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Model checking probabilistic and stochastic

extensions of the π-calculus
Gethin Norman, Catuscia Palamidessi, David Parker and Peng Wu

Abstract— We present an implementation of model checking
for probabilistic and stochastic extensions of the π-calculus, a
process algebra which supports modelling of concurrency and
mobility. Formal verification techniques for such extensions have
clear applications in several domains, including mobile ad-hoc
network protocols, probabilistic security protocols and biological
pathways. Despite this, no implementation of automated verifi-
cation exists. Building upon the π-calculus model checker MMC,
we first show an automated procedure for constructing the under-
lying semantic model of a probabilistic or stochastic π-calculus
process. This can then be verified using existing probabilistic
model checkers such as PRISM. Secondly, we demonstrate how
for processes of a specific structure a more efficient, compositional
approach is applicable, which uses our extension of MMC on each
parallel component of the system and then translates the results
into a high-level modular description for the PRISM tool. The
feasibility of our techniques is demonstrated through a number
of case studies from the π-calculus literature.

Index Terms— Verification, Model checking, Markov processes,
Stochastic processes

I. INTRODUCTION

THE π-calculus [1] is a process algebra for modelling

concurrency and mobility. It has been used to model,

for example, communication protocols for dynamic network

topologies, security protocols and biological pathways. For

each class of systems, probabilistic and stochastic behaviour

are often also key ingredients. Mobile ad-hoc network proto-

cols, for example, can exhibit probabilistic behaviour through

either communication failures or random back-off procedures.

Similarly, randomisation is frequently applied in security pro-

tocols, e.g. for anonymity [2] or contract-signing [3]. For

biological systems, the times between reactions are of a

stochastic nature.

Consequently, suitable variants of the π-calculus have been

developed: probabilistic versions, for example [4], which ex-

tend the original calculus with discrete probabilistic choice,

have been proposed as a formalism to model and reason

about randomised security protocols [5], [6]; and stochastic

extensions, for example [7], which augment the calculus with

exponential delays, have been shown to be a suitable formal-

ism for modelling and reasoning about complex biological

pathways [8], [9].

The benefits of automatic formal verification and tool sup-

port in this context are clear: reasoning correctly about the

behaviour of such models, particularly interactions between

probabilistic and nondeterministic behaviour, is known to be
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non-trivial. Furthermore, the state spaces of probabilistic or

stochastic models of realistic systems have a tendency to

grow extremely quickly, making manual verification difficult

or infeasible.

In this paper, we describe an implementation of probabilistic

model checking for models described in two different exten-

sions of the π-calculus. The first, the simple probabilistic

π-calculus, is an extension of the π-calculus obtained by

introducing a discrete probabilistic choice operator in addition

to the existing nondeterministic choice operator. The second,

the stochastic π-calculus, extends the original calculus by

associating rates (parameters of exponential distributions) with

both silent transitions and channels.

Our approach is to adapt and reuse existing tools for veri-

fication of mobile systems and of probabilistic and stochastic

systems. We first developed an extension of the tool MMC

[10], a logic-programming-based model checker for the π-

calculus. This extension, MMCprob, can derive the semantic

model for an arbitrary process in the (finite-control) proba-

bilistic or stochastic π-calculus. The semantic model, which is

given by a Markov decision process (MDP) or continuous-time

Markov chain (CTMC), can then be analysed using standard

tools, such as the probabilistic model checker PRISM [11]. To

improve efficiency, when the process has a specific structure,

we employ a compositional approach, applying MMCprob to

each parallel component of a system, processing the results

to produce a high-level modular description in the modelling

language of PRISM and then performing probabilistic veri-

fication. This avoids a potential blow-up in the size of the

intermediate MDP or CTMC representation and allows us to

exploit the efficient symbolic model construction and analysis

techniques in PRISM. We present experimental results to

illustrate the performance of our implementation on a number

of case studies. To our knowledge, this paper constitutes the

first attempt to implement automated verification in this area.

Related work: Various tools exist for automatic verification

of the (non-probabilistic) π-calculus. The Mobility Workbench

(MWB’99) [12] provides a bisimulation checker and a π-

µ-calculus model checker. MMC (Mobility Model Checker)

[10], a more recently developed tool, also supports the π-µ-

calculus. The latter places particular emphasis on efficiency

and is built using logic programming technology. ProVerif

[13] supports verification of the applied π-calculus, a variant

of the basic calculus. It is aimed primarily at analysis of

cryptographic protocols and is theorem-prover based. Two

alternative approaches are the PIPER system [14], which

verifies π-calculus processes augmented with type signatures
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based on an extraction of sound models using types and CCS

processes, and [15], [16] which translate a subset of the π-

calculus to the language Promela for model checking in the

SPIN tool. Static analysis techniques have also been applied

to the π-calculus, including abstract interpretation [17] and

control flow analysis [18].

A number of existing papers have proposed probabilistic

extensions of the π-calculus. The first, [4], extended the

asynchronous version of the calculus, which removes the

output prefix construct, meaning processes must terminate

immediately after sending output. A version was then proposed

in [5], considering only silent probabilistic transitions. This

variant, which is essentially the same as the one used in this

paper, was introduced to specify and reason about randomised

security protocols. In [6], the probabilistic π-calculus was used

to formalise definitions of anonymity.

A stochastic extension of the π-calculus was first considered

in [7] in which the action prefix construct was replaced with

an action-rate prefix construct. A number of different variants

have since been proposed differing in how rates are added

to the prefix construct. In this paper, we follow [19] and

parameterise silent (τ ) actions with rates and associate a

(fixed) rate with each channel. A number of discrete-event

simulators for the stochastic π-calculus are available, e.g.

BioSpi [9] and SPiM [19], but to our knowledge no model

checking tools.

Structure: The remainder of this paper is structured as

follows. Section II introduces the syntax and semantics for

probabilistic and stochastic extensions of the π-calculus. Sec-

tions III and IV describe our extension of MMC for evaluating

these semantics and show how the result of this extension can

be processed into input for the PRISM tool. Section V presents

experimental results and Section VI concludes the paper.

A preliminary version of this paper (with only the discrete

probabilistic case) appeared as [20].

II. THE π-CALCULUS

The π-calculus is a process algebra for modelling con-

currency and mobility. Based on value-passing CCS [21], a

key distinguishing feature of the calculus is that it uses a

single datatype, names, for both channels and values, with

the consequence that it is possible to communicate channel

names between processes.

In this section we present the probabilistic and stochastic

extensions of the π-calculus for which we have developed

automated model checking procedures. In order to facilitate

model checking, we make two simple assumptions. Firstly, we

restrict our attention to finite-control π-calculus processes, i.e.

where recursion is not permitted within parallel composition.

This is necessary to ensure that the resulting models are finite-

state and is in fact also imposed by the MMC π-calculus model

checker, on which our work relies.

Secondly, we require that the systems to which we apply

model checking are closed, intuitively meaning that they

receive no inputs from their environment and send no outputs

to it. This is due to the nature of the properties that are

analysed by probabilistic model checkers such as PRISM. We

will discuss this issue further in Section IV-F.

Preliminaries: Before describing the probabilistic variants

of the π-calculus, we present some preliminary notation and

definitions. Throughout the paper we will assume a countable

set N of names, ranged over by x, xi, y, etc.

A match is an equality test on names from N and a

condition M is a finite conjunction of matches, i.e. M is of

the form [x1=y1] ∧ · · · ∧ [xn=yn]. We denote by n(M) the

set of names that appear in M (ignoring any trivial equality

tests of the form [x=x]).

A substitution σ is a partial mapping from N to N . The

simplest substitutions are of the form {y/x} which maps x
to y. We let n(σ) denote the set of names that the sub-

stitution affects, i.e. n(σ) = {x | ∃y(6=x) ∈ N . σ(x)=y} ∪
{x | ∃y(6=x) ∈ N . σ(y)=x}. A substitution σ satisfies the

match [x=y], denoted σ |= [x=y] if σ(x)=σ(y). Satisfaction

extends to conjunctions of matches in the obvious way, e.g.

σ |= [x1=y1] ∧ [x2=y2] if σ |= [x1=y1] and σ |= [x2=y2].

We will use five different action types for the two extensions

of the π-calculus: τ (silent action), r(∈ R) (rate action),

x(y) (input), x̄y (output) and x̄(y) (bound output). The bound

names for an action α, denoted bn(α), are defined as follows:

bn(τ) = bn(r) = bn(x̄y) = ∅ and bn(x(y)) = bn(x̄(y)) =
{y}. A substitution σ can also be applied to an action α,

denoted ασ. The definition of this is: τσ = τ , rσ = r,

(x(y))σ = σ(x)(y) if y 6∈ n(σ), (x̄y)σ = σ(x̄) σ(y) and

(x̄(y))σ = σ(x̄)(y) if y 6∈ n(σ). Note that in the case of input

and bound output actions (i.e. those with bound variables),

the substitution is only defined when the substitution does not

change the bound names.

