
HAL Id: inria-00425613
https://inria.hal.science/inria-00425613

Submitted on 22 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparative Study of Network Link Emulators
Lucas Nussbaum, Olivier Richard

To cite this version:
Lucas Nussbaum, Olivier Richard. A Comparative Study of Network Link Emulators. Commu-
nications and Networking Simulation Symposium (CNS’09), Mar 2009, San Diego, United States.
�inria-00425613�

https://inria.hal.science/inria-00425613
https://hal.archives-ouvertes.fr


A Comparative Study of Network Link Emulators

Lucas Nussbaum and Olivier Richard

Laboratoire d’Informatique de Grenoble – LIG

{Lucas.Nussbaum,Olivier.Richard}@imag.fr

Keywords: network, emulation, software, accuracy

Abstract

Between discrete event simulation and evaluation within real

networks, network emulation is a useful tool to study and

evaluate the behaviour of applications. Using a real network

as a basis to simulate another network’s characteristics, it en-

ables researchers to perform experiments in a wide range of

conditions. After an overview of the various available net-

work emulators, this paper focuses on three freely available

and widely used network link emulators: Dummynet, NIST-

Net, and the Linux Traffic Control subsystem. We start by

comparing their features, then focus on the accuracy of their

latency and bandwidth emulation, and discuss the way they

are affected by the time source of the system. We expose sev-

eral problems that cannot be ignored when using such tools.

We also outline differences in their user interfaces, such as the

interception point, and discuss possible solutions. This work

aims at providing a complete overview of the different solu-

tions for network emulation.

1. INTRODUCTION
The performance of distributed applications is often diffi-

cult to measure. Most evaluations are carried out either using

modeling and simulation, or using evaluation on real-world

systems. But both have well-known shortcomings, unfortu-

nately. Simulations depend heavily on the quality of the un-

derlying model, and modeling with accuracy can be a long

process, especially when the system being studied is a com-

plex, pre-existing application, whose internals are not known.

The opposite solution is to execute applications on experi-

mental testbeds, such as PlanetLab; instead of trying to un-

derstand how the application works, the application is exe-

cuted, and the result of its execution is then examined. But

platforms like PlanetLab provide a single configuration; it is

usually not possible to modify the platform to test the appli-

cation under different conditions (for example, different net-

work conditions), leading to results that lack generalization.

Emulation is another, intermediate solution. It consists of

executing the real application in a synthetic (simulated ) en-

vironment. It allows researchers to reproduce various condi-

tions, at a very low cost. Instead of modifying the network

infrastructure, the emulation layer is configured to emulate

latency, lower bandwidth, or degraded network conditions.

Several solutions for network emulation already exist.

However, the accuracy of these tools has never been com-

pared, despite them being widely used by the community.

This work contributes a comparative study of network em-

ulators, outlining their differences, their advantages and their

problems.

The remaining of this paper is organized as follow. Sec-

tion 2 is an overview of the existing network emulation so-

lutions. In Section 3, we compare the features provided by

Dummynet, NISTNet and Linux TC/Netem. In Section 4, we

study the accuracy of the network emulation (both latency

and bandwidth emulation). Section 5 outlines differences in

the tools’ user interfaces, while Section 6 discusses an issue

with the interception point of packets with TC. Finally, Sec-

tion 7 provides directions for some future work, before we

conclude in Section 8.

2. NETWORK EMULATORS
Network emulators are not a new idea. In 1995, a WAN

emulator was used to evaluate TCP Vegas [1]. Amongst all

the emulation solutions developed since then, one can distin-

guish two kinds of network emulators:

Virtual network emulators aim at emulating a whole net-

work cloud. The description of a network topology is

supplied to the emulator, which typically uses a cluster

of computers to emulate the network. Examples of such

emulators are MicroGrid [2], Modelnet [3], Emulab [4],

EMPOWER [5], IMUNES [6], V-em [7] and eWAN [8].

However, those approaches are generally quite complex,

and their deployment outside of the laboratory which de-

veloped them is often very limited, because they involve

a non-trivial setup phase.

