapidly becomes extremely time- Vo

consuming when the number of switches grows (the number of Ip
different topologies grows exponentially fast with the rhen

of switches), and does not allow for finite accumulations of
switches or sliding mode trajectories. An open issue woeld b GATE BuLK
the implicit discretization of the ideal switches modelq383] ve O }—<I—°VB
and [53] which is not directly possible and is not tackled in ¢ :
this paper.

3) nonsmooth MOSFET transistorgollowing [38], let us ,
consider the Sah model of the nMOS static characteristic: s

K
Ips = 5 - (F(Ve = Vs = Vi) = f(Ve = Vo = Vi) (14) Ve souce
Fig. 4. nMOS transistor symbol.

with K = NEO—X%, 1 mobility of majority carriers}/ and L N I Y
channel widt%xand lengtlp x the permissivity of the silicon
oxide of thicknesgp,.. The voltagé/r is the threshold voltage with
depending on the technology. In(t)

The notation for the currents and the potentials at the ports Uap(t) = Va(t) — vp(t) . =
of the nMOS is depicted on Fig. 4. The functign R — R u(t) = Uss(t) = Valt) — vs(t) | i(t) = | Ia(t)
in (14) is defined as: Is(t)

0 ifz<0 | p (17)
flx) = y The parameters are given as follows= 5, h; = b(Vr +
a” fz>0 a;),i =1...5. The values of; are computed from the linear

The piecewise and quadratic nature of this function is appproximationa; and f; in (15). Using some basic convex
proximated by the followings segments piecewise linearanalysis, one obtains the compact formulation of (16) (17):

function [38]: “A(®) + Bu(t) + h(t) € N (A(®)
fou(@) = sx + G;, fora; <z < ajpq, i=-1...s+1
" (15) y(t) = Bu(t) + A(t) + h(t) (18)
with a_; = —oo andas,1 = +o0o. The complete model of the
piecewise-linear nMOS transistor withsegments in (15) can

be recast under the following mixed linear complementarityiin 7 — (IR.)?=Y. In the case of the MOSFET transistor,

0= i(t) + CA(t)

form [38]: the inclusion is an equality as expected since its piecewise
linear characteristic is single valued. The pMOS transi&o
0O ... 0 b ... —p 17T represented in the same way, changing the valuds; ,0f(t)

Remark 2: The piecewise-linear model in (15) hasseg-
xs—1 xs—1 ments. Multiple choices are possible in order to adjust the

+ [ hy he—1 hp hs_1 }T number of slack variables and consequently the size of the
OSNSP-MLCP to be solved at each step with respect to the
—ep —Co1 €1 ot accuracy. In practice one should therefore be very careful
about choosing a reasonable piecewise-linear approxamati
0= lzi(t) + 0 0 0 0 0 A(t) of the devices so that the MLCP size does not increase too
€1 ... Cs—1 —Cl ...—Cs_1 much. In this work we have chosen a model usirgegments.
A study of the results accuracy and computation time as a
0<y(t) LAL) >0 function of the number of segments is outside the scope of

(16) this paper.
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4) nonsmooth comparatorThe comparator device as de-C. Moreau’s time-stepping scheme
picted in Fig. 5 is modelled as a piecewise-linear function siarting from the dynamics in (20) the Moreau’s time-
whose value i8/in if 2 < —€V and 3 ifz > €V. Settinge  stepping scheme is as follows:
to 0 leads to a relay function that is multivalued at 0. In this

case, similarly to the Zener diode the multivalued commairat M(Xkto, tero) (X1 — Xi) = hE (Xt tievo)
is represented as: +hU (tito)
0= H(Xgt1, Met1strs1)
Voutput € NVinin Vinadd Ve — V2), (19) Y1 = G(Xks1, Mot1, tht1)
where Vi, and V., are the saturation thresholds. 0€ ®(yh+1, Akr1, thrr) + N (Akta)
(21)
Vontput for a time—stepgh > 0 and with the usual following notation.
Virar For a functionf(t), fry1 = f(trky1) and fryo = 0fri1 +
— s (1—0)fx. The Moreau’s time stepping algorithm is made of a
output ¢ 6-method with¢ € [0, 1] for the assumed sufficiently smooth

