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Abstract

In this paper we introduce a new probabilistic method
which integrates building extraction with change detection
in remotely sensed image pairs. A global optimization pro-
cess attempts to Þnd the optimal conÞguration of buildings,
considering the observed data, prior knowledge, and inter-
actions between the neighboring building parts. The ac-
curacy is ensured by a Bayesian object model veriÞcation,
meanwhile the computational cost is signiÞcantly decreased
by a non-uniform stochastic object birth process, which pro-
poses relevant objects with higher probability based on low-
level image features.

1. Introduction

Following the evolution of built-up regions is a key is-
sue of high resolution aerial and satellite image analysis.
Numerous previous approaches address building extraction
[5, 7, 9] at a single time instance. This process can be highly
facilitated by using Digital Elevation/Surface Model inputs
(DEM/DSM) [3, 7] extracted from stereo image pairs as
the buildings can be separated from the ground by the es-
timated height data. However in lack of multiview infor-
mation, the building identiÞcation becomes a challenging
monocular object recognition task [8].

Recent approaches on building change detection [3] as-
sume usually that for the earlier time layer a topographic
building database is already available, thus the process can
be decomposed into old model veriÞcation and new build-
ing exploration phases. On the other hand, many image
repositories do not contain meta data, therefore the task re-
quires automatic building detection in each image.

Several low level change detection methods have been
proposed for remote sensing [2], which search for statisti-
cally unusual differences between the images without using
explicit object models. Although they are usually consid-
ered as preprocessing Þlters, there have been less attempts
given to justify how they can support the object level inves-

tigations. In contrary, our method combines object extrac-
tion with local low level similarity information between the
corresponding image parts in a uniÞed probabilistic model.
It will be shown that we can beneÞt from evidences such as
building changes can be found in thechangedareas, while
multiple object views from the different time layers may in-
crease the detection accuracy of theunchangedbuildings.

Another important issue is related to object modeling.
Thebottom-uptechniques [5] construct the buildings from
primitives, like roof blobs, edge parts or corners. Although
these methods can be fast, they may fail if the primitives
cannot be reliably detected. On the other hand,inverse
methods[4] assign a Þtness value to each possible object
conÞguration and an optimization process attempts to Þnd
the conÞguration with the highest conÞdence. In this way,
ßexible object appearance models can be adopted, and it is
also straightforward to incorporate prior shape information
and object interactions. However, large computational cost
is needed for the search in the high dimension population
space meanwhile local maximaof the Þtness function can
mislead the optimization.

In the proposed model we attempt to merge the advan-
tages of both low level and object level approaches. The
applied Multiple Birth and Death technique [4] evolves the
population of buildings by alternating object proposition
(birth) and removal (death) steps in a simulated anneal-
ing framework. The exploration in the population space
is driven by simple region descriptors, however the object
veriÞcation follows the robustinversemodeling approach.

2. Problem formulation

The input of the proposed method consists of two co-
registered aerial or satellite images which were taken from
the same area with several months or years time differences.
We expect the presence of registration or parallax errors, but
we assume that they only cause distortions of a few pixels.
We consider each building to be constructed from one or
many rectangular building segments, which we aim to ex-



Figure 1. Demonstration of the rectangle parameters

tract by the following model.
Denote byS the common pixel lattice of the input im-

ages and bys � S a single pixel. Letu be a rectangu-
lar building segment candidate. For purposes of dealing
with multiple time layers we assign tou an image index
ßag� (u) � { 1, 2, �} , where Ô� Õ indicates unchanged object,
while Ô1Õ and Ô2Õ correspond to building segments which
appearonly in the Þrstor second image respectively. Let
be Ru � S the set of pixels corresponding tou. Ru is
described by the Þve rectangle parameters:cx andcy cen-
ter coordinates,eL , el side lengths and� � [Š90� , +90� ]
orientation (see Fig. 1).