Network link emulators are more simple. They delay or

drop packets coming in or going out of a specific net-

work interface to match the desired network characteris-

tics (latency, packet loss and bandwidth). Delayline [9]

is a user-level library providing such features. The Ohio

Network Emulator [10] runs on Solaris and is no longer

maintained. Dummynet [11] runs on FreeBSD and is

integrated with FreeBSD firewall IPFW. NISTNet [12]

was initially developed for Linux 2.4 and was recently

ported to Linux 2.6. Linux 2.6 also provides Netem [13],



a network emulation facility built into Linux’s Traffic

Control (TC) subsystem. A network emulator named

hxbt [14] is also available in OpenSolaris. Finally, hard-

ware solutions exist, such as GtrcNET-1 [15] (using an

FPGA) or the products from Anué [16].

In the remainder of this work, we focus on Dummynet,

NISTNet and TC/Netem, for three main reasons:

• Firstly, those three solutions are of production quality,

and are no longer prototypes. They are ready to be used

by researchers ;

• Secondly, they are freely available on operating systems

(Linux and FreeBSD) that are commonly available in

laboratories ;

• Finally, they are already being used by the research com-

munity, either directly, or integrated into virtual network

emulators. For example, Emulab uses Dummynet on its

FreeBSD nodes and Linux/TC on its Linux nodes, while

V-em uses NISTNet.

3. FEATURES
Dummynet, NISTNet and TC/Netem use the same princi-

ple. They capture incoming or outgoing packets, and use a set

of rules and queues to store the packets, until they determine

that the packet can be released to the operating system (in the

case of incoming packets) or to the network (in the case of

outgoing packets). However, their implementations and fea-

tures differ.

Table 1 presents the features of Dummynet, NISTNet, and

TC/Netem. NISTNet and Netem have very similar features,

and actually share some code, but their design is totally dif-

ferent. While NISTNet is built as a standalone module and

relies on the real-time clock for timing (which is normally

only used to keep track of time when a computer is powered

off), Netem is tightly integrated within the Linux Traffic Con-

trol subsystem (usually used to enforce quality of service in-

side networks), and relies on the same timing source as does

the rest of the kernel. Also, Netem is distributed with Linux,

while NISTNet is distributed separately. NISTNet is currently

only available for versions of Linux lower than 2.6.14 (we

successfully used it on Linux 2.6.13.5), but we ported it to

Linux 2.6.261.

Dummynet uses a totally different code base, and has been

integrated into FreeBSD since FreeBSD 4. Its main advantage

over NISTNet and Netem is that it works on both incoming

and outgoing packets. However, Dummynet doesn’t allow to

emulate degraded network conditions (packet duplication or

corruption).

1Our patch is available on http://perso.ens-lyon.fr/lucas.nussbaum/

#nistnet.

4. PERFORMANCE EVALUATION

In this section, we study the performance of Dummynet,

NISTNet and Linux/TC. We investigate how closely the emu-

lated network’s characteristics match the parameters provided

by the user. For given latency and bandwidth parameters, we

measure the resulting latency and bandwidth on the emulated

network.

4.1. Experimental setup

Cisco Catalyst 6509 Switch

10.0.0.1 10.0.1.110.0.0.2 10.0.1.2

Node 1 Node 2Router

Figure 1. Experimental setup

The following experiments all use the same network and

system configuration shown in Figure 1. The platform con-

sists of 3 nodes (Dual-Opteron 2.0 GHz with 2 GB of RAM)

of the GridExplorer cluster (part of the french nation-wide

project Grid’5000) are used. The Router is configured to

route packets between Node 1 and Node 2. Nodes 1 and 2

are running Linux 2.6.26, while the Router uses Linux 2.6.22

or 2.6.26 (for TC/Netem), Linux 2.6.26 (for NISTNet), or

FreeBSD 6.1 or 7.0 (for Dummynet). Network cards are dual-

port Broadcom BCM5780 Gigabit Ethernet controllers inte-

grated in the nodes’ motherboard. Without configuring net-

work emulation on the router, we measured a maximum band-

width of 943 Mbps and a Round Trip Time (RTT) of about

180 µs between nodes 1 and 2.