- / Vin =V = V- terms, and a fully implicit scheme for the inclusion rule alhi
can be non-smooth. This choice is led by two fundamental
reasons. The first reason is the respect of the inclusion rule
Fig. 5. Comparator model. and its intrinsic multi-valued and unilateral charactes.itthas
been shown in [43], only a fully implicit scheme can satisfy
the unilateral constraints in discrete time. The secondarea
is the possible non—smoothness of the evolution which can
be numerically integrated in a consistent way by implicivlo
B. The dynamical equations order schemes only [2].
For the numerical purposes, let us rewrite the problem (21)
Section II-A is devoted to present the electronic devices a global inclusion form
models and their mathematical representations to be etsert
in the circuits dynamics in order to obtain a suitable foiisral 0 € F(z) + Ne(z), (22)
for the subsequent time-discretization. In particular@8&NSP \yhere the variable: = [Xji1, yrr1, \es1]? € R"T?™ and
solver to be used strongly influences the modelling choite. fhe functionF : R" 2" — R"**™ is defined by
this section we focus on the dynamical equations which are
suitable for the NSDS approach.

M(OXkr1+ (1= 0) Xk, tero)(Xpr1 — Xi)

1) The nonsmooth DAE formulatiofThe circuit with non- —hE (0 X1+ (1= 0) Xk, tero) — hU (tiro)
smooth components represented as inclusions and egsialitid?) = H(Xper1, Mt T
and the smooth non linear behavior of the network repredente G(Xkr1, Mer 15 trer1) — Yrrt
as Differential Algebraic Equations (DAE) can be written B(Yrs1s Meg 1, tir1)
compactly as: (23)
The normal coneN¢ is the normal cone to the following
M(X, )X = F(X,t) + U(t) } DAE convex set

0=H(X,\t) Input/output relations on C=R"xR"x K c R (24)
y = G(X,\ 1) ] nonsmooth components \we will see in the next section that the nonlinearity¢f) can
be directly treated by the numerical one—step solver. Agroth
0€ ®(y, A1) + Nx(A)  Inclusion rule” approach is to perform an outer Newton linearization of this

(20) roblem b [ i imi
n . y searching the solution as the limit ferof the
where X € IR" is the state composed of the potential ollowing linearized problem

and the currents in inductive, voltage—defined and non
smooth branches. The vectogs\ € IR™ are the slack 0€ V.F(z*) (2% — 2%) + F(2*) + No(2*™h).  (25)
variable expressing the nonsmooth multi-valued models
the components. The function® : R" x R — IRP*",
H:R"XR"xR—R"? G: R"XIR"xIR— IR" and
®: R™ x R™ x IR — IR™ are assumed to be continuously ]

differentiable functions. More details will be given on thd”- Numerical solvers for the OSNSP (21)

choice of state variables and the structure of the functionsThe problem (21) is a VI written in the form of an inclusion
in Section IlI-A. One recognizes two basic ingredients: thiato a normal cone to a convex set as in (22). The choice of
DAE part, that is coupled to the nonsmooth electrical desicehe numerical solver for (21) depends mainly on the strectur
represented by inclusions into normal cone as those desglopf the convex sefs. Indeed, from a very general convex set
in Section II-A. See Section IV for a concrete example of (20)X to a particular choice of<, the numerical solvers range

f%fr a given zY. At each time-stepk and at each Newton
iteration a, the problem (25) appears to be affinezin
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from the numerical methods for VI to nonlinear equationslefined by a positive orthant, we arrive then at a standard LCP
passing through various complementarity problems salvef23]. Unfortunately, the LCP formulation is not amenable fo
The convergence and the numerical efficiency are improvetre complicated cases where an automatic circuit equation
in proportion as the structure df becomes simpler. In the formulation (see the next section) is used.
sequel, majors choices d@f will be given leading to various
classes of well-known problems in mathematical prograngmin IIl. AUTOMATIC CIRCUIT EQUATION GENERATION AND
theory. We refer to [27] for a thorough presentation of alali SOFTWARE IMPLEMENTATION
numerical solvers and to [2, Chapter 12]) for a comprehensiv
summary of numerical algorithms. In the numerical examplfs
presented in this paper, various numerical methods dmtril%
below are used according to the type of the one—step no
mooth problem and will be further precised.