3. Feature selection

In the proposed model, low level and object level fea-
tures are distinguished. Low level descriptors are extracted
around each pixel such as typical color or texture, and lo-
cal similarity between the time layers. They are used by
the exploration process to estimate where the buildingscan
be located, and how theycan look like: thebirth step gen-
erates objects in the estimated built-up regions with higher
probability. On the other hand, object level features char-
acterize a given object candidateu, exploited for the Þtness
calculation of the proposed oriented rectangles. Building
veriÞcation is primarily based on the object level features
thus their accuracy is crucial. Since apart from the similar-
ity measure, the upcoming descriptors are calculated for the
two input images separately, we often do not indicate the
image index in this section.

3.1. Low level features of building identiÞcation

The Þrst feature exploits the fact that regions of buildings
should contain edges inperpendiculardirections, which
can be robustly characterized bylocal gradient orientation
histograms [6]. Let be� gs the intensity gradient vector at
s with magnitude||� gs|| and angle� s. Let beWl (s) the
rectangularl × l sized window arounds, wherel is chosen
so thatWl (s) can cover an average building narrowly. For
eachs we calculate the weighted� s density ofWl (s):

� s(� ) =
1

Ns

�

r � W l (s)

1
h

· ||� gr || · k
�

� Š � r

h

�

whereNs =
�

r � W l (s) ||� gr || andh is the kernel band-
width parameter, we used uniform kernels for quick calcu-
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Figure 2. Kernel density estimation of the local gradient orienta-
tions over rectangles around two selected pixels: a building center
s and an empty siter .

lation. If Wl (s) covers a building, the� s(� ) function has
two peaks located in90� distance in the� -domain (Fig. 2).
This property can be measured by correlating� s(� ) with an
appropriately matched bi-modal density function:

� (s, m) =
�

� s(� )� 2 (�, m, d � ) d�

where� 2(.) is a mixture of two Gaussians with mean val-
uesm andm + 90� respectively, and a same deviationd�

for both components (d� is parameter of the process). Off-
set (ms) and value (� s) of the maximal correlation can be
obtained as:

ms = argmaxm � [Š 90� ,0]

�
� (s, m)

�
� s = � (s, ms)

Pixels with high� s are more likely centers of build-
ings, which can be coded in an� -birth map P�

b (s) =
� s/

�
r � S � r . The nomination comes from the fact that the

frequency of proposing an object ins will be proportional
to the local birth factorPb(s).

On the other hand, offsetms offers an estimate for the
dominant gradient direction inWl (s). Thus for objectu
proposed with centers, we model its orientation as� (u) =
ms + � s, where� s is a zero-mean Gaussian random variable
with a small deviation parameter� � .

We have observed in various experiments that the� s-
gradient feature is usually able to roughly estimate the built-
up regions. However, in several cases the detection can be
reÞned considering other descriptors such as roof colors or
shadows [9]. Some of the roof colors can be Þltered us-
ing illumination invariant color representations, as the hue
channel in HSV color space.Assume that we can extract in
this way aµc(s) � { 0, 1} indicator mask, whereµc(s) = 1
means that pixels has roof color. We calculate the color
feature fors as� s =

�
r � W l (s) µc(r ) and the color birth-

map asPc
b (s) = � s/

�
r � S � r . Note that obviously this

information cannot be used for grayscale inputs, and even
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Figure 3. Comparing the� (.) functions in the two image layers re-
garding two selected pixels.s corresponds to an unchanged point
andr to a built-up change.

in color images theµc(s) Þlter usually Þnds only a part of
the roofs which have typical Ôred colorsÕ ([9] and Fig 5(b)).

Another evidence for the presence of buildings can be
obtained by the detection of their cast shadows [5, 9]. Ex-
ploiting that the darkness and direction of shadows are
global image features, one can often extract a (noisy) binary
shadow maskµsh(s), for example by Þltering pixels from
thedark-bluecolor domain [9]. Thereafter building candi-
date regions can be identiÞed asimage areas lying next to
the shadow blobs in the opposite shadow direction (Fig. 6).
We used a constant birth ratePsh

b (s) = psh
0 within the ob-

tained candidate regions and a signiÞcantly smaller constant
	 sh

0 outside.
Since the main goal of thecombined birth mapis to

keep focus on all building candidate areas, we derived it
with the maximum operator from the feature birth maps:
Pb(s) = max

�
P �

b (s), Pc
b (s), Psh

b (s)
�

� s � S. For input
without shadow or color information we can ignore the cor-
responding feature in a straightforward way. Note that we
generate birth and orientation maps for both images which
will be denoted byP(i )

b (s), m(i )
s , i � { 1, 2} .