4.2. Time source and accuracy of latency emu-
lation

The entire focus of the industry is on bandwidth,

but the true killer is latency.

Prof. M. Satyanarayanan

Keynote at ACM Mobicom ’96

Latency emulation is an important aspect of network em-

ulation. On today’s networks, most of the latency is often

caused directly by physical constants such as the speed of

light in optical fiber, and can’t be expected to be improved in

the near future. How applications deal with latency is increas-

ingly important for performance, since the available band-

width keeps increasing.



Table 1. Features of Dummynet, NISTNet, and TC/Netem

Dummynet NISTNet TC/Netem

Availability Included in FreeBSD Available for Linux 2.4 and 2.6

(< 2.6.14), patch available for

more recent versions

Included in Linux 2.6

Time resolution system clock (up to 10 KHz) Real time clock system clock (up to 1 KHz) or

high resolution timers

Interception point Input and output Input only Output only

Latency Yes, constant value Yes, with optionally correlated

jitter following uniform, nor-

mal, Pareto, or normal+Pareto

distributions

Yes, with optionally correlated

jitter following uniform, nor-

mal, Pareto, or normal+Pareto

distributions

BW limitation Yes, delay to add to packets

is computed when they enter

Dummynet

Yes, delay to add to packets

is computed when they enter

NISTNet

Yes, using the Token Bucket

Filter from TC

Packet drop Yes, but without correlation Yes, optionally correlated Yes, optionally correlated

Packet reordering No Yes, optionally correlated Yes, optionally correlated

Packet duplication No Yes, optionally correlated Yes, optionally correlated

Packet corruption No Yes, optionally correlated Yes, optionally correlated

The accuracy of the emulation depends heavily on the

time source used by the software. While NISTNet uses the

Real Time clock configured at 8192 Hz, both Dummynet

and Netem use the same timers as the rest of the kernel. On

FreeBSD (Dummynet), the timer interrupt frequency is con-

figured by the HZ variable of the kernel configuration, whose

default value is 100 Hz.

The situation is different on Linux. In older kernel versions

(until Linux 2.6.22 on i386 and 2.6.24 on x86 64), Netem

was using the timer interrupts (configured at 250 Hz by de-

fault), like Dummynet on FreeBSD. But in addition to being

examined at each timer interrupt, Netem’s queue was also ex-

amined each time a packet entered Netem, which, with im-

portant traffic, could hide problems caused by a low timer

frequency.

In newer kernel versions, Netem uses a new subsystem

called High Resolution Timers [17], allowing to obtain a

much more precise timing of interrupts.

We evaluate those different solutions by measuring the

RTT over time, by sending pings with a high frequency. If the

frequency of timer interrupts is not high enough, we would

observe variations in the measured RTT. Since packets can

only be released by the emulator when a timer interrupt oc-

curs, they might be released slightly too early, or slightly too

late, depending on how the rounding will happen. This will

cause variations in the emulated latency.

The accuracy of standard ping implementations, which use

gettimeofday() to measure the time, was not sufficient

for our purposes. We modified a ping implementation to use

the CPU Timestamp Counter (RDTSC assembler instruction),

to achieve both high measurement frequency (10-20 KHz)

and microsecond precision.

We measured the latency over time between nodes 1 and

2 (Figure 1) when configuring the emulators to delay packets

from node 1 to node 2 for 10 ms, and evaluated the following

configurations for the router:

• Linux 2.6.22 with Linux/TC on x86 64, using timer in-

terrupts, with a frequency of 100 Hz, 250 Hz (the default

value on Linux) and 1000 Hz ;

• Linux 2.6.26 with Linux/TC on x86 64, using High

Resolution Timers. We also verified that changing the

timer interrupts frequency (100 Hz, 250 Hz, 1000 Hz)

didn’t change our results with this configuration ;

• Linux 2.6.26 with NISTNet ;

• FreeBSD 7.0, with a frequency of 100 Hz, 1 KHz, and

10 KHz. For some experiments, we also compared the

results with FreeBSD 6.1.