1) K is a finite representable convex sdh practice, the
convex set is finitely represented by

In this section, the choice of the state variables and the
rmulation of the equations of motion are motivated by the
ompromise between the automatic character of the equation
fSfmulation and the efficiency of the numerical algorithrheT
efficiency is based partly on the number of state and slack
variables and partly on the conditioning of the formulation
Finally, some insights are given on the software implementa

K ={\xe R™ h(\) =0,g()\) >0}, (26) tion of the methods.

where the functiong : R™ — IR™, g : R™ — IR™ are
assumed to be smooth with non vanishing Jacobians. In t _ _ _ _
case, general algorithms for VI can be used. To cite a few, the-€t us describe briefly how the dynamical equations are
minimization of the so-called regularized gap function][29°Ptained for the two systems which are analyzed in this paper
[57], [58] or generalized Newton methods [27, Chapter 7& S'Ehere are basically three choices for the state variabesed
can be used. If7(.) is affine (possibly after the linearizationOn the charge approach, the flux approach, and the current-
step described in (25)) and the functidris) andg(.) are also Voltage approach. The latter is chosen here.
affine, the VI is said to be an affine VI for which the standard There are a lot of methods to build a smooth DAE formu-
pivoting algorithms for LCP [20] has been extended in [15]/ation of standard electrical circuits. To cite a few of them
2) K is a generalized boxLet us consider the case thath® Sparse Tableau Analysis (STA) and the modified Nodal
K is a generalized box il = {IR U {+oc0, —00}}™, that An_aIyS|s (_MNA) are the most Wldesprez_:\d. An automatic cir-
is cuit equation generation system extending the MNA has been
o o developed at the INRIA, see the patent [1]. A straightfodvar
K={ e R"a; <\ <bja; € R,b; € R,i=1...m}, extension of the MNA (or of the STA) can be performed by
(27) directly replacing the constitutive equations of the noasth
In this case, the problem (22-24) can be recast in a Mixgdmponents with the corresponding inclusion rule yieldimg
Complementarity Problem (MCP) by defining= n +m + system (20). Nevertheless, the fact that X, ¢) is not a square
m-+m and the bound§ v asl =[ 0, 0, 0, a |" and matrix and the use of many superfluous variables and algebrai
u=1[0, Om O0n b]". equations has the following drawbacks : a) the numerical effi
The MCP (3) can be solved by a large family of solversiency of the algorithms is weakened by the larger size of the
based on Newton—type Methods and interior-points tectesiquproblem and b) the OSNSP solvers can be in trouble due to the
In contrast to the interior-point methods, it is not diffictd  redundancy of constraints, which is difficult to circumvént
find comparisons of numerical methods based on Newtonfse numerical procedure (mainly due to the machine accuracy
method for solving MCP. We refer to [11] for an impressivgonstraint). Many alternate formulations have been tedted
comparison of the following algorithms: MILES [48], PATHhas been concluded that a suitable adaptation of the MNA
[24], NE/SQP [30], [46], QPCOMP [12], SMOOTH [16], leads to the suitable following formulation
PROXI [10], SEMISMOOTH [22], SEMICOMP [10]. All of

ﬁ‘l’s Automatic generation of the dynamical equations

these comparisons, which have been made in the frameworkfof = f1(#,2,1) + U(?) Semi-Explicit DAE

the MCP (3) show that the PROXI, PATH and SMOOTH arg 0 = fox, 2,t)

superior on a large sample of test problems. For a comparispn

of the variants of the SEMISMOOTH algorithm, we refer to) 0 =h(z,z2 A1) Input/output relations on

[21]. y =gz, z,\1t) nonsmooth components
If F(.) is affine, the MLCP is equivalent to a box-constrained

affine VI. For this problem, the standard pivoting algorithm| 0 € ®(y, A\, t) + Nk (A) "Inclusion rule”

such the Lemke’s Method has been extended in [49]. (28)