A. The simple probabilistic π-calculus

We use a probabilistic extension of the π-calculus called the

simple probabilistic π-calculus or πprob, which adds a discrete

probabilistic choice operator to the basic calculus. This choice

operator is blind, meaning that probabilities are associated

only with silent τ actions, and not input or output actions.

Syntax: We will let P , Pi range over terms and α range

over actions. Using, as above, x, y, yi to range over names,

the syntax of the simple probabilistic π-calculus is:

α ::= τ
∣

∣ x(y)
∣

∣ x̄y

P ::= 0

∣

∣ α.P
∣

∣

∑

i∈IPi

∣

∣ ◦
∑

i∈I piτ.Pi

∣

∣ P |P
∣

∣

νxP
∣

∣ [x=y]P
∣

∣ A(y1, . . . , yn)

where I is an index set, pi ∈ (0, 1] with
∑

i∈I pi = 1 and A is

a process identifier. In the following paragraphs, we provide an

informal description of the calculus. The next section presents

the formal semantics.

The inactive process, denoted 0, can perform no actions.

The action-prefixed process α.P can perform action α and

then evolve into P , where α is one of three types: x(y) inputs

a name on x and stores it in y, x̄y outputs the name y on x;

and τ is the silent action representing internal communication.
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There are two types of choice: nondeterministic
∑

i∈I Pi

and probabilistic ◦
∑

i∈I piτ.Pi. The former is standard in the π-

calculus (and indeed CCS). The latter is the only new operator

in this probabilistic extension of the π-calculus. As mentioned

above, branches of the probabilistic choice operator are always

prefixed with τ actions. The process ◦
∑

i∈I piτ.Pi randomly

selects an index i ∈ I with probability pi, performs a τ action

and then evolves to process Pi. We use p1τ.P1 ⊕ p2τ.P2 to

denote the binary form of probabilistic choice.

The parallel composition P1 |P2 can either proceed asyn-

chronously or interact through matching input/output actions.

The restriction νxP localises the scope of x in process P , i.e.

x can be considered a new and unique name within P . The

match construction [x=y]P can evolve as process P only if

the match [x=y] is satisfied, i.e. names x and y are identical.

Finally, A(y1, . . . , yn) is a recursive call with a corresponding

process definition clause of the form A(x1, . . . , xn) , P .

An occurrence of name y in process P is bound if it is in a

subexpression of P of the form x(y) (input-bound) or νy (ν-

bound); otherwise, it is free. The sets of free and bound names

of P are denoted by fn(P ) and bn(P ), respectively, and the

set of all names is n(P ). Without loss of generality, we also

make the assumption that bound names are all distinct from

each other and from free names. This can always be achieved

through alpha conversion. A process which contains no free

names is said to be closed.

Symbolic semantics: The operational semantics for proba-

bilistic extensions of the π-calculus are typically expressed in

terms of Markov decision processes (MDPs) or, equivalently,

probabilistic automata [22], which allow both probabilistic and

nondeterministic behaviour. Existing presentations of the se-

mantics (for example [5], which describe a calculus essentially

identical to πprob) are concrete in the sense that the semantic

rules directly define the MDP that corresponds to a process

term. In this paper, we use a symbolic presentation of the

operational semantics [23]. This approach is in fact quite

common for the π-calculus and is particularly beneficial in

the context of automatic tool support, as is the case here, or

for development of bisimulation theories [23], [24].

The main features of the symbolic semantics, which allow

one to obtain compact models, are that:

• As in the late semantics of the π-calculus, the input

variable of input transitions is kept as a name variable

(in contrast to the early semantics, where a different

transition is generated for every possible name instance)

• Analogously to the match rule, in the communication rule

the match between the input and the output channel is

represented by a constraint (condition).

In principle it is possible to define an early version of the

symbolic semantics, but such a version would differ from a

concrete semantics only because it would contain the free

variables of the initial process (and conditions on them).

Therefore, such a version would lack the “raison d’être” of

the symbolic semantics: efficiently representing the effects of

the run-time communications.

Consider the simple process a(x) . x̄b .0 which inputs a

name x on channel a and then uses x as a channel on which

to output the name b. A concrete approach to the semantics

can establish that this process can accept an input on channel

a, but its subsequent behaviour (which is dependent on the

input x) can only be captured once it is known which other

processes it will be composed with. A symbolic approach

allows the semantics of a process to include variables (e.g.

x) that can be used in actions (e.g. x̄b). This allows us to

adopt a compositional approach: given a parallel composition

of several processes, the semantics of each of them can be

computed separately in full, and then composed afterwards.

The symbolic semantics of the πprob calculus is expressed

in terms of probabilistic symbolic transition graphs (PSTGs).

These are a simple probabilistic extension of the symbolic

transition graphs of [23], previously used for the (non-

probabilistic) π-calculus [25]–[28] and for CCS [23]. Alter-

natively, they can be seen as a symbolic extension of Markov

decision processes.

Let P be a πprob process. The probabilistic symbolic transi-

tion graph (PSTG) representing the semantics of the process

P is a tuple (S, sinit , Tprob) where:

• S is the set of symbolic states, each of which is a term

of the simple probabilistic π-calculus;

• sinit ∈ S, the initial state, is the term P ;

• Tprob ⊆ S×Cond×Act×Dist(S) is the probabilistic sym-

bolic transition relation and is the least relation given by

the rules in Fig. 1.

In the above,

• Cond denotes the set of all conditions (finite conjunctions

of matches) over N ;

• Act is a set of actions of four basic types: τ , x(y), x̄y
and x̄(y), where x, y ∈ N ;

• Dist(S) is the set of probability distributions over S.

We use the notation Q
M,α
−−−→ {|pi : Qi|}i for the probabilis-

tic symbolic transition (Q,M,α, µ) ∈ Tprob where µ(R) =
∑

Qi=R pi for any πprob term R. For simplicity we abbreviate

the transition Q
M,α
−−−→ {|1 : Q′|} to Q

M,α
−−−→ Q′ and omit

the trivial condition true. We use multi-sets to ensure that

processes with duplicate components such as Q = 1
2τ.0⊕ 1

2τ.0

have transitions of the form Q
τ
−→ {| 12 : 0, 1

2 : 0|} as opposed

to Q
τ
−→ { 1

2 : 0}.

Of the four action types in Act , the first three are described

in the previous section. The fourth, x̄(y), denotes output of

a bound name and is used by the rules OPEN and CLOSE to

extend the scope of the bound name y.

A symbolic state Q encodes a set of πprob terms. More

specifically, it encodes the set of terms obtained from Q by

applying substitutions to its name variables. A substitution σ
is applied to a process Q, denoted Qσ, by replacing each

action α in Q with ασ. Consider for example the process

Q = a(x).x̄b.0. We have that Q
a(x)
−−−→ Q′ where Q′ = x̄b.0.

The symbolic state Q′ represents the terms Q′{z/x} for any

name z.

A symbolic transition Q
M,α
−−−→ {|pi : Qi|}i represents the

fact, that under any substitution σ satisfying M , the process

term Qσ can perform action ασ and then with probability pi

evolve to process Qiσ. This is formally stated in Lemma 1
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PRE
α.P

α
−→ {|1 : P |}

PROB
( ◦
∑

i piτ.Pi)
τ
−→ {|pi : Pi|}i

SUM
Pj

M,α
−−−→ {|pjk

: Pjk
|}jk

(
∑

i∈I Pi

) M,α
−−−→ {|pjk

: Pjk
|}jk

j ∈ I

PAR
P

M,α
−−−→ {|pi : Pi|}i

P |Q
M,α
−−−→ {|pi : (Pi |Q)|}i

bn(α) ∩ fn(Q) = ∅ COM
P

M,y(z)
−−−−→ {|1 : P ′|} Q

N,x̄v
−−−→ {|1 : Q′|}

P |Q
[x=y]∧M∧N,τ
−−−−−−−−−→ {|1 : P ′{v/z} |Q′|}

RES
P

M,α
−−−→ {|pi : Pi|}i

νxP
νxM,α
−−−−→ {|pi : νxPi|}i

x 6∈ n(α) CLOSE
P

M,y(z)
−−−−→ {|1 : P ′|} Q

N,x̄(v)
−−−−→ {|1 : Q′|}

P |Q
[x=y]∧M∧N,τ
−−−−−−−−−→ {|1 : νv(P ′{v/z} |Q′)|}

OPEN
P

M,ȳx
−−−→ {|1 : P ′|}

νxP
νxM,ȳ(x)
−−−−−−→ {|1 : P ′|}

x 6= y MATCH
P

M,α
−−−→ {|pi : Pi|}i

[x=y]P
[x=y]∧M,α
−−−−−−−→ {|pi : Pi|}i

{x, y} ∩ bn(α) = ∅

IDE
P{y1, . . . , yn/x1, . . . , xn}

M,α
−−−→ {|pi : Pi|}i

A(y1, . . . , yn)
M,α
−−−→ {|pi : Pi|}i

A(x1, . . . , xn) , P

νx (true) = true

νx [x=x] = true

νx [x=y] = false (x6=y)

νx [y=z] = [y=z] (x6=y ∧ x6=z)

νx (M ∧ N) = (νxM) ∧ (νxN)

Fig. 1. The symbolic semantics for πprob, including (inset) application of operator νx to conditions

below, which relates the symbolic (PSTG) semantics of πprob,

as given in Fig. 1, and the concrete (MDP) semantics, as

presented e.g. in [5]. This corresponds to Lemma 2.5 in [27]

which discusses symbolic semantics for the (non-probabilistic)

π-calculus. In the lemma, σ � M indicates that the substitution

σ satisfies the condition M of the transition, and the constraint

bn(α)∩(fn(P )∪n(σ)) = ∅ corresponds to the fact that bound

names are not substituted in order to prevent possible conflicts

between bound and free names.