Figures 2 and 3 show the results for all of those configura-

tions. The configurations are split in 3 groups, each providing

similar results, to ease comparisons. For each configuration,

the plot on the left (Figure 2) gives the evolution of latency

over time, measured using pings sent with a very high fre-

quency, while the plot on the right (Figure 3) gives the distri-

bution function of latency, measured with pings sent with a

random interval.

Several configurations exhibit a sawtooth behaviour, which

can easily be explained: since packets can only be dequeued

when a timer interrupt happens, the duration of their stay



 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30  35

E
m

ul
at

ed
 la

te
nc

y 
(m

s)

Time (ms)

group 1

FreeBSD 7.0, 100 Hz
Linux 2.6.22, 100 Hz
Linux 2.6.22, 250 Hz

10 ms

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0  0.5  1  1.5  2  2.5  3  3.5  4

E
m

ul
at

ed
 la

te
nc

y 
(m

s)

Time (ms)

group 2

FreeBSD 7.0, 1kHz
FreeBSD 7.0, 10kHz

Linux 2.6.22, 1 kHz
10ms

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 0  0.5  1  1.5  2  2.5  3  3.5  4

E
m

ul
at

ed
 la

te
nc

y 
(m

s)

Time (ms)

group 3

Linux 2.6.26, 100 Hz
Linux 2.6.26, NISTNet
FreeBSD 6.1, 10 kHz

10ms

Figure 2. Evolution over time of latency emulated by the

router node, for pings sent from node1 to node2. The emu-

lated latency varies over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

F
(x

)

Emulated latency (ms)

group 1

FreeBSD 7.0, 100 Hz
Linux 2.6.22, 100 Hz
Linux 2.6.22, 250 Hz

 0

 0.2

 0.4

 0.6

 0.8

 1

 9  9.5  10  10.5  11  11.5  12  12.5  13

F
(x

)

Emulated latency (ms)

group 2

FreeBSD 7.0, 1kHz
FreeBSD 7.0, 10kHz

Linux 2.6.22, 1 kHz

 0

 0.2

 0.4

 0.6

 0.8

 1

 10.1  10.15  10.2  10.25  10.3  10.35  10.4  10.45  10.5

F
(x

)

Emulated latency (ms)

group 3

Linux 2.6.26, 100 Hz
Linux 2.6.26, NISTNet
FreeBSD 6.1, 10 kHz

Figure 3. Latency emulation. Empirical cumulative defini-

tion function of emulated latencies, for packets sent at ran-

dom intervals.



in the emulator’s queue will depend on their arrival time.

Packets arriving long before the next timer interrupt will stay

longer in the queue than packets arriving just before a timer

interrupt.

This sawtooth behaviour could create a bias in experimen-

tal results. At network-level, equipments (routers, switchers)

might not be able to handle a sudden burst of packets, and

cause packet drops. At application-level, those bursts of pack-

ets will increase the need for large buffers, and might desyn-

chronize processes that would otherwise be synchronized.

With Linux 2.6.22 and FreeBSD 7.0, one can clearly see

the influence of the timer frequency. Increasing the frequency

makes the emulation more accurate. With a low frequency

(100 Hz or 250 Hz), the variations of latency are very impor-

tant. For example, on Linux, and with a clock configured at

100 Hz, the emulated latency varies between 13 ms and 30 ms

when the user configures a latency of 10 ms.

With FreeBSD 7.0, one can also see that the accuracy

doesn’t improve when the timer frequency is changed from

1 KHz to 10 KHz. With FreeBSD 6.1 (Figure 2, group 3),

it is not the case. A frequency of 10 KHz provides latency

emulation that is 10 times more precise than with a clock at

1 KHz.

Because of differences in algorithms used to emulate la-

tency, one can also see that the emulated latency is always

higher than the one configured with Linux TC. On the con-

trary, with Dummynet, it is lower than the configured latency

most of the time.