A special case of a generalized box is the positive orthamhere 2 € IR™ corresponds to the current in the inductive
of IR™, that is K = IR". Standard theory and most of thebranches and the voltages in the capacitive branchesiR”
numerical algorithms for LCPs apply in this MCLP case. collects all the node potentials, the currents in the veltag
When the circuit is simple and of low size in terms of thelefined and non—smooth branches and the currents in a subset
number of state variables, it is sometimes possible to whige of the capacitive branches. The choice and the construofion
DAE as an ODE and perform the explicit substitution %f the latter subset of branches is described in details inTié.
by y and X in the formulation (21). If the cone is also simplyautomatic circuit equation formulation starts from the MNA
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it adds some unknowns to get a semi-explicit system, aAd The dynamical system

replaces the constitutive equations of the nonsmooth cempohg gynamics of the circuit in Fig. 7 is obtained using the
nents by the corresponding inclusion rule. Starting froB)(2 44 orithm of automatic circuit equation formulation. In esfi

the numerical algorithm as explained in Section II-D is Us€fgp, the vector of unknowns is built, in a second step, the
in a similar manner on the time—discretized system, dynamical system is written, and, in a last step, the nongimoo
law is added. Applying the automatic equations generation
0= fol@psn, Zosns bost) algorithm leads to the following 9-dimensional state v_ecto
’ ’ X = (Vi Vo V3 Vi It Ioz Ios Is 1;)T, where the potentials
. (29) andthe currents are depicted on Fig. 7. Building the dynaimic
equations consists in writing the Kirchhoff current lawgath
node, the constitutive equation of the smooth branch, aed th

Trp1 — Tk = hf1(@ryo, Zhto, ter1) + AU (thgo)

0= h(Tht1, Zht1, Met1s trt),
Y= g(Tht1s Zht1s M1, thp1)

0€ D(Yh+1, Akt1s thrr) + N (Akra) nonsmooth law of the other branches. The two nonsmooth
devices are the diode and the switch. It yields the following
B. Software aspects system, that fits within the general framework in (20): foe th

. . : . . semi—explicit DAE, wi in
Fig. 6 shows the libraries and the data involved durlnsge explict ; e obta

the simulation. A Netlist is a circuit textual descriptiosed LAL(f) = Vi(t) — Va(t)

by many simulators like &CE and BH.DO. From a Netlist, dt

the automatic generator builds all the components defined La(t) + 1s(t) = IL(t) = 0

in (28). The opensourcelSONOYKERNEL library performs IL(t) — Viﬁf’ =

the time-discretization following the Moreau time—stampi Ins(t) = . (30)
scheme (21) and formulates at each time—step one instance of Tou(t) — I.(8) = 0

the inclusion problem (22-24). The numerical algorithms fo 0a(t) — Ls(t) =

the latter problem are in the opensource &SNOSNUMERICS Va(t) =20

library. The output of the simulation is a file containing the Vs =e(t)

potential and current values in thee|8E format.

The implementation is object-oriented and mainly in C+470r the input/output relations on nonsmooth componenents,
For each electrical component, group of equations and-inckye get
sions in (21), a corresponding instance of a class is buile T 1 _ 1
system is updated in memory at each iteration by the stam nit) =2 11)R°"Id(t) () + DEala®)
method of each component. In the linear case, these methods V; (t) — V4(t) = 5(1 + 72(t)) Roi s ()
are called only once, in the nonlinear case they may be calle 1
at any time to update the system. The open-source platfor +§(1 — T2(t)) Ron (1)
is under GPL license and can be freely used. The equation (31)
generator is under private license and can be obtainedyfreElnally, the inclusion rule is written as
on demand for an academic use.

{ Vi(t) € =Ni—11y(n (1))

L00(Va(t) — Vi) € ~Niy(ma(t)) ~ OO

IV. AN ELEMENTARY SWITCHING CIRCUIT

This section is devoted to the modelling and the simulation ) )
of the circuit in Fig. 7. In [40] it is shown that Newton-B: Numerical results wittSiconos
Raphson based methods fail to converge on such a circuitThe time step has been fixed €@lus. Fig. 8(a) depicts
with the switch model as in (12). The diode model is théhe current evolution through the inductdr. In [40], it
equivalent resistor model of Fig. 2 (d). On the contrary theas been shown that the Newton-Raphson algorithm fails

OSNSP solver correctly behaves on the same model. when the state of the diode and of the switch changes at
t = ts in Fig. 8(a). Indeed, the linearization performed at each
100(Vs — V3) Newton-Raphson iteration leads to an oscillation betwegn t
incorrect states and never converges to the correct one. The

v V. L v Newton-Raphson iterations enter into a infinite loop withou
4 1 /UU\/ 2 converging. Using the NSDS approach the OSNSP solver
I L Iy, converges and computes the correct state. For such a simple
system, any OSNSP solver gives a correct solution. We have
used indifferently PATH and a semi-smooth Newton method.
Remark 3:In [40] an event-driven numerical method is
proposed to solve the non convergence issue. However i is re
liable only if the switching times can be precisely estindat
Fig. 7. A simple switched circuit. shortcoming not encountered with the NSDS and the Moreau’s
time-stepping method.