3.2. Low level similarity feature

The gradient orientation statistics also offer a tool for
low level region comparison. Matching the� 1

s (.) and� 2
s (.)

functions can be considered as low level similarity checking
of the areas arounds in the two images, based on Òbuilding-
focusedÓ textural features (Fig3). Moreover, these descrip-
tors are independent of illumination and coloring effects,
and robust regarding parallax and registration errors. For
measuring the local textural dissimilarities, we used the
Bhattacharyya distance of the distributions:

b(s) = Š log
� 	

� 1
s (� ) · � 2

s (� )d�

The binary similarity map is obtained asB (s) = 1 iff
b(s) < b0, B (s) = 0 otherwise.

(a) Object candidate (b) Gradient map (c) Masked gradient map

Figure 4. Demonstration of the gradient feature

(a) Red roof (b) Color mask

Figure 5. Demonstration of the color roof feature

3.3. Object-level features

In this section we introduce different object level image
features. Based on them we deÞne energy terms denoted by

 ( i ) (u) which evaluate the building hypothesis foru in the
i th image (hereafter we ignore thei superscript).
 (u) is
interpreted as the negative building Þtness value and a rect-
angle with
 (u) < 0 is called anattractiveobject. Since
adding attractive objects may decrease the energy of the
population [4], they are efÞcient building candidates.

We begin with gradient analysis. Below the edges of a
relevant rectangle candidateRu we expect that the magni-
tudes of the local gradient vectors are high and the orienta-
tions are close to the normal vector of the closest rectangle
side (Fig. 4).� u feature is calculated as:

� u =
1
qu

·
�

s� ��R u

||� gs|| ·



 cos

�
� s Š � s

u

� 




where ��R u is the dilated edge map of rectangleRu , � s
u �

{ � (u), � (u) + 90 � } is the edge orientation ofRu around
s � ��R u , andqu is the number of the pixels in��R u . The
data-energy term is calculated as:
 � (u) = Q(� u , d� , D � )
where the following non-linearQ function is used [4]:

Q(x, d0, D ) =


 �
1 Š x

d0

�
if x < d 0

exp
�
Š x Š d0

D

�
Š 1 if x � d0

The calculation of theroof color feature is demonstrated
in Fig. 5. Here we deÞne theTu object-neighborhood and
calculate theCR (u) = 1

# R u
·

�
s� R u

µc(s) internal and
Co(u) = 1

# Tu
·
�

s� Tu

�
1 Š µc(s)

�
external Þlling factors

(# denotes the area in pixels). Finally the energy term is set
as
 C(u) = max

�
Q(CR (u), dC

R , D C
R ), Q(Co(u), dC

o , D C
o )

�

Theshadow termis derived in analogous manner, but we
locate the checked neighborhood areaT sh

u in the shadow



Figure 6. Demonstration of the shadow feature
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Figure 7. Demonstration of the roof homogeneity feature

Figure 8. FloodÞll based feature for roof completeness

direction (Fig. 6). Thereafter we derive the internal resp.
external values� R (u) = 1

# R u

�
s� R u

�
1 Š µsh(s)

�
and

� o(u) = 1
# T sh

u

�
s� T sh

u
µsh(s), while the energy term


 � (u) is calculated in the same way as
 C(u). Note that
the
 � (u) term proved to be robust even if the shadow blobs
had various sizes due to the diversity of building heights.