Finally, 3 solutions provide reasonable performance (most

of the remaining difference between the emulated latency and

the configured latency can be explained by the physical la-

tency of the experiment’s network):

• NISTNet, because it doesn’t use the same timer inter-

rupts as the rest of the system, but a clock configured at

8192 Hz ;

• FreeBSD 6.1 configured with a timer frequency of

10 KHz ;

• Linux with High Resolution Timers.

However, increasing the interrupt frequency with NIST-

Net and FreeBSD 6.1 is not cost-free, because it implies that

the interrupt handling routine is executed much more often,

causing useless context switchs between userspace and ker-

nelspace, and cache trashing.

We used a simple CPU-intensive program (an extremely

simple calculation with no memory pressure - Ackermann’s

function - is performed 50 billion times) to show the influ-

ence of the timer frequency on performance. The execution

times of this program on FreeBSD using different timer fre-

quency settings are detailed in Table 2. At 10 KHz, one can

Table 2. Average execution time of a CPU-intensive pro-

gram on FreeBSD using different timer interrupt frequency

settings.

HZ value Execution time Overhead

100 Hz 81.5s

1000 Hz 81.7s 0.2%

10000 Hz 84.2s 3.3%

see a 3.3% slowdown in the system’s speed, which, in some

circumstances, could become a problem.

It is also worth noting that NISTNet suffers from the same

problem, even if it is using a separate clock for timing. Af-

ter loading the NISTNet kernel module, the execution of the

same program took 86.8s (overhead of 6.3%).

High Resolution Timers don’t suffer from the same prob-

lems. When they are enabled, but not used, they don’t slow

down the rest of the system. However, when they are used,

they increase the number of interrupts. Since they are more

precise, packets won’t be sent in groups, but separately, with

a different timer interrupt for each packet.

4.3. Bandwidth limitation
Bandwidth limitation is the other important aspect of net-

work emulation. Many of today’s network links have very

limited bandwidth, or an asymmetric bandwidth, such as

broadband or 3G networks. Most experimental testbeds don’t

include systems hosted on such connections, so it is important

for researchers to be able to emulate such links.

The implementation of bandwidth limitation differs in

network emulators. While NISTNet and Dummynet simply

compute the delay to add to a specific packet based on the

configured bandwidth and the current state of the queue, TC

uses a Token-Bucket algorithm to shape traffic.

In this experiment, we compared the desired rate with the

one measured using iperf. Using iperf adds a small bias

to the measurement, because iperf measures the available

bandwidth using a TCP stream, while the bandwidth limita-

tion sets the bandwidth available for IP packets. The exper-

iment was carried out on Ethernet, thus the interface MTU

(Maximum Transmission Unit) was set to 1500 bytes. The IP

and TCP headers are using 52 bytes, so the measured band-

width was corrected by 3.6% to include the IP and TCP head-

ers.

Figures 4 and 5 compares the corrected measured band-

width using Dummynet (with a timer interrupt frequency of

10 KHz), NISTNet, and TC/Netem (with Linux 2.6.26). Dif-

ferences between the achieved bandwidth are limited, but

Dummynet and NISTNet are slightly more accurate than TC.

When looking more closely at the results when the desired

bandwidth is high (between 500 Mbps and 1 Gbps, second



100kbps

1Mbps

10Mbps

100Mbps

500Mbps
800Mbps1Gbps

10
0k

bp
s

1M
bp

s

10
M

bp
s

10
0M

bp
s

50
0M

bp
s

80
0M

bp
s

1G
bp

s

m
ea

su
re

d 
ba

nd
w

id
th

desired bandwidth

Ideal emulator
Dummynet

NistNet
TC

500Mbps

800Mbps

1Gbps

50
0M

bp
s

80
0M

bp
s

1G
bp

s

m
ea

su
re

d 
ba

nd
w

id
th

desired bandwidth

Ideal emulator
Dummynet

NistNet
TC

Figure 4. Measured bandwidth when the bandwidth config-

ured in the emulator varies between 100 kbps et 1 Gbps (log-

arithmic scale, first graph), then between 500 Mbps et 1 Gbps

(second graph)