20
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Equations Semi-Explicit DAE S'(_:ONO_S/KER_NE'_‘ Simulation
generator Formulation (28) Tlme-ocil_?,grltajtlzatlon output

A

SICONOSYNUMERICS
Netlist Solvers for (22-24)

Fig. 6. libraries and data.
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8L Iy —— | 8 s _
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< ° <
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ol (1 ﬂ ﬂ H H H H H H ot (] | | |
I I [ T
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> 3 - > 3+ -
2+ - 2+ -
1 . 1+ -
0 | | | | 0 \ \ |
ts 500 1000 1500 2000 0 500 1000 1500 2000
time ps time us
(a) Sconossimulation (b) ELDO simulation
Fig. 8. Switched circuit simulations.
C. Numerical results witfELDO V. RESULTS ON THE BUCK CONVERTER

ELDO does not provide any non-smooth switch model. But The components are modelled with either linear, or piece-

it furnishes the 'VSWITCH' one described in (33), wheré"’ise Ii_near, or set-valugd relgtion_s yi(_elding a nons_mooth
Rs is the controlled resistor value of the switch, avid the dynamical system of the linear time invariant complemaetytar

voltage control. Setting/,, to 0, and choosing a small valueSystems class. The features of the models are given tmreaft
for V.., lead to: a) Power MOSFETS pMOS/nMOS$hey are described
as an assembly of a piecewise-linear current soujge =
f(Vas, Vps) and the intrinsic diode (DpMOS and DnMOS)
with an ideal characteristic. The capacitances were nantak

Ron if Vo (t) > Ve into account. The diodes residual voltagel’¢. The MOS-
R if Vo(t) < V,y;; FETs transconductance KP was set 1@AV~* and their
Rs(t) = threshold voltage to respectivelyy = —2V for the pMOS
(Vo (t)(Ror — Roy ) + Ron Vir— and Vr = 2V for the nMOS. One can notice that the sum
Roi Vo) (Veig — Vi) otherwise of their absolute values largely exceeds the supply voltage
(33) V; =3V, thus providing non-overlapping conduction times.
which is close to (12) for the chosen parameters. The other physical parameters as chosen as follows=

Simulations have been done using different sets of parametg50 ¢m?.V-1.s~! for a nMOS and: = 250 cm?.V~1.s~! for
It is noteworthy that the behavior oftBo depends on thesea pMOS,ep, = €, si0, - €0 With €, 550, =~ 3.9, tox ~ 4nm
values. For example, using a Backward Euler with thB” = 130nm L = 180nm.
time step fixed to0.1us and V,,, = le — 4V, Vo5r = 0V, The piecewise linear model uséssegments given by the
Ry = 100092, R,, = 0.001€2 cause troubles during thetBO  following data:c; = 0.09, ¢ = 0.2238,c¢3 = 0.4666, ¢4 =
simulation, some messages like 'Newton no-convergencei6os,c; = 2.8863,a1 = 0,as = 0.1,a3 = 0.2487, a4 =
appear. Fig. 8(b) shows theLBo simulation. The values are (0.6182, a5 = 1.5383. The relative error betweerfi(-) and
very close to the £ONOs simulation, except for the stepsf, (-) is kept below0.1 for 0.1 < = < 3.82. The absolute
corresponding to the no-convergence messages. In this casgor is less tharz- 1073 for 0 < = < 0.1 and 0 for negative
the resulting current value is absurd. x. In practice, the values dfg, Vs, Vp, Vo in logic integrated
circuits allow a good approximation ¢f(-) by fou( ).