In grayscale satellite imagesroof homogeneityoffers of-
ten another useful feature. Fig. 7 shows an example of
how to describe two-side homogenous roofs. After extract-
ing the symmetry axis of the object candidateu, we can
characterize the ÒpeakednessÓ of the dark and bright side
histograms by calculating their kurtosis
 d(u) and 
 b(u)
respectively. However, as shown in Fig. 8 the homogene-
ity feature may have false maxima for incomplete roofs,
therefore roof completeness should be measured at the same
time. Thus we derive theFu ßoodÞll mask ofu, which con-
tains the pixels reached by ßoodÞll propagations from the
internal points ofRu . If the homogenous roof is complete,
Fu must have low intersection with theNHu resp. NVu

ÔhorizontalÕ and ÔverticalÕ neighborhood regions ofRu (Fig.
8). Finally, the
 � (u) energy term can be constructed from
the kurtosis and completeness descriptors in a similar man-
ner to the previous attributes.

The proposed framework enables ßexiblefeature inte-
grationdepending on the image properties. For each build-
ing prototype we can prescribe the fulÞllment of one or
many feature constraints whose
 -subterms are connected
with themax operator in the prototypeÕs joint energy term
(logical AND in the negative Þtness domain). In a given

image pair several building prototypes can be detected si-
multaneously if we connect the terms of the different proto-
types with themin (logical OR) operator. For example, in
the Budapest pair (Fig. 11) we use two prototypes: the Þrst
prescribes the edge and shadow constraints, the second one
the roof color alone, thus the joint energy is calculated as:


 (u) = min
�

max{ 
 � (u), 
 � (u)} , 
 c(u)
�

.

4. Marked Point Process model

Let beH the space ofu objects. Using a bounded Borel
setH � H , the� conÞguration space is deÞned as [4]:

� =
��

n =0

� n , � n =
�

{ u1, . . . , un } � H n �

Denote by� an arbitrary object conÞguration{ u1, . . . , un }
in � . We deÞne a� neighborhood relation inH : u � v if
their rectanglesRu andRv intersect.

We introduce a non-stationary data-dependent Gibbs dis-
tribution on the conÞguration space as:PD (� ) = 1 /Z ·
exp [Š� D (� )], whereZ is a normalizing constant, and

� D (� ) =
�

u� �

AD (u) + � ·
�

u,v � �
u � v

I (u, v) (1)

Here AD (u) and I (u, v) are the data dependent unary
and the prior interaction potentials, respectively and� is
a weighting factor between the two energy terms. Thus
the maximum likelihood conÞguration estimate according
to PD (� ) can be obtained as� ML = arg min � � �

�
� D (� )

�
.

Unary potentials characterize a given building segment
candidateu = { cx , cy , eL , el , �, � } as a function of the lo-
cal image data in both images, but independently of other
object of the population:

AD (u) = I [	 (u) �{ 1,�} ] · 
 (1) (u) + I [	 (u) �{ 2,�} ] · 
 (2) (u)+

+
� 	

# Ru




I [	 (u)= � ]

�

s� R u

�
1 Š B (s)

�
+ I [	 (u) �{ 1,2} ]

�

s� R u

B (s)

�

whereI [E ] � { 0, 1} is the indicator function of eventE , and
as deÞned earlier
 (1) (u) and
 (2) (u) are the building ener-
gies in the1st resp.2nd image (Sec. 3.3), whileB (.) is the
low level similarity mask between the two time layers (Sec.
3.2). The last term penalizes unchanged objects (� (u) = � )
in the regions of textural differences, and new/demolished
buildings (� (u) � { 1, 2} ) in changelessareas.

On the other handinteraction potentials enforce prior
geometrical constraints: theypenalize intersection between
different object rectangles sharing the time layer (Fig. 4):

I (u, v) = I [	 (u) � 	 (v)] ·
#( Ru 	 Rv )
#( Ru 
 Rv )

where � (u) � � (v) relation holds iff � (u) = � (v), or
� (u) = � , or � (v) = � .



Figure 9. Intersection feature

5. Optimization

We estimate the optimal object conÞguration by the Mul-
tiple Birth and Death Algorithm [4] as follows:

Initialization: calculate theP(i )
b (s) andm(i )

s (i � { 1, 2} )
birth maps, and start with an empty population� = � .

Main program:initialize the inverse temperature param-
eter� = � 0 and the discretization step� = � 0, and alternate
birth and death steps.