 80

 85

 90

 95

 100

 105

 110

10
0k

bp
s

1M
bp

s

10
M

bp
s

10
0M

bp
s

50
0M

bp
s

80
0M

bp
s

1G
bp

s

di
ffe

re
nc

e 
be

tw
ee

n 
m

ea
su

re
d 

an
d 

de
si

re
d 

ba
nd

w
id

th
s 

(%
)

desired bandwidth

Ideal emulator
Dummynet

NistNet
TC

Figure 5. Difference between measured bandwidth, and

bandwidth configured in the emulator

graph of Figure 4), one can see that Dummynet didn’t allow

us to achieve the desired bandwidth.

Bandwidth limitation also suffers from the problem de-

scribed in Section 4.2.. The frequency of timer interrupts

will cause the emulated traffic to be bursty. Data will not

go through the emulation layer continuously, but by larger

amount of data when the emulator is given the opportunity to

send data. With Dummynet and NISTNet, the emulator only

sends packets to the network when a timer interrupt occurs,

leading to important burstiness. As an example, to limit the

bandwidth to 100 Mbps with a timer frequency of 1 KHz,

100 Kbit of data (or 8.33 ethernet frames of 1500 bytes) will

have to be transmitted at each timer interrupt. Also, if, on av-

erage, the emulator has to transmit 1.5 frames per timer inter-

rupt, it will alternate between sending 1 frame and 2 frames,

leading to unrealistic traffic.

This could create a bias in measurements if the packets are

used to test congestion control mechanisms, for example. In-

creasing the frequency of the timer source would reduce the

problems. Linux TC uses another approach to alleviate those

problems. Instead of only sending frames during timer in-

terrupts, it also checks if some frames should be sent when

data is received by the emulator. This allows it to send data

much more frequently, especially under heavy traffic, but re-

quires that the emulator uses a more precise source to com-

pute time, like the CPU’s TimeStamp Counter. Dummynet

currently uses the jiffies counter (number of timer interrupt

since the sytem booted) for all the computations, so it’s not

possible to get sub-jiffie precision.

Also, it is worth noting that, when using Linux TC with

High Resolution Timers, this problem doesn’t occur.

Length of the waiting queue

Another problem related to the frequency of interrupts is

the size of the queue used by the emulator to store packets un-

til they are sent. To be able to achieve the desired bandwidth,

the size of the queue must meet the following condition:

queue size ≥ emulated bandwidth∗ interrupt f requency

Otherwise, the emulator won’t be able to suddenly receive

a large number of packets, and to send them on the network

one by one, to achieve the configured bandwidth.

This problem is particularly important with FreeBSD, be-

cause the maximum size of the queue doesn’t allow one to

emulate networks with a large bandwidth with the default

timer frequency (100 Hz): the maximum size of the queue is

100 packets, limiting the emulated bandwidth to 120 Mbit/s

in the most favorable case (all packets in the queue are 1500-

byte packets). This problem disappears when the interrupt

frequency is increased.



Configuration of TC’s Token Bucket Filter

The Token Bucket Filter used with TC to limit the band-

width is also a source of discrepancies between the configured

rate and the measured rate. Since its original goal was to be

used for providing Quality of Service (QoS) inside networks,

it uses a complex algorithm. This algorithm allows bursts of

packets to go through at a rate faster than the configured rate

; if the line is idle, there is no need to delay a very short but

very intensive connection. This is of course not a good idea

with network emulation, but a work-around exists with the

peakrate parameter, that adds a second TBF with a very

small bucket, to avoid bursting.

However, this second token bucket adds complexity to the

configuration of the Token Bucket Filter. This makes it very

difficult to determine settings that will be emulated at the de-

sired bandwidth. By contrast, configuration of Dummynet or

NISTNet is easier. It is important that one verifies that the

settings are correct before conducting the experiment.

