Automatic event-level textual emotion sensing using mutual action histogram between entities

Abstract : Automatic emotion sensing in textual data is crucial for the development of intelligent interfaces in many interactive computer applications. This paper describes a high-precision, knowledgebase-independent approach for automatic emotion sensing for the subjects of events embedded within sentences. The proposed approach is based on the probability distribution of common mutual actions between the subject and the object of an event. We have incorporated web-based text mining and semantic role labeling techniques, together with a number of reference entity pairs and hand-crafted emotion generation rules to realize an event emotion detection system. The evaluation outcome reveals a satisfactory result with about 85% accuracy for detecting the positive, negative and neutral emotions.
Type de document :
Article dans une revue
Expert Systems with Applications, Elsevier, 2009, 37 (2), pp.1643-1653. 〈10.1016/j.eswa.2009.06.099〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00426567
Contributeur : Samuel Cruz-Lara <>
Soumis le : mardi 27 octobre 2009 - 10:35:27
Dernière modification le : jeudi 11 janvier 2018 - 06:21:35
Document(s) archivé(s) le : jeudi 17 juin 2010 - 18:10:58

Fichier

Emotion_Detection_Last_Version...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cheng-Yu Lu, Shian-Hua Lin, Jen-Chang Liu, Samuel Cruz-Lara, Jen-Shin Hong. Automatic event-level textual emotion sensing using mutual action histogram between entities. Expert Systems with Applications, Elsevier, 2009, 37 (2), pp.1643-1653. 〈10.1016/j.eswa.2009.06.099〉. 〈inria-00426567〉

Partager

Métriques

Consultations de la notice

375

Téléchargements de fichiers

387