This academic example demonstrates that analog tools can b) Compensator amplifieriit is modelled as al.10°

fail to simulate a switched circuit. gain and an output low-pass filter with a cutoff frequency of
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R 3 .
{ g % }m £Rload %

Fig. 9. Buck converter

30MHz. all state variables are zeroed. The detailed analysis of the
c) Comparator: it is modelled as a piecewise-linearswitching events requires to use a time step as smalbps
function whose value i8 if x < —0.15V and 3 ifz > 0.15V. The simulations are carried with a fixed time stejp]0°
d) Ramp voltage:the frequency is600kHz and the steps are then computed for tRB60us long settling of the
bounds aré and0.75V; = 2.25V . The rise time isl.655ns output voltage. The OSNSP solvers used are PATH with a

and the fall time islOns. convergence tolerance @t — 7, and a semi-smooth Newton
e) Standard values for other component§:= 3V, L = method based on the Fischer-Bursmeister reformulatioh [22
10uH, C' = 22uF, Rijseq = 109, R1; = 15.58kQ, R1o = that is our own implementation using a convergence toleranc
227.8k$2, Ro1 = 5.613MQ, C11 = 20pF, Cy1 = 1.9pF. of 1e — 12. The overall result is shown on the Fig. 10.
f) Values exhibiting a sliding model = 4uH,C = Simulation time: The CPU time required to achieve the
10uF, Ry1 = 10k, Ro; = 8MS2, Cy1 = 10pF. simulation is60s on a Pentium 4 processor clocked at 3 GHz.

The reference voltage Vref rises from 0 to 1.8 Vin 0.1 ms ditincludes19s in the MLCP solvers40s in matrices products.
the beginning of the simulation. The output voltage VoutpUthe time to export the resulting data is not included.

is regulated to track the reference voltage, when V; or — Fig. 10 (a) is the output potential, following the ramp
Viep Or the load current vary. The error voltage Verror is a  V,.;.
filtered value of the difference between Voutput and Vref . — Fig. 10 (b) is the current through the inductor. Until

This voltage signal is converted into a time length thanks to  0.0001s, I, is loading the capacitor C. Afted.0001s,

a comparison with the periodic ramp signal. The comparator [; has to keep the capacitor charge constant.

drives the pMOS transistor which in turn provides more or — Fig. 10 (c) zooms on the pMOS drain potential with
less charge to the output depending on the error level. The standard parameters.

operation of a buck converter involves both a relativelyasslo  — Fig. 10 (d) zooms on th&.,..., and V,..,,, voltages.
dynamics when the switching elements (MOS and diodes) are- Fig. 11 (a) using sliding mode parameters, shows the
keeping their conducting state, and a fast dynamics when the stabilization of the comparator output to an unsaturated

states change. The orders of magnitude &ips for some value. It also shows the stabilization of the current

switching details,lus for a slow variation period and00us through the pMOS allowing th&”,..,, signal to follow

at least for a settling period of the whole circuit requiriag the Viamyp signal.

simulation. — Fig. 11 (b) using sliding mode parameters, shows the
‘/67‘7'()7' and M‘(L’HLP VOltageS

A. The dynamical equations The simulation has been tested with many parameters val-

The nonsmooth DAE has been generated using the altss- The robustness of the nonsmooth modelling and solving
matic circuit equation formulation described in SectiopAl &90rithms enables one to perform with the same CPU time

It leads to a dynamical system with 25 states coupled to I Simulation of such cases.

inclusion rule. The dimension of the inclusion rule2is. 2) Slm_ulatlor_] W'thSP'(.:.E : .
a) Simulation conditions: convergence issues related to

) the MOS modelThe simulation of this circuit was done with
B. Numerical results witfSiconos, and comparisons several versions of I8CE (the open source 8ISPICE from
1) Simulation withSicoNnos The start-up of the converterBerkeley and Ebo from Mentor Graphics) and two kinds of
was simulated thanks to1&NOS As initial conditions, MOS models :
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Fig. 10. SconNosbuck simulation using standard parameters.
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Fig. 11. SconNosbuck simulation using sliding mode parameters.