5. USER INTERFACES
While the performance and the accuracy of network emu-

lators are important, their usability is also an important aspect

to consider.

Both Dummynet and NISTNet use a rule-based configu-

ration, similar to the configuration of firewalls, which make

them easy to understand, especially for users already familiar

with firewall configurations. However, they lack support for

complex hierarchical sets of rules, which could be a problem

if the user is trying to emulate a complex network topology.

Linux TC uses another approach. Its configuration is done

with a hierarchical set of qdiscs (queueing disciplines) and

classes. It is more powerful, but also more difficult to under-

stand.

6. INTERCEPTION POINT
One important advantage of Dummynet over NISTNet and

TC is that it can capture both incoming and outgoing packets.

NISTNet only allows emulation of incoming packets, while

TC only allows emulation of outgoing packets, which is log-

ical since it was designed as a traffic shaper, not as an emu-

lator. However, in many cases, it is necessary to perform em-

ulation of incoming packets as well, for example if the user

wants to perform emulation of the system where the applica-

tion is running (without using an intermediate router).

A solution exists for TC with the ifb device (Intermediate

Functional Block ), which is a dummy (software-only) net-

work device. It is possible to redirect all incoming packets to

the ifb device, and to apply emulation parameters when pack-

ets exit the ifb device. Figure 6 shows how to apply 50 ms

of latency to incoming packets.

However, one can question the overhead caused by such a

convoluted solution.

# initialize ifb

modprobe ifb

ifconfig ifb0 up

# add an ingress qdisc to process

# incoming packets

tc qdisc add dev eth0 ingress

# redirect everything to ifb0

tc filter add dev eth0 parent ffff:\

protocol ip prio 10\

u32 match ip src 0.0.0.0/0 flowid ffff:\

action mirred egress redirect dev ifb0

# set up netem on ifb0

tc qdisc add dev ifb0 root\

netem delay 50ms

Figure 6. Using the ifb dummy device to apply emulation

parameters on incoming packets

Using a GtrcNET-1, an FPGA-based hardware network

emulator and measurement tool, we measured the time taken

by packets to traverse a computer acting as a router. In the

first case, no TC configuration was used. In the second case,

an IFB device was added, and incoming packets were redi-

rected to it, but the IFB device didn’t perform any emulation.

Figure 7 shows that the difference between the two cases is

minor (about 5.2 µs), and probably negligible in most cases.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 140  150  160  170  180  190  200  210  220

Measured latency (us)

Without IFB
With IFB

Figure 7. ECDF of the traversal time of a computer acting

as a router, with and without redirecting incoming packets to

an IFB device

The CPU overhead is unfortunately more important. Under

very heavy network load (1 Gbps, small UDP packets gen-

erated using iperf), our test system showed that the CPU

was used about 40% of the time without IFB. When IFB was

added, it increased to about 50%. This could be a problem



when the application is running on the same node as the emu-

lator, since increased CPU usage of the emulator might affect

the application’s performance.

7. FUTURE WORK
One aspect that was voluntarily ignored by this study is

the cost of network emulation on the router. If the router is

dedicated to network emulation, this is unlikely to become a

problem. However, in many cases, it is interesting to execute

the application under study directly on the sytem on which

network emulation takes place. In that case, network emula-

tion could affect the results significantly.

Secondly, for some experiments, it might be necessary to

configure many concurrent queues (for example, on a router

emulating the network links of a high number of systems).

The performance of network emulators might become a prob-

lem when used to emulate a high number of different links.

In particular, the algorithm for matching packets and queues

will then be of high importance, and should be examined.

8. CONCLUSION
Network emulators allow one to easily perform experi-

ments under various network conditions, enabling researchers

to evaluate their algorithms in different environments. How-

ever, the fact that different solutions exist, and that they had

never been compared before, limited their widespread use.

This work focuses on three network link emulators: Dum-

mynet, NISTNet and the Linux Traffic Control (TC) subsys-

tem, which are freely available in widely used operating sys-

tems. Those three emulators have also been used as building

blocks for large-scale emulation platforms like Emulab. We

contribute a detailed comparison of those tools, including a

study of the accuracy of latency and bandwidth emulation.