Lemma 1: Let P be a πprob term.

(a) If P
M,α
−−−→ {|pi : Pi|}i, then for any substitution σ such

that σ � M with bn(α)∩ (fn(P )∪ n(σ)) = ∅, Pσ
ασ
−−→

{|pi : Piσ|}i.

(b) If Pσ
α
−→ {|pi : P ′

i |}i and bn(α) ∩ (fn(P ) ∪ n(σ)) = ∅,

then P
M,β
−−−→ {|pi : Pi|}i where σ |= M and (β.Pi)σ =

α.P ′
i .

Proof: Since the symbolic and concrete semantics of πprob

share the same types of actions as the (standard) π-calculus,

the proof follows the one for Lemma 2.5 in [27] which is

straightforward by transition induction.

B. The stochastic π-calculus

We now describe a stochastic extension of the π-calculus

denoted πstoc, the underlying semantics of which is expressed

in terms of continuous-time Markov chains (CTMCs). Each

transition will thus be labelled with a rate, representing the

parameter of an exponential distribution characterising the

delay until the associated transition is enabled. More precisely,

for rate r, the probability that the transition is enabled within

t time-units is given by 1−e−r·t. As in [19], stochastic

behaviour is introduced at the syntactic level by associating a

rate with each channel x, denoted rate(x), and by annotating

silent τ actions with the rate r at which they occur, i.e. τr.

Syntax: Using P , Pi to range over terms and α to range

over actions, the syntax of the stochastic π-calculus is:

α ::= τr

∣

∣ x(y)
∣

∣ x̄y

P ::= 0

∣

∣ α.P
∣

∣

∑

i∈IPi

∣

∣ P |P
∣

∣

νxP
∣

∣ [x=y]P
∣

∣ A(y1, . . . , yn)

where r ∈ R>0, I is an index set and A is a process identifier.

As in the probabilistic case, the terms 0, P1 |P2, νxP ,

[x=y]P and A(y1, . . . , yn) denote inactivity, parallel compo-

sition, restriction, match and recursive call. The prefix process

τr.P can (internally) evolve to P with rate r. The choice
∑

i∈I Pi represents a race condition between the transitions

of each Pi: the first of these transitions to become enabled is

the one that is taken. Race conditions also arise from parallel

composition (P1 |P2) between processes. In this case, when

two processes synchronise on matching input/output actions

on a channel x, the rate of this transition is rate(x).

Symbolic semantics: The operational semantics for the

stochastic π-calculus is in terms of CTMCs. Usually (as in

e.g. [19], on which our syntax is based), a concrete semantics

is presented which maps each process term directly to the

CTMC it represents. However, as for the probabilistic case

(see the discussion in the previous section), in order to adopt

a compositional approach we employ a symbolic semantics

based on an extension of symbolic transition graphs [23].

Let P be a πstoc process. The stochastic symbolic transition

graph (SSTG) representing the semantics for the process P is

a tuple (S, sinit , Tstoc) where:

• S is the set of symbolic states, each of which is a term

of the stochastic π-calculus;
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PREτ
τr.P

r
−→ P

PREIN

x(y).P
x(y)
−−−→ P

PREOUT

x̄y.P
x̄y
−→ P

SUM
Pj

M,α
−−−→ P ′

j
(
∑

i∈I Pi

) M,α
−−−→ P ′

j

j ∈ I

PAR
P

M,α
−−−→ P ′

P |Q
M,α
−−−→ P |Q

bn(α) ∩ fn(Q) = ∅ COM
P

M,y(z)
−−−−→ P ′ Q

N,x̄v
−−−→ Q′

P |Q
[x=y]∧M∧N,rate(x)
−−−−−−−−−−−−−→ P ′{v/z} |Q′

RES
P

M,α
−−−→ P ′

νxP
νxM,α
−−−−→ P ′

x 6∈ n(α) CLOSE
P

M,y(z)
−−−−→ P ′ Q

N,x̄(v)
−−−−→ Q′

P |Q
[x=y]∧M∧N,rate(x)
−−−−−−−−−−−−−→ νv(P ′{v/z} |Q′)

OPEN
P

M,ȳx
−−−→ P ′

νxP
νxM,ȳ(x)
−−−−−−→ P ′

x 6= y MATCH
P

M,α
−−−→ P ′

[x=y]P
[x=y]∧M,α
−−−−−−−→ P ′

{x, y} ∩ bn(α) = ∅

IDE
P{y1, . . . , yn/x1, . . . , xn}

M,α
−−−→ P ′

A(y1, . . . , yn)
M,α
−−−→ P ′

A(x1, . . . , xn) , P

νx (true) = true

νx [x=x] = true

νx [x=y] = false (x6=y)

νx [y=z] = [y=z] (x6=y ∧ x6=z)

νx (M ∧ N) = (νxM) ∧ (νxN)

Fig. 2. The symbolic semantics for πstoc, including (inset) application of operator νx to conditions

• sinit ∈ S, the initial state, is the term P ;

• Tstoc ⊆ S×Cond×Act×S is the stochastic symbolic

transition multi-relation and is the least multi-relation

given by the rules in Fig. 2.

In the above,

• Cond denotes the set of all conditions (finite conjunctions

of matches) over N ;

• Act is a set of actions of four basic types: r, x(y), x̄y
and x̄(y), where r ∈ R>0 and x, y ∈ N .

The fact that we have used a multi-relation is standard for

stochastic process algebras [29] and ensures that multiple

transitions are generated for expressions with identical com-

ponents, such as τr.P + τr.P . This requirement is because

the choice operator is interpreted as a race condition: the first

transition to become enabled is the one that is taken. More

precisely, since the minimum of two exponential distributions

with rates r1 and r2 is an exponential distribution whose rate

is the sum r1+r2, the behaviour of the process τr.P + τr.P
should be the same as that of τ2r.P . This is captured in the

semantics by the inclusion of two separate transitions labelled

r in the multi-relation Tstoc.

Analogously to the case for PSTGs, discussed in the pre-

vious section, a stochastic symbolic transition Q
M,α
−−−→ Q′

of an SSTG represents the fact that, under any substitution σ
satisfying M , the process term Qσ can perform action ασ and

then evolve to process Q′σ. This is formally stated in Lemma 2

below, which relates the symbolic (SSTG) semantics of πstoc,

as given in Fig. 2, and the concrete (CTMC) semantics, as

found in [19]. Again, this corresponds to Lemma 2.5 in [27]

for the standard (non-probabilistic) π-calculus.

Lemma 2: Let P be a πstoc term.

(a) If P
M,α
−−−→ P ′, then for any substitution σ such that

σ � M with bn(α)∩ (fn(P )∪n(σ)) = ∅, Pσ
ασ
−−→ P ′σ.

(b) If Pσ
α
−→ Q′ and bn(α) ∩ (fn(P ) ∪ n(σ)) = ∅, then

P
M,β
−−−→ Q where σ |= M and (β.Q)σ = α.Q′.

Proof: Straightforward by transition induction. The de-

tails are almost identical in structure to Lemma 2.5 of [27]

except that the action τ in the π-calculus is replaced by

numerical rates r in πstoc, which do not influence names.

Strictly speaking, the concrete semantics used above do not

correspond precisely to the usual definition of a CTMC, since

transitions can be associated with either rates (for τ actions)

or inputs/output actions (which have yet to be matched).

Furthermore, multiple transitions can occur between the same

pair of states (due to the use of a multi-relation in the definition

of an SSTG). In the semantics of a closed πstoc process,

however, only rate-labelled transitions remain and multiple

transitions between states are simply summed.

III. GENERATING PSTGS AND SSTGS USING MMC

In this section we describe the automatic generation of the

symbolic transition graph for an arbitrary process expressed

in either the simple probabilistic π-calculus or stochastic π-

calculus. This is achieved with an extension of the (non-

probabilistic) π-calculus model checker MMC [10], which

from this point on we refer to as MMCprob. In the next

section we will build upon this, presenting a more efficient,

compositional scheme for processes of a specific structure.