The MOS level 3 model : This model takes more
physical effects into account than the piecewise-linear
model used in £ONOS simulations, in particular
the voltage-dependent capacitances. It is an important
issue since these varying capacitances cause some
convergence problems when node 2 switches between
Vr and ground. Adding a small capacitor of a few
picoFarad between this node and ground helps to
solve the problem but may vyield artifacts (spikes) on

10

0.1

I

0.7 | | |
0 50 100 150

time us

200

(b) I

-0.5 | | | | |
196 196.5 197 197.5 198 198.5 199
time ps
(d) Vramp and Ve'rror
25 ‘ ‘
4 AT T
5 | Yy
| |
! i
15 ! |
| |
! | ; | ,
| | -
; !
0.5 - ! 7 ) -
7 -
0L }// e _
-0.5 | | | | |
196 196.5 197 197.5 198 198.5 199
time ps

(b) Viamp and Verror

the current of thd/; alim and the MOS transistors.
An nMOS simplified model (Sah model)with fixed
capacitances and a quadratic static characteristic :

Ips = max((), Vas — Vf,N)Q —max0, Vgp — VtN)2

This model is very close to the piecewise-linear
model used in BONOS simulations. The imple-

mentation in netlists was done thanks to voltage-
dependent current sources that are very likely not
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: : : simulator | model | # Newton iterations| CPU time (s)
compiled by the various rSCE _smulators tes'ged. Standard compensalor values
Thus the measured CPU time is increased with re- Ncspice | simple 8024814 632
spect to a compiled version. An estimation of the NGSsPICE | level 3 8304237 370
CPU time with a compiled simplified model may be | =09 Smple PRI o
given by multiplying the MOS level 3 CPU time by Siconos | LGP - 50
the ratio of the Newton-Raphson iterations required sliding mode compensator values
respectively during the simulations with each model. | NGSPICE | simple 8070324 638
An additional correction should be done to reflect that |—pooricE | level 3 30090-3 3%

) ' i ! chet ELDO simple 5861226 438

the computation of the jacobian matrix entries linked ELDO level 3 5888994 367
to a compiled simplified model would require less Siconos | LCP - 60
time than with a MOS level 3 model. Even if the TABLE |

SPICE simulation includes other OperationS, jacobian NUMERICAL COMPARISON ON THEBUCK CONVERTEREXAMPLE
matrix loading time is indeed known to be generally
predominant.

» Power MOSFETS intrinsic diodes are modelled by thQewton-Raphson iterations is set 100 (the default values
classical Shockley equation with an emission coefficiete 10 for Naspiceand 13 for ELDO).

N = 1: Usually, SICE simulators integrate with a time step ad-

PR% k.T justed according to different strategies based on an eitima
I'=Is(ev®m —1)  when V> _5'N'T of the local truncation error (LTE) or the number of Newton-
Raphson iterations required by previous steps. Since$os
I=_TIg when V < —5.N.£ s?mulations were carried with a fi?<ed time step of 59 ps,
simulators were forced to use this value as a maximum.
Even when 8ICcE simulators use a fixed time step, they may
compute LTE to assess a solution found by the Newton-
Raphson algorithm. This computation of LTE was disabled
because it could impair the performance @i &: with respect

with V' | I voltage and current through the diodés
saturation current, default valué—'* A, gelectron charge
1.6 1071Y C, k Boltzmann constant.38 10~23 J. K1, T
temperature in K andv emission coefficient.

) inedp Siconos 4
e The comparator is modelled as a non linea 3) Simulati . The table | disol th it
voltage controlled voltage source defined as ) Simulation compansonsThe table | displays the results

Vo = L5(tanh(10V;,) + 1). Thus the 3-segmentWith the standard and the sliding mode values of compensator

characteristic used as the nonsmooth model is regularizceodnponents' An estimation of the CPU time with a compiled

to help convergence of FSCE (see a comparison 0f3|mpllf|ed model is added.
the piecewise-linear comparator as used IlCANOS
simulations with the 8ICE one on Fig. V-B2a).