Our work pinpoints several some issues. First, latency emu-

lation exhibits a sawtooth behaviour that could create a bias

in experiments. A high-frequency timer source mitigates this

problem, but increasing the timer frequency causes an over-

head which might be a problem in some experiments. We

demonstrate how recent changes in the Linux kernel (high

resolution timers) allow to improve that situation. Second, we

describe how bandwidth emulation, while being of reason-

able quality in all three emulators, also suffers from problems.

Dummynet doesn’t allow one to achieve very high emulated

bandwidth, and the timer frequency might lead to burstiness

if the emulated bandwidth is important, leading to unrealistic

traffic.

Finally, we provide a set of configurations that, for sev-

eral reasons, don’t exhibit some of those problems. It is im-

portant that users are aware of those problems, and validate

their emulators’ settings before performing experiments. Net-

work emulators are powerful tools, but should not be treated

as black boxes.

REFERENCES
[1] Jong Suk Ahn, Peter B. Danzig, Zhen Liu, and Limin Yan.

Evaluation of tcp vegas: emulation and experiment. SIG-

COMM Comput. Commun. Rev., 25(4), 1995.

[2] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,

K. Taura, and A. Chien. The MicroGrid: a scientific tool for

modeling computational grids. In Supercomputing ’00: Pro-

ceedings of the 2000 ACM/IEEE conference on Supercomput-

ing, 2000.

[3] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan,

Dejan Kostic, Jeff Chase, and David Becker. Scalability and

accuracy in a large-scale network emulator. In OSDI ’02, 2002.

[4] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi

Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Ab-

hijeet Joglekar. An integrated experimental environment for

distributed systems and networks. SIGOPS Oper. Syst. Rev.,

36(SI), 2002.

[5] Pei Zheng and Lionel M. Ni. Empower: A cluster architecture

supporting network emulation. IEEE Trans. Parallel Distrib.

Syst., 15(7), 2004.

[6] M. Zec and M. Mikuc. Operating system support for inte-

grated network emulation in IMUNES. In Proceedings of the

1st Workshop on Operating System and Architectural Support

for the on demand IT InfraStructure, 2004.

[7] George Apostolopoulos and Constantinos Hassapis. V-em:

A cluster of virtual machines for robust, detailed, and high-

performance network emulation. In MASCOTS ’06, 2006.

[8] P. Vicat-Blanc Primet, R. Takano, Y. Kodama, T. Kudoh,

O. Gluck, and C. Otal. Large scale gigabit emulated testbed

for grid transport evaluation. In PFLDnet 2006, 2006.

[9] David B. Ingham and Graham D. Parrington. Delayline: A

wide-area network emulation tool. Computing Systems, 7(3),

1994.

[10] Mark Allman, Adam Caldwell, and Shawn Ostermann. ONE:

The ohio network emulator. Technical Report TR-19972, Ohio

University, August 1997.

[11] Luigi Rizzo. Dummynet: a simple approach to the evaluation

of network protocols. ACM Computer Communication Review,

27(1), 1997.

[12] Mark Carson and Darrin Santay. NIST Net: a Linux-based

network emulation tool. SIGCOMM Comput. Commun. Rev.,

33(3), 2003.

[13] Stephen Hemminger. Network emulation with NetEm. In

linux.conf.au 2005, 2005.

[14] Hxbt: WAN emulator for solaris. http://www.opensolaris.

org/os/community/networking/readme.hxbt.txt.

[15] Y. Kodama, T. Kudoh, R. Takano, H. Sato, O. Tatebe, and

S. Sekiguchi. Gnet-1: gigabit ethernet network testbed. In

CLUSTER ’04, 2004.

[16] Anué systems. http://www.anuesystems.com.

[17] Thomas Gleixner and Douglas Niehaus. Hrtimers and beyond:

Transforming the linux time subsystems. In Proceedings of the

Ottawa Linux Symposium, 2006.