MMCprob is based on only a subset of MMC’s functionality:

essentially the capability to construct the full set of reachable

states of a π-calculus process. The restrictions placed on the

syntax of the calculus by MMC are the same as we impose

in Section II.

MMC works by (and derives its efficiency from) exploiting

the similarity between the way in which resolution-based
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% PRE:

trans(pref(act, P), [pstep(1, act, P)], true).

% PROB:

trans(prob_choice(ProbBranches), PSteps, true) :- prob_branch(ProbBranches, PSteps).

prob_branch([], []).

prob_branch([pref(tau(FirstProb), P)|Others],PSteps) :-

prob_branch(Others, OtherPSteps), append([pstep(FirstProb, tau, P)], OtherPSteps, PSteps).

% SUM:

trans(choice(Branches), PSteps, M) :-

length(Branches, Size), upto(Size, I), ith(I, Branches, Branch), trans(Branch, PSteps, M).

% PAR:

trans(par(P, Q), PSteps, M) :-

trans(P, PPSteps, M), set_par_psteps(PPSteps, Q, PSteps, 0).

trans(par(P, Q), PSteps, M) :-

trans(Q, QPSteps, M), set_par_psteps(QPSteps, P, PSteps, 1).

set_par_psteps([], _, [], _).

set_par_psteps([pstep(Prob, A, P)|Others], Q, PSteps, Which) :-

set_par_psteps(Others, Q, OtherPSteps, Which),

(Which == 0 -> append([pstep(Prob, A, par(P, Q)], OtherPSteps, PSteps)).

; append([pstep(Prob, A, par(Q, P)], OtherPSteps, PSteps))).

% RES:

trans(nu(Y, P), PSteps, M) :-

trans(P, PPSteps, M), not_in_any(Y, PPSteps), not_in_constraint(Y, M), set_nu_psteps(PPSteps, Y, PSteps).

set_nu_psteps([], _, []).

set_nu_psteps([pstep(Prob, A, P1)|Others], Y, PSteps) :-

set_nu_psteps(Others, Y, OtherPSteps), append([pstep(Prob, A, nu(Y, P1))], OtherPSteps, PSteps).

% COM:

trans(par(P, Q), [pstep(1, tau, par(P1, Q1))], (M, N, L)) :-

trans(P, [pstep(1, A, P1)], M), trans(Q, [pstep(1, B, Q1)], N), complement(A, B, L).

% OPEN:

trans(nu(Y, P), [pstep(1, outbound(X, Z), P1)], M) :-

trans(P, [pstep(1, out(X, Z), P1)], N, V), Y == Z, Y \== X, not_in_constraint(Y, M).

% CLOSE:

trans(par(P, Q), [pstep(1, tau, nu(W, par(P1, Q1)))], (M, N, L)) :-

trans(P, [pstep(1, A, P1)], M), trans(Q, [pstep(1, B, Q1)], N), comp_bound(A, B, W, L).

% MATCH:

trans(match((X=Y), P), PSteps, M) :- X == Y, trans(P, PSteps, M).

trans(match((X=Y), P), PSteps, (X=Y, M)) :- X \== Y, trans(P, PSteps, M).

% IDE:

trans(proc(PN), PSteps, M) :- def(PN, P), trans(P, PSteps, M).

Fig. 3. XSB code for the trans predicate encoding the πprob symbolic semantics

logic programming techniques handle variables and the way

in which the symbolic semantics of the π-calculus handles

names [10]. It is implemented in the logic programming

system XSB, which is a dialect of Prolog. π-calculus names

are represented by XSB variables. MMC then uses a direct

encoding of the symbolic semantics of the calculus into XSB

rules, based on the definition of a predicate called trans.

This approach has several benefits: firstly it gives a clear and

intuitive implementation; secondly, and more importantly, this

encoding is provably correct [10].

Our implementation is a direct extension of this approach.

We have a straightforward encoding of the syntax of both πprob

and πstoc into the language of XSB, with names and process

identifiers represented by XSB variables and constants, respec-

tively. We then adapt MMC’s predicate trans to represent

the symbolic semantics of each calculus. We first describe the

case for the simple probabilistic π-calculus and then discuss

the differences in the stochastic case.

The probabilistic case: We begin with the encoding of the

syntax of πprob into the language of XSB. Letting X, Y, Yi range

over variables, P range over processes and denoting comma-

delimited lists of processes as
−→
P , the syntax of πprob in the

input language of MMCprob is given by the following BNF

grammar:

act ::= tau | in(X, Y) | out(X, Y)
P ::= zero

| pref(act, P)

| choice(
−→
P )

| prob choice(
−−−−−−−−−−−→
pref(tau(p), P))

| par(P, P)
| nu(X, P)
| match((X = Y), P)
| proc(Ā(Y1, . . . , Yn))

where Ā is the lower case form of process identifier A, with

the definition clause of the form def(Ā(X1, . . . , Xn), P).

Assuming that ρ is a one-to-one function mapping XSB

variables to πprob names, the following function fρ relates

the MMCprob representation of the key components of πprob

(conditions, actions and processes) into their corresponding

πprob notation:

Conditions:

fρ(true) = true

fρ(X = Y) = [ρ(X) = ρ(Y)]

fρ((M, N)) = fρ(M) ∧ fρ(N)

Actions:

fρ(tau) = τ

fρ(in(X, Y)) = ρ(X)(ρ(Y))

fρ(out(X, Y)) = ρ(X)ρ(Y)

fρ(out bound(X, Y)) = ρ(X)(ρ(Y))
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Processes:

fρ(zero) = 0

fρ(pref(act, P)) = fρ(act).fρ(P)

fρ(choice(
−→
P )) =

Pn

i=1
fρ(Pi)

fρ(prob choice(
−−−−−−−−−−−→
pref(tau(p), P))) =

Pn

i=1
piτ.fρ(Pi)

fρ(par(P1, P2)) = fρ(P1)|fρ(P2)

fρ(nu(X, P)) = νρ(X)fρ(P)

fρ(match((X = Y), P)) = [ρ(X) = ρ(Y )]fρ(P)

fρ(proc(Ā(Y1, . . . , Yn))) = A(ρ(Y1), . . . , ρ(Yn))

where

−→
P ≡ [P1, . . . , Pn]

−−−−−−−−−−−→
pref(tau(p), P) ≡ [pref(tau(p1), P1), . . . , pref(tau(pn), Pn)]

and A is defined with A(ρ(X1), . . . , ρ(Xn)) , fρ(P).
Using the function fρ we can now define the XSB pred-

icate trans, which represents the direct encoding of the

symbolic semantics of πprob (see Fig. 1) into XSB. A tuple

trans(P, PSteps, M), where PSteps is a list of compound

structures psteps(pi, act, Pi), represents a symbolic prob-

abilistic transition:

fρ(P)
fρ(M),fρ(act)
−−−−−−−−→ {pi : fρ(Pi)}i

The definition of trans is shown in Fig. 3. The predicates

prob branch, set par steps and set nu steps are defined

to construct the list PSteps according to the operational

semantics rules PROB, PAR and RES. Other auxiliary pred-

icates used in Fig. 3 are given in Fig. 4. Note the close

correspondence between the definitions in Fig. 3 and the rules

of the symbolic semantics in Fig. 1.

The soundness and completeness of the encoding can be

established by induction on the length of derivations of a

query answer of trans and a symbolic transition in πprob,

respectively. The proof details are similar to Theorems 2 and

3 in [10].

Finally, we add an extra XSB predicate stg(P), which uses

query-evaluation on trans to derive the PSTG of process P

and output it in a simple textual format. This is done through a

depth-first traversal of the graph, followed by an enumeration

of all its symbolic states and transitions. The XSB code for

this can be found in [30].

Example: Consider the simple πprob process Toss:

Toss(x) , x(y).
(

pτ.ȳhead.0 ⊕ (1 − p)τ.ȳtail.0
)

which receives a name y on channel x and then sends out,

on channel y, either head or tail, with probability p or 1−p,

respectively. Fig. 5 shows the application of MMCprob to the

process Toss. The first four lines illustrate the encoding of

the πprob syntax into XSB. Below that is the output of the

tool, i.e. the application of the rule stg. Lines starting #i
show the πprob term for the ith state, lines starting ∗j and ′k
enumerate transitions and the individual edges of transitions,

respectively. All bound names are given unique names (e.g.

h417) and displayed on lines beginning >. All free names

used are listed at the end, plus other statistics for the PSTG.

complement(out(X, W), in(Y, W), W, true) :- X == Y.

complement(out(X, W), in(Y, W), W, (X=Y)) :- X \== Y.

complement(in(X, W), out(Y, W), W, true) :- X == Y.

complement(in(X, W), out(Y, W), W, (X=Y)) :- X \== Y.

comp_bound(outbound(X, W), in(Y, W), W, true) :- X == Y.

comp_bound(outbound(X, W), in(Y, W), W, (X=Y)) :- X \== Y.

comp_bound(in(X, W), outbound(Y, W), W, true) :- X == Y.

comp_bound(in(X, W), outbound(Y, W), W, (X=Y)) :- X \== Y.

not_in_any(_, []).

not_in_any(Z, [pstep(_, A, _)|L]) :-

not_in(Z, A), not_in_any(Z, L).

not_in(_, tau).

not_in(Z, in(X,Y)) :- Z \== X, Z \== Y.

not_in(Z, out(X,Y)) :- Z \== X, Z \== Y.

not_in(Z, outbound(X,Y)) :- Z \== X, Z \== Y.

not_in(Z, outbound1(X,Y)) :- Z \== X, Z \== Y.

not_in_constraint(_, true).

not_in_constraint(X, (Y=Z)) :- X \== Y, X \== Z.

not_in_constraint(X, (M, N)) :-

not_in_constraint(X, M), not_in_constraint(X, N).

upto(N, N) :- N > 0.

upto(N, I) :- N > 0, N1 is N - 1, upto(N1, I).