These results shall be compared to the 60 s CPU time
4 T anhGo achieved with the NSDS method. Depending on the model
[T [0 J— and the ®ICE simulator, the (estimated) CPU time is
from 2.8 to 6.1 larger than with iISONOS. Moreover, it
was necessary to add a parasitic capacitor on the connection
between the pMOS and nMOS transistors to allow the
convergence of the &lspicesimulator with the MOS level 3
model. All the ScoNos simulations presented in this paper
have been obtained in one-shot from the dynamical equations
automatically generated from the Netlist, without any Hiert
parameter tuning.
1 | | | | | 4) Sliding mode using a multi-valued comparatorhis
-0.4 -0.2 0 0.2 0.4 paragraph focuses on the simulation with sliding pararseter
and using a multi-valued model for the comparator. The rise
Comparison of piecewise-linear an@I8E (tanh based) com- time of the ramp voltage has been increased.ttns. The
parator models. model used in 8ONOS consists in setting the gap to 0
in the model depicted in 19. Fig. 12 shows thee@NOS
The power supplyV; is raised from 0 in50 ns at the simulation using a fully implicit time-stepping. It couldeb
beginning to help the convergenteThe SPicE tolerance noted that the comparator output is stabilized to an unatetdr
values used ardnA for currents, 1uV for voltages and value. Simulation using EbO has been done using the model
0.00075 for relative differences. The maximum number o¥,,; = 1.5(tanh(10000V;,) + 1) for the comparator. The

3This is not required with the IBoNos algorithms that find a consistent ~ “For NGsPICE it implied a slight modification of the source code since no
initial solution from scratch. standard option is provided to do it.
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Fig. 12. SconNosbuck simulation using sliding mode parameters and multe@lcomparator.
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Fig. 13. HE.DO buck simulation using sliding mode parameters &@d; = 1.5(tanh(10000V;,) + 1) for the comparator.

MOS level 3 leads to 'Newton no-convergence’ messages, abthe time-stepping scheme and the OSNSP algorithms of
the MOS SAh model has been used to run the simulati®coNos
displayed in Fig. 13. Itis noteworthy that it does not hartlee =~ Remark 4:0n both Fig.12(a) and Fig. 11(b) it is seen
stabilization of the comparator output on the sliding stcefa that the sliding surface is attained in finite time after an
5) Simulation withPLECS. As we pointed out above, theaccumulation of switches. This is a classical phenomenon in
hybrid approach that consists of an exhaustive enumerafiornonsmooth systems, see Filippov’s example in [3].
all the system’s modes, soon become inefficient and unusable
mainly because the simulation duration grows exponentiall
fast. Let us illustrate this fact with the buck converteded ~ In this paper we have presented numerical simulations
with several devices: a resistance, and a chain of tramsist®f switched circuits obtained with a suitable time-stegpin
The simulator is PEcs, a hybrid simulator developed byimplicit method, named Moreau’s time-stepping algorithm.
Plexim 5. This method is based on the nonsmooth dynamical systems
The CPU time required to achieve the simulatior2o6pus Modelling approach, and relies heavily on complementarity
ranges betweefi96s to 4 hours, depending on the values oProblems (equivalently, inclusions into normal conesysrs.
the resistors, capacitors and inductors and the existehceTfe advantages of such a method are that it allows one to:
sliding modes. This should be compared to 6te of the « avoid computing the dynamics changes due to topology
SicoNos simulation, obtained independently of these compo- Variations, since the circuits are treated as a global syste
nents values. Moreover, theLBcs simulation performs only with a fixed state dimension; modes transitions are taken
168038 steps comparing thé.10° steps performed during the ~ care of by the complementarity problem solvers, which
Siconossimulation. It can be concluded that the computation usually are polynomial in time;
of one step of simulation usingi®Nos is 250 faster than e« Simulate circuits with very large number of events without

using RECs. This demonstrates the robustness and efficiency slowing down too much the simulation;
« avoid regularization and consequently stiff systems of

Shitp://www. plexim.com/ ODEs;

VI. CONCLUSIONS
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« accurately calculate the initial steady-state of the syste[14]

« accurately simulate sliding mode trajectories without-spu
rious oscillations around the switching surface; [15]

o compute state jumps (initial jumps due to inconsistent
states, or in the course of the integration). 16]

The major drawback of the used method is its low orde-[r,
so that its accuracy may be less good on smooth portions of
the trajectoires. In this paper it is first shown that Moreaut!
time-stepping scheme allows one to integrate an academic
example on which Newton-Raphson based methods fail. TH&#l
the buck converter system is simulated. Comparisons with
other analog simulators are presented. The simulations hane)
been led with the 8oNOS software package of the INRIA,
an open source platform dedicated to nonsmooth multivalued
dynamical systems. [20]
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