V. Acary and B. Brogliato, Higher Order Moreau???s Sweeping Process, 2003.
DOI : 10.1007/0-387-29195-4_22

V. Acary, B. Brogliato, and D. Goeleven, Higher order Moreau???s sweeping process: mathematical formulation and numerical simulation, revision for Mathematical Programming A. Draft version in INRIA Research report 5236, 2004.
DOI : 10.1007/s10107-006-0041-0

H. Brezis, Opérateurs maximaux monotones et semi-groupe de contraction dans les espaces de Hilbert. North Holland, 1973.

K. Camlibel, W. P. Heemels, and J. M. Schumacher, Consistency of a time-stepping method for a class of piecewise-linear networks, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.49, issue.3, pp.349-357, 2002.
DOI : 10.1109/81.989170

D. Goeleven and B. Brogliato, Stability and Instability Matrices for Linear Evolution Variational Inequalities, IEEE Transactions on Automatic Control, vol.49, issue.4, pp.521-534, 2004.
DOI : 10.1109/TAC.2004.825654

W. P. Heemels, J. M. Schumacher, and S. Weiland, Linear complementarity problems, S.I.A.M. Journal of applied mathematics, vol.60, issue.4, pp.1234-1269, 2000.

M. Jean, The non-smooth contact dynamics method, Computer Methods in Applied Mechanics and Engineering, vol.177, issue.3-4, pp.235-257, 1999.
DOI : 10.1016/S0045-7825(98)00383-1

URL : https://hal.archives-ouvertes.fr/hal-01390459

M. Kunze and M. D. Marques, An Introduction to Moreau???s Sweeping Process, of Lecture Notes in Physics, pp.1-60, 2000.
DOI : 10.1007/3-540-45501-9_1

M. Marques and M. D. , Differential Inclusions in NonSmooth Mechanical Problems : Sh ocks and Dry Friction, 1993.
DOI : 10.1007/978-3-0348-7614-8

J. J. Moreau, Rafle par un convexe variable (premire partie), exposé n 15, 1971.

J. J. Moreau, Rafle par un convexe variable (deuxime partie) exposé n3, 1972.

J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, Journal of Differential Equations, vol.26, issue.3, pp.347-374, 1977.
DOI : 10.1016/0022-0396(77)90085-7

J. J. Moreau, Approximation en graphe d'unéuné evolution discontinue. RAIRO Analyse numérique, Numerical Analysis, vol.12, pp.75-84, 1978.

J. J. Moreau, Liaisons unilatérales sans frottement et chocs inélastiques Comptes Rendus de l'Acadmie des Sciences 296 serie II, pp.1473-1476, 1983.

J. J. Moreau, Unilateral Contact and Dry Friction in Finite Freedom Dynamics, Number 302 In: CISM, Courses and Lectures, pp.1-82, 1988.
DOI : 10.1007/978-3-7091-2624-0_1

J. J. Moreau, Numerical aspects of the sweeping process, Computer Methods in Applied Mechanics and Engineering, vol.177, issue.3-4, pp.329-349, 1999.
DOI : 10.1016/S0045-7825(98)00387-9

URL : https://hal.archives-ouvertes.fr/hal-01349847

J. J. Moreau, An introduction to Unilateral Dynamics, In: Novel Approaches in Civil Engineering, 2003.
DOI : 10.1007/978-3-540-45287-4_1

S. M. Robinson, Generalized equations and their solutions. I. Basic theory. Mathematical programming study 10, pp.128-141, 1979.

M. Schatzman, A class of nonlinear differential equations of second order in time, Nonlinear Analysis: Theory, Methods & Applications, vol.2, issue.3, pp.355-373, 1978.
DOI : 10.1016/0362-546X(78)90022-6

URL : https://hal.archives-ouvertes.fr/hal-01294058

D. Stewart, Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painlev??'s Problem, Archive for Rational Mechanics and Analysis, vol.145, issue.3, pp.215-260, 1998.
DOI : 10.1007/s002050050129