Fig. 4. Auxiliary XSB code for the trans predicate

def(toss(X),

pref(in(X, Y),

prob_choice([pref(tau(p), pref(out(Y, head), zero)),

pref(tau(1-p), pref(out(Y, tail), zero))]))).

| ?- stg(toss(try)).

#1: proc(toss(try))

*1: 1 ==

#2: prob_choice([pref(tau(p),pref(out(_h417,head),

zero)),pref(tau(1-p),pref(out(_h417,tail),zero))])

>1: _h417

’1: -- ’1’:in(try,_h417) --> 2

*2: 2 ==

#3: pref(out(_h417,head),zero)

’2: -- ’p’:tau --> 3

#4: pref(out(_h417,tail),zero)

’3: -- ’1 - p’:tau --> 4

*3: 3 ==

#5: zero

’4: -- ’1’:out(_h417,head) --> 5

*4: 4 ==

’5: -- ’1’:out(_h417,tail) --> 5

[1: try] [2: head] [3: tail]

+++ Statistics of toss(try) +++

Nodes:5, Edges:5, P-Steps:4, Free Names:3, Bound Names:1

Fig. 5. Sample output from MMCprob

The stochastic case: The generation of the SSTG for

a πstoc process proceeds in almost identical fashion. Since

the calculus has no probabilistic choice operator, the list

PSteps in the representation trans(P, PSteps, M) of each

symbolic transition contains only a single item of the form

pstep(ri, act, Pi), where ri now represents a real-valued

rate, instead of a probability.

The encoding of a rate-labelled prefix process τr.P is

treated as a special case of the probabilistic choice operator for

πprob with a singleton operand. Input and output actions over a

channel x are given dummy rates of 1 which will be replaced

with the channel rate rate(x) subsequently. Since MMCprob

simply enumerates all matching transitions when evaluating

the symbolic semantics (and does not remove any duplicates),

no special treatment is required to deal with the multi-relation

in the definition of SSTGs.
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IV. TRANSLATING PSTGS AND SSTGS INTO PRISM

We use the probabilistic model checker PRISM (which

supports both MDPs and CTMCs) to perform analysis of

the semantic models derived from πprob or πstoc processes. The

scheme described in the previous section can be used to

translate an arbitrary process described in either the simple

probabilistic π-calculus or stochastic π-calculus into the prob-

abilistic or stochastic symbolic transition graph representing

its semantics. We apply model checking to closed processes

(this issue is discussed further in Section IV-F), for which the

symbolic (PSTG or SSTG) semantics and concrete (MDP or

CTMC) semantics coincide. The list of states and transitions

produced by MMCprob, as illustrated by the example in Fig. 5,

can hence easily be imported directly into PRISM for analysis.

However, for processes of a specific structure, we instead

propose to adopt a compositional translation, using the high-

level modelling language supported by PRISM. This results in

a much more efficient translation procedure. More specifically,

we consider the case where systems are of the form P =
νx1 . . . νxk (P1 | · · · |Pn) and each Pi contains no instances

of the ν operator (including inside recursive definitions). The

basic idea is to generate the symbolic transition graph for

each subprocess Pi (as described in the previous section), map

each individual symbolic transition graph to a PRISM module

(a component of a PRISM language model), and then use

PRISM to construct the semantics of P through the parallel

composition of these modules. Note that the compositional

nature of this approach is reliant on our use of symbolic

semantics. Without this, we would not be able to generate

the full semantics of Pi in isolation.

The overall process structure we impose (a parallel com-

position of a set of processes, optionally enclosed inside a

restriction of one or more names) is actually fairly typical:

systems are generally modelled as a parallel composition of

multiple components and, since we assume that P is closed, it

is likely that free names used as channels between processes

will be restricted in this way. Furthermore, in most cases a

process can be rearranged to a structurally congruent process

which is of the correct form, by pushing ν operators to the

outside. We have, for example, that P1 | νxP2 and νx (P1 |P2)
are structurally congruent under the assumption that x does

not occur in P1. The only class of processes which cannot be

renamed in this way are those that include ν inside recursive

definitions. In this case, the process can in principle generate

an infinite number of new names. This can be resolved in the

context of a parallel composition with other processes, and

therefore in such a case we can resort to the basic approach:

use MMCprob to construct the symbolic transition graph for the

full system and import this directly into PRISM.

There are two principal challenges regarding the translation

of symbolic transition graphs into PRISM: (1) mapping the

name datatype into PRISM’s basic type system; and (2)

mapping binary (CCS-style) communication of names over

channels to PRISM’s multi-way (CSP-style) synchronisation

without value passing. In brief, (1) is handled by enumerating

the set of all free names, assigning each an (identically named)

integer constant to represent it, and (2) is handled by introduc-

ing an action label for each required combination of process

sender/receiver pair, channel and name. Communication of

names between processes is handled by including in each

receiver process with a bound input variable x, an identically

named local (integer) variable which will be used to store the

name assigned to x.

Before discussing the details of this compositional trans-

lation, we give both an overview of the PRISM syntax and

semantics and a simple example which illustrates the key

aspects of the translation.

A. PRISM semantics

A PRISM model comprises a set of n modules, the state of

each being given by a set of finite-ranging local variables. The

global state of the model is determined by the union of all local

variables, which we denote V . The behaviour of each module

is defined by a set of guarded commands. When modelling

MDPs, these commands take the form:

[act ] guard → p1 : u1 + · · · + pm : um;

where act is an (optional) action label, guard is a predicate

over V , pi ∈ (0, 1] and ui are updates of the form:

(x′
1=ui,1) & . . . & (x′

k=ui,k)

where ui,j is a function over V . Intuitively, in global state s
of the PRISM model, the command is enabled if s satisfies

guard . If a command is executed, the module will, with

probability pi update its local variables according to the update

ui, by setting the value of each local variable xj to ui,j(s).
When modelling CTMCs, commands are of the form:

[act ] guard → r : u;

where act is an (optional) action label, guard is a predicate

over V , r ∈ R>0 and u is an update (of the form shown

above). In this case, when the guard is satisfied, there is a

transition with rate r that updates the local variables according

to u. When multiple commands with the same update are

enabled, the corresponding transitions are combined into a

single transition whose rate is the sum of the individual rates.

In practice (see for example Fig. 6), we omit probabilities

(or rates) equal to one and elements of updates that are of

the form (x′=x). The semantics of the whole PRISM model

is the parallel composition of all modules using the stan-

dard CSP parallel composition [31] (i.e. modules synchronise

over all their common actions). For transitions arising from

synchronisation between multiple processes, the associated

probability or rate is obtained by multiplying those of each

component transition. See [32] for the full semantics of the

PRISM language.

B. Example Translation

Consider the following parallel composition of two processes

expressed in the simple probabilistic π-calculus:

• Q , νa (Q1 |Q2)
• Q1 , νc νd

(

1
2τ.āc.c(v).0 ⊕ 1

2τ.ād.d(w).0
)

• Q2 , νb
(

a(x).b̄x.0 | b(y).ȳe.0
)
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1. const int a = 1; const int b = 2; const int c = 3;
2. const int d = 4; const int e = 5;
3. module P1

4. s1 : [1..6] init 1;
5. v : [0..5] init 0;
6. w : [0..5] init 0;
7. [] (s1 = 1) → 0.5 : (s′

1
= 2) + 0.5 : (s′

1
= 3);

8. [a P1 P2 c] (s1 = 2) → (s′

1
= 4);

9. [a P1 P2 d] (s1 = 3) → (s′

1
= 5);

10. [c P3 P1 e] (s1 = 4) → (s′

1
= 6); & (v ′ = e)

11. [d P3 P1 e] (s1 = 5) → (s′

1
= 6); & (w ′ = e)

12. endmodule

13. module P2

14. s2 : [1..3] init 1
15. x : [0..5] init 0;
16. [a P1 P2 c] (s2 = 1) → (s′

2
= 2) & (x ′ = c);

17. [a P1 P2 d] (s2 = 1) → (s′

2
= 2) & (x ′ = d);

18. [b P2 P3 x ] (s2 = 2) → (s′

2
= 3);

19. endmodule

20. module P3

21. s3 : [1..2] init 1
22. y : [0..5] init 0;
23. [b P2 P3 x ] (s3 = 1) → (s′

3
= 2) & (y′ = x);

24. [c P3 P1 e] (s3 = 2) & (y = c) → (s′

3
= 3);

25. [d P3 P1 e] (s3 = 2) & (y = d) → (s′

3
= 3);

26. endmodule

Fig. 6. PRISM code for the example

Process Q1 includes two names c and d, available only within

the scope of Q1, representing private channels. It makes a

random choice, outputting with equal probability either the

name c or d on channel a. It then attempts to receive an

input on the corresponding channel (c or d, respectively) and

terminates. Process Q2 is the parallel composition of two

subprocesses which communicate over a channel b. The first

subprocess inputs a name on channel a (which will be one of

the two private channels from Q1) and re-outputs it on channel

b. The second subprocess inputs on channel b and then outputs

e on whichever channel it received.

Noting that c and d do not occur in Q2 and that b does not

occur in Q1, we can rewrite Q as the structurally congruent

process P , defined as follows:

• P , νa νb νc νd (P1 |P2 |P3)
• P1 , 1

2τ.āc.c(v).0 ⊕ 1
2τ.ād.d(w).0

• P2 , a(x).b̄x.0
• P3 , b(y).ȳe.0

and the corresponding PSTGs are given by:

• P1 : Q1
1

τ
−→ {| 12 :Q1

2,
1
2 :Q1

3|}, Q1
2

āc
−→ Q1

4

c(v)
−−→ Q1

6 and

Q1
3

ād
−→ Q1

5

d(w)
−−−→ Q1

6

• P2 : Q2
1

a(x)
−−−→ Q2

2
b̄x
−→ Q2

3

• P3 : Q3
1

b(y)
−−→ Q3

2
ȳe
−→ Q3

3

In the above, we omit probabilities that are 1 and conditions

true. The PSTGs for P1, P2 and P3 have the sets of bound

names {v, w}, {x} and {y}, respectively, and the combined

set of free names is {a, b, c, d, e}. The resulting PRISM model

is shown in Fig. 6. This example will be referred to in the full

explanation of the translation given below.

C. Formal translation

We assume that the set of all names in the system is

N , which is partitioned into disjoint subsets: N fn , the set

of all free names appearing in processes P1, . . . , Pn, and

N bn
1 , . . . ,N bn

n , the sets of input-bound names for processes

P1, . . . , Pn.

For clarity, we will retain wherever possible identical no-

tation between the π-calculus terms and the resulting PRISM

language description. Thus, each of the n subprocesses (or

symbolic transition graphs) Pi becomes a PRISM module Pi

and the (finite) set of terms Si = {Qi
1, . . . , Q

i
ki
} that constitute

states of the symbolic transition graph of Pi becomes a set of

integer indices Qi
1, . . . , Q

i
ki

uniquely representing each one.

Module Pi has |N bn
i | + 1 local variables: its local state

(i.e. the state of the corresponding symbolic transition graph)

is represented by variable si, with range Qi
1, . . . , Q

i
ki

, and

each bound name xi
j ∈ N bn

i has a corresponding variable

xi
j with range 0, . . . , |N fn |. The model also includes |N fn |

integer constants, one for each free name, which are assigned

(in some arbitrary order) distinct, consecutive non-zero values.

If the value of variable xi
j is equal to one of the these constants,

then the corresponding bound name has been assigned the

appropriate free name (by an input action). If xi
j=0, no input

to the bound name has occurred yet.

In this way, the conditions which label transitions of

the symbolic transition graph can be translated directly into

PRISM. For example, if condition M equals [x=a]∧[y=b]
where x, y are bound names and a, b free names, then the

translation of M into PRISM is identical: (x=a)&(y=b),
where x, y are integer variables and a, b integer constants.

In addition, when translating stochastic π-calculus pro-

cesses, for each free name x we add to the PRISM description

a constant rate x whose value is equal to rate(x), i.e. the rate

associated with the channel x.

For each transition in the symbolic transition graph for Pi,

we will include a set of corresponding PRISM commands in

the module Pi. We consider each type of transition separately

below. Note that, if Pi is a simple probabilistic π-calculus

term, then from the semantics (see Fig. 1) the only transitions

which can include multiple probabilistic choices are inter-

nal, therefore the remaining types of transitions (input and

output) can be written in the simplified form Qi
M,α
−−−→ Ri.

For the stochastic case, since PRISM multiplies the rates of

synchronising transitions and synchronisation in the π-calculus

is always binary, we associate rates (e.g. rate x for channel

x) with the “output” transitions and set the rates for “input”

transitions to 1 (which is the default so can be omitted).

Case 1 (probabilistic internal transition). For a transition:

Qi
M,τ
−−−→ {|p1 : Ri

1, . . . , pm : Ri
m|}

we add the command:

[] (si=Qi) & M → p1:(s
′
i=Ri

1) + · · · + pm:(s ′i=Ri
m);

See Fig. 6 line 7 for an example.

Case 2 (stochastic internal transition). For a transition:

Qi
M,r
−−→ Ri

we add the command:

[] (si=Qi) & M → r : (s ′i=Ri);

Case 3 (output on free name). For a transition:

Qi
M,x̄y
−−−→ Ri where x ∈ N fn
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when translating simple probabilistic π-calculus processes we

add, for each j ∈ {1, ..., n}\{i}, the command:

[x Pi Pj y] (si=Qi) & M → (s ′i=Ri);

while for stochastic π-calculus processes we add, for each

j ∈ {1, ..., n}\{i}:

[x Pi Pj y] (si=Qi) & M → rate x : (s ′i=Ri);

The channel x, sender Pi, receiver Pj and sent name y are

all encoded in the action label. See Fig. 6 lines 8 and 18 for

examples of sending free and bound names y, respectively.

Case 4 (output on bound name). For a transition:

Qi
M,x̄y
−−−→ Ri where x ∈ N bn

i

in the probabilistic case we add, for each a ∈ N fn and j ∈
{1, ..., n}\{i}:

[a Pi Pj y] (si=Qi) & M & (x=a) → (s ′i=Ri);

while, in the stochastic case, for each a ∈ N fn and j ∈
{1, ..., n}\{i} the command:

[a Pi Pj y] (si=Qi) & M & (x=a) → rate a : (s ′i=Ri);

is added. This is similar to Case 3 except that we include a

command for each possible value a of x. See for example

lines 24 and 25 of Fig. 6.

Case 5 (input on free name). For a transition:

Qi
M,x(z)
−−−−→ Ri where x ∈ N fn

in both cases we add, for each y ∈ N\N bn
i and j ∈

{1, ..., n}\{i}, the command:

[x Pj Pi y] (si=Qi) & M → (s ′i=Ri) & (z′=y);

For input actions, we add a line for each possible received

name y. The assignment (z′=y) models the update of the

bound name z to y. See for example lines 16 and 17 of Fig. 6

which match the output commands from lines 8 and 9. Notice

that this translation also works in the case where y is a bound

name in another process Pj (see for example line 23 of Fig. 6).

Case 6 (input on bound name). For a transition:

Qi
M,x(z)
−−−−→ Ri where x ∈ N bn

i

when translating both simple probabilistic and stochastic pro-

cesses, we add for each a ∈ N fn , y ∈ N\N bn
i and j ∈

{1, ..., n}\{i} the command:

[a Pj Pi y] (si=Qi) & M & (x=a) → (s ′i=Ri) & (z′=y);

This case combines elements of Cases 4 and 5: we add a

command for each possible pairing of channel a that x may

represent and name y that may be received.

Finally, we need to remove some spurious commands added

in Cases 5 and 6, since they correspond to input actions which

will never occur. More precisely, for each module Pj we

identify labels x Pi Pj y which appear on a command of Pj

but which do not appear in any of the commands in module

Pi. Commands with such action labels are removed from Pj .

For example, in Fig. 6 since process P1 only outputs c or d on

channel a, there is no label of the form a P1 P2 e in module

P1, and therefore commands with this label have been removed

from module P2.

D. Correctness of the translation

By assumption, the term being translated is finite control, is

closed and of the form P = νx1 . . . νxk (P1 | · · · |Pn). The

first step in the proof is to show that any term in the derivation

tree of P is of the form νx1 . . . νxk (Q1σ1 | · · · |Qnσn)
where, for any 1≤j≤n, Qj is a state of the symbolic transition

graph for the process Pj and σj is a substitution from

the bound names of Pj to the free names of P1, . . . , Pn.

The proof is by induction on the (concrete) transition rules

using Lemma 1 or Lemma 2, depending on whether we are

considering πprob or πstoc.

Using this result, we now show that the translation is

correct by constructing a mapping between these terms and

the states of the PRISM model and demonstrating that, for

any term in the derivation tree of P , there is a transition

in the (concrete) semantics if and only if the correspond-

ing PRISM state has a matching transition. For any term

νx1 . . . νxk (Q1σ1 | · · · |Qnσn) the state in the PRISM model

is constructed as follows: for any 1 ≤ j ≤ n, the val-

ues of the variables of module Pj are given by sj=Qj ,

xj
1=ij1, . . . , x

j
kj

=ijkj
where if σ(xj

l )=z ∈ N fn , then ijl is

the integer constant corresponding to the free variable z and

otherwise (i.e. σ(xj
l )=xj

l ) ijl equals 0.

The remainder of the proof is dependent on whether we are

in the probabilistic or stochastic setting.

1) Probabilistic case: Consider any πprob term Q in the

derivation tree, where Q = νx1 . . . νxk (Q1σ1 | · · · |Qnσn)
and the transition Q

τ
−→ {|pm : Rm|}m.

From the transition rules and the conditions we have im-

posed on the structure of πprob terms, there are the following

two cases to consider.

Internal transition. Qjσj
τ
−→ {|pm : Rj′

m|}m and

Rm = νx1 . . . νxk (Q1σ1 | · · · |R
j′

m | · · · |Qnσn). From

Lemma 1(b), we have Qj

Mj ,τ
−−−→ {|pm : Rj

m|} where σj |= Mj

and Rj
mσj = Rj′

m. Hence, by construction in the module Pj

there is a command of the form:

[] (sj=Qj ) & Mj → p1:(s
′
j=Rj

1) + · · · + pm:(s ′j=Rj
m);

Finally, since σj |= Mj and by definition of the mapping

between πprob terms and PRISM, it follows that the PRISM

state corresponding to Q satisfies the guard (sj=Qj) &Mj

and that the transition is preserved in the translation.

Communication. Qjσj
x(z)
−−−→ R′

j , Qlσl
x̄y
−→ R′

l,

j 6= l, and {|pm : Rm|}m = {|1 : R|} where R =
νx1 . . . νxk (Q1σ1 | · · · |R

′
j{y/z} | · · · |R′

l | · · · |Qnσn).
From Lemma 2(b), assuming without loss of generality that

z is fresh:

• Qj

Mj ,xj(zj)
−−−−−−→ Rj where σj |=Mj and (xj(zj).Rj)σj =

x(z).R′
j ;

• Ql
Ml,x̄lyl−−−−−→ Rl where σl|=Ml and (x̄lyl.Rl)σl = x̄y.R′

l.
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Now, since z is fresh, it follows that z=zj and, because σl

is a substitution from bound to free names of P1, . . . , Pn, it

follows that y ∈ N\N bn
j . In addition, since σj is a substitution

from bound to free names, either xj is free and equals x, and

hence in module Pj we have the command:

[x Pl Pj y] (sj=Qj ) & Mj → (s ′j=Rj) & (z′j=y);

or xj is bound and, since xjσj = x, it follows that x is free,

and therefore the command:

[x Pl Pj y] (sj=Qj ) & Mj & (xj=x) → (s ′j=Rj) & (z′j=y);

appears in module Pj . Employing similar arguments, if xl is

free, then xl = x and the command:

[x Pl Pj y] (sl=Ql) & Ml → (s ′l=Rl);

appears in module Pl. While, if xl is bound, then module Pl

includes the command:

[x Pl Pj y] (sl=Ql) & Ml & (xl=x) → (s ′l=Rl);

Since σj |= Mj , σl |= Ml, xjσj = x and xlσl = x, it follows

that the guards (sj=Qj ) & Mj , (sj=Qj ) & Mj & (xj=x),
(sl=Ql) & Ml and (sl=Ql) & Ml & (xl=x) hold in

the PRISM state encoding Q. Finally, since the encoding of

R′
j{y/z} can be obtained from the encoding of Rjσj by

setting the variable z to value y, it follows that the transition

is preserved by the translation.

To complete the proof it remains to show that for any transition

of the PRISM model there is a matching transition in the

corresponding πprob term. The result follows in a similar manner

to the above using Lemma 1(a) instead of Lemma 1(b).

2) Stochastic case: Consider any πstoc term Q in the deriva-

tion tree, where Q = νx1 . . . νxk (Q1σ1 | · · · |Qnσn) and the

transition Q
r
−→ νx1 . . . νxk R.

From the transition rules and the conditions we have im-

posed on the structure of πstoc terms, there are the following

two cases to consider.

Internal transition. Qjσj
r
−→ R′

j and R =
Q1σ1 | · · · |R

′
j | · · · |Qnσn. From Lemma 2(b), we have

Qj

Mj ,r
−−−→ Rj where σj |= Mj and Rjσj = R′

j . Hence, by

construction in the module Pj there is a command of the

form:

[] (sj=Qj ) & Mj → r : (s ′j=Rj);

Finally, since σj |= Mj and by definition of the mapping

between πstoc terms and PRISM, it follows that the PRISM

state corresponding to Q satisfies the guard (sj=Qj) &Mj

and that the transition is preserved in the translation.

Communication. Qjσj
x(z)
−−−→ R′

j , Qlσl
x̄y
−→ R′

l, j 6= l, R =
Q1σ1 | · · · |R

′
j{y/z} | · · · |R′

l | · · · |Qnσn and rate(x) = r.

From Lemma 2(b), assuming without loss of generality that z
is fresh:

• Qj

Mj ,xj(zj)
−−−−−−→ Rj where σj |=Mj and (xj(zj).Rj)σj =

x(z).R′
j ;

• Ql
Ml,x̄lyl−−−−−→ Rl where σl|=Ml and (x̄lyl.Rl)σl = x̄y.R′

l.

We employ the same arguments used in the probabilistic case.

If xj is free, module Pj contains the command:

[x Pl Pj y] (sj=Qj ) & Mj → (s ′j=Rj) & (z′j=y);

while if xj is bound, it contains the command:

[x Pl Pj y] (sj=Qj ) & Mj & (xj=x) → (s ′j=Rj) & (z′j=y);

Similarly, if xl is free, the command:

[x Pl Pj y] (sl=Ql) & Ml → rate x : (s ′l=Rl);

appears in module Pl and, if xl is bound, then the command:

[x Pl Pj y] (sl=Ql) & Ml & (xl=x) → rate x : (s ′l=Rl);

appears in module Pl.

The remaining arguments are the same as in the probabilistic

case, using additionally the fact that the PRISM constant

rate x has been given the value rate(x).

E. Optimisations

The translation from symbolic transition graphs to PRISM

code described in this section can be optimised to reduce

the size of the generated code and the resulting model. The

basic idea is to compute an over-approximation of the possible

values that each symbolic transition graph’s bound name can

take and, thus, the channels it can send out on and the values

that can be sent on those channels. With this information,

we can decrease the range of the PRISM local variables

corresponding to each bound name and remove unnecessary

commands corresponding to combinations of channel, value

and processes that can never occur. The over-approximation

is computed iteratively, starting with an empty set of possible

values for each bound name, and at each step adding any name

that can be received upon any channel that can be used to

assign to the bound name. The iterations required is bounded

by the number of processes n. For clarity of presentation, the

example in Fig. 6 has in fact been optimised in this way.

This optimisation could be improved by employing more

complex techniques based on those developed in [18] which

use control flow analysis to establish an over-approximation

of the set of channels a name may be bound to and the set of

names that may be sent along a given channel.

F. Properties

For probabilistic model checking of MDPs and CTMCs,

properties are typically specified using the temporal logics

PCTL [33], [34] and CSL [35], [36], the key components

of which are timed and untimed probabilistic reachability.

Examples of expressible properties include the maximum

probability of a failure occurring (Pmax=?[F failure]), the

minimum probability of a process successfully completing

(Pmin=?[F success]), the probability that a message is delivered

by time t(∈ R) (P=?[F
≤t delivered ]) and the probability

of a reaction occurring in the time interval [t1, t2](⊆ R)
(P=?[F

[t1,t2] reaction]). In practice, a wide range of useful

properties can be expressed in this way.
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Most probabilistic model checking tools, including PRISM,

use state-based property specifications, i.e. the atomic propo-

sitions (failure, delivered , etc.) in the examples above are

quantifier-free predicates identifying a set of states in the

model. Also, the models that are checked are closed: there

are no inputs/outputs between the model and its environment,

only between components included within the model. This is

our reason for only performing probabilistic model checking

on closed π-calculus processes.

In terms of the translation from π-calculus description to

PRISM model, we simply need to be able to identify the

particular set of target states specified in the reachability

property. This is done through the MMCprob translator when

it constructs a PSTG or SSTG: either by identifying which

symbolic states correspond to a particular process term; or

those in which a particular action is available (in the latter

case, such actions can be added purely for the purposes of

identifying states, and then removed through restriction).

For example, consider a distributed randomised algorithm

executed between n parallel components, P1, . . . , Pn. A typi-

cal property to be checked is that algorithm always terminates

with probability 1 (for any possible scheduling of the n
components). In this case, we would identify the term in the

π-calculus description of each process Pi that corresponds to

that process finishing its execution of the algorithm. From

the output of the MMCprob translator, we can identify the

corresponding local state Qi of the process. We would then

compute (in PRISM) the (minimum probability) of reaching

the state s1 = Q1 ∧ · · · ∧ sn = Qn.

Although not considered in the case studies used in this

paper, our implementation could also be extended to allow for

the computation of cost- or reward-based properties, which are

also supported by PRISM. This allows expression of prop-

erties such as the “maximum expected number of messages

sent before termination” or “the minimum expected power

consumption within t time units”. Typically the cost/reward

information needed for these properties is added to the model

(MDP or CTMC) by annotating either transitions labelled

with particular actions (for example the action-label which

corresponds to a message being sent between two compo-

nents) or states with real values. Since our translation of the

probabilistic or stochastic π-calculus to PRISM preserves both

information about the state and channel communications of a

process, information of this kind could be incorporated into

the translation in a relatively straightforward fashion.

More general temporal properties, for example that a certain

sequence of actions is performed, could be encoded through

the addition of a test/watchdog process [37]. Model checking

for specification formalisms more specifically tailored to the

mobile aspects of the π-calculus, such as spatial logic [38],

will be an area of future work.

V. IMPLEMENTATION AND RESULTS

Our implementation of model checking for the simple

probabilistic π-calculus and stochastic π-calculus is fully auto-

mated and comprises three parts: (1) MMCprob, an extension of

MMC (as described in Section III), which constructs the sym-

bolic transition graphs for a simple probabilistic or stochas-

tic π-calculus process, (2) the translator from the symbolic

transition graph to PRISM code (as described in Section IV),

implemented in Java, and (3) the probabilistic model checker

PRISM [11] which builds the MDP/CTMC from part (2) and

performs verification of PCTL/CSL properties. We based our

implementation on MMC 1.0 and PRISM 3.1.1.

Firstly, we consider the dining cryptographers protocol

(DCP) [39], Chaum’s randomised solution to the classic

anonymity problem in which a group of N parties collectively

establish whether either one of the group or an independent

party has to make a payment. If the former, this is achieved

without any of the N−1 non-paying parties knowing the

identity of the paying one. This was previously modelled

in the probabilistic π-calculus in [6]. To check anonymity,

we compute the probability of reaching each of the possible

outcomes of the protocol (from the point of view of an

individual party) and establish that they are identical.

Secondly, we study the partial secret exchange (PSE) al-

gorithm of [3] for anonymous contract signing between two

parties. A probabilistic π-calculus model of PSE was given

in [5]. The protocol was independently analysed in PRISM

[40], where a potential flaw of the protocol was identified, in

that one party always has an advantage over the other. Several

modifications to the protocol were proposed and shown to have

a lower probability of this occurring. We used a πprob model

of both the original and a modified version to demonstrate the

same flaw.

Thirdly, we constructed both a probabilistic and stochastic

model of a mobile communication network (MCN), based on

the (non-probabilistic) π-calculus model in [41]. The system

comprises N base stations with fixed communication links to

a mobile switching centre and a mobile station which can

be connected to each of the base stations via radio links.

The mobile station roams between the base stations. When it

changes base station, the mobile communication network acts

as an intermediate party, controlling the handover protocol and

exchange of communication links between stations. This case

study was analysed using MMC in [10]. In both this and the

original paper, though, the occurrence of a failure during the

handover protocol was modelled as a nondeterministic choice.

In the probabilistic version we are able to correctly model

this as a random event. For the stochastic model, we used the

adapted version of [42]. This allows both correct modelling of

the failure event and also timing characteristics of the network.

We check the probability of a handover operation completing

successfully, within a given number of communications (for

the probabilistic case) or within a fixed time deadline (for the

stochastic case).

Our final case study is a CTMC model of the Fibroblast

Growth Factor (FGF) signalling pathway. We consider a

slightly simplified version of the model from [43], comprising

interactions between a mixture of FGF ligands and receptors.

In the πstoc formulation, the ν operator is used to give each

FGF ligand a unique channel name. The binding between a

particular FGF ligand and receptor is modelled by this name

being passed between the two. Unbinding occurs through

a communication over this private channel. We check the
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TABLE I

PERFORMANCE OF THE PROBABILISTIC MODEL CHECKING PROCESS

Case N Model size MTBDD Construction time (sec.) Model checking

study States Transitions size PSTGs/ PRISM MDP/ in PRISM

(nodes) SSTGs code CTMC (sec.)

5 160,543 592,397 58,448 2.20 0.27 0.93 5.21

6 1,475,401 6,520,558 100,122 2.50 0.27 1.98 15.1

DCP 7 13,221,889 68,121,834 154,074 2.95 0.31 3.10 39.4

8 116,192,457 683,937,352 220,043 3.31 0.31 4.23 90.8

9 1,005,495,499 6,657,256,911 298,285 3.62 0.36 6.26 316.2

3 9,321 32,052 17,999 1.63 0.21 0.43 0.31

PSE 4 89,025 419,172 43,120 2.12 0.27 0.95 1.23

5 837,361 5,028,700 88,074 2.60 0.31 1.89 2.96

3 9,328 32,059 18,184 1.57 0.22 0.41 0.86

PSEmod 4 89,040 419,187 43,388 1.99 0.26 0.89 3.45

5 837,392 5,028,731 89,309 2.49 0.31 1.96 14.3

MCN 2 609 950 58,430 1.38 0.31 2.61 0.34

(probabilistic) 3 3,611 5,811 216,477 1.60 0.46 12.0 6.06

MCN 2 565 854 32,898 1.44 0.38 2.13 1.18

(stochastic) 3 3,295 5,079 119,197 1.59 0.44 7.05 2.76

3 13,081 43,330 8,667 1.00 0.11 0.25 2.22

FGF 4 87,109 315,436 28,725 1.08 0.12 1.34 24.1

5 453,593 1,763,842 108,354 1.21 0.12 8.62 156.6

6 2,011,729 8,318,684 304,464 1.39 0.16 32.3 999.3

probability that all FGF receptors have relocated (are no longer

active) by a certain time bound.

Table I shows the performance of our implementation on the

case studies. Experiments were run on a 2 GHz PC with 2 GB

RAM running Linux. For each case study, we analysed several

models of increasing size by varying a parameter N . For the

DCP model, N represents the number of parties; for PSE

(we consider two variants: the original protocol EGL and the

modified version EGL3 from [40]) N is the size of contract;

for the MCN models, N represents the number of base

stations; and for FGF, N is the number of FGF ligands (the

number of receptors remains fixed). The table shows the size

of the resulting MDPs/CTMCs (number of states/transitions)

and corresponding storage in PRISM (MTBDD nodes, where

1 node uses 20 bytes). We also give the time required for

each stage of the process, i.e. constructing: the PSTGs (using

MMCprob); the PRISM code (using the translator); and the MDP

or CTMC model (using PRISM). Finally, we give the time

to check a single (quantitative) PCTL/CSL property for each

using PRISM (with the fastest available engine).

The results are very encouraging. We see that our techniques

are scalable to the construction and analysis of πprob and πstoc

models with extremely large state spaces and that the times

required for all stages of the process are relatively small.

Furthermore, the compositional approach to the translation

proved to be essential. On the FGF model (N=3), for example,

constructing the full model in MMCprob took more than 100

times as long as the compositional technique. For larger

parameter values, it was not feasible to directly construct the

full model.

The MCN case study, although smallest in terms of state

space, is a particularly good example of the applicability of

this implementation since it fully exploits all mobile aspects

of the calculus. The most obvious area for improvement in

our results concerns MTBDD sizes. As is often the case with

automatically generated code, the PRISM models resulting

from our technique do not always exhibit the kind of structure

and regularity that can be exploited by PRISM’s symbolic

implementation. We are confident that performance can be

improved in this area.

VI. CONCLUSIONS

In this paper we have demonstrated the feasibility of im-

plementing model checking for probabilistic and stochastic

extensions of the π-calculus. Furthermore we have shown,

through its application to several large examples, the efficiency

of the approach. The probabilistic version of the π-calculus

we used (with only blind probabilistic choice) has proved to

be expressive enough for the appropriate application domains

(probabilistic algorithms for security and dynamic communi-

cation protocols with failures and/or randomisation) and yet

amenable to analysis with extensions and adaptions of existing

verification tools. Similarly, the version of the stochastic π-

calculus we used (with rates assigned to τ transitions and to

channels) is both a natural formalism for modelling biological

systems and well suited for the model checking techniques we

have proposed.

We would like to extend this work in several directions. For

convenience of modelling, we plan to add support for polyadic

communication over channels. We also hope to add support

for more flexible property specifications using watchdog pro-

cesses. Finally, we will investigate ways to further improve the

efficiency of our implementation, in particular, with regards to

the automatically generated PRISM code. Possibilities include

optimisations to reduce the resulting symbolic (MTBDD)

storage in PRISM and bisimulation minimisation techniques.
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