1. Birth step: for each pixels � S, if there is no object
with centers in the current conÞguration� , pick up
� � { 1, 2, �} randomly, let be�Pb = P(	 )

b (s) if � �

{ 1, 2} , �Pb = max { P(1)
b (s), P (2)

b (s)} if � = � ; and
choose birth ins with probability� �Pb.

If birth is chosen ins: generate a new objectu with
centers, image index� , set theeL (u), el (u) param-
eter randomly between prescribed maximal and min-
imal side lengths, and orientation� (u) following the
� (., m(	 )

s , � � ) Gaussian distribution as shown in Sec.
3.1. Finally, addu to the current conÞguration� .

2. Death step: Consider the conÞguration of objects� =
{ u1, . . . , un } and sort it from the highest to the lowest
value ofAD (u). For each objectu taken in this order,
compute�� � (u) = � D (�/ { u} ) Š � D (� ), derive the
death rateas follows:

d� (u) =
�a � (u)

1 + �a � (u)
, with a� (u) = eŠ 
 ·�� � (u )

and removeu from � with probabilityd� (u).

Convergence test: if the process has not converged yet,
increase the inverse temperature� and decrease the dis-
cretization step� with a geometric scheme, and go back to
the birth step. The convergence is obtained when all the ob-
jects added during the birth step, and only these ones, have
been killed during the death step.

6. Experiments

We evaluated our method on four signiÞcantly different
data sets1, whose main properties are summarized in Table
1. Qualitative resultsare shown in Fig. 10Ð12.

1The authors would like to thank the test data providers: Andr«as G¬or¬og,
Budapest; French Defense Agency (DGA); Liama Laboratory of CAS,
China; and MTA-SZTAKI, Hungary.

Table 1. Main properties of the test data sets.
Data Set Type Color Shadow Gradient Kurtosis

Budapest Optical Yes Yes Good Partial
BEIJING QBird No Yes Weak Partial
SZADA Optical Yes No Weak No
ABIDJAN Ikonos No No Sharp Yes

Figure 10. Results on two samples from the SZADA images
(source: MTA-SZTAKIc� ). Blue rectangles denote the detected
unchanged objects, red rectangles the changed (new, demolished
or modiÞed) ones.

To justify the fact that we addressed both object extrac-
tion and change detection in the same probabilistic frame-
work, we compared the proposed method (hereafter joint
detection - JD) to the conventional approach where the
buildings are separately extracted in the two image layers,
and the change information is posteriorly estimated through
comparing the location and geometry of the detected objects
(separate detection - SD). As Fig. 12 shows, the SD method
causes false change alarms as low contrasted objects may
be erroneously missed from one of the image layers, and
due to noise, false objects can appear frequently in case of
the less robust one-view information.

Relevance of the applied multiple feature based build-
ing appearance models is compared to the Edge VeriÞcation
(EV) method. In EV similarly to [9], shadow and roof color
information is only used to coarsely detect the built-in ar-
eas, while the object veriÞcation is purely based on match-
ing the edges of the building candidates to the Canny edge
map extracted over the estimated built-in regions.

In the quantitative evaluation we measured the number of
missing and falsely detectedobjects (MO and FO), missing
and false change alarms (MC, FC), and the pixel-level ac-
curacy of the detection (DA). For the DA-rate we compared
the resulting building footprint masks to the ground truth
mask, and calculated the F-rate of the detection (harmonic
mean of precision and recall). Results in Table 2 conÞrm
the generality of the proposed model and the superiority of
the joint detection (JD) framework over the SD and EV ap-
proaches (lower object-levelerrors, and higher DA rates).
Further details of evaluation can be found in [1].



Figure 11. Results of the proposed model (JD) on two image pairs. Top: BUDAPESTdata (only an image part is shown - source: Andr«as
G¬or¬og c� ). Bottom: BEIJING (Liama Laboratory CASc� China). Unchanged (blue) and changed (red) objects are distinguished.

Table 2. Quantitative evaluation results. #CH and #UCH denote the total number of changed resp. unchanged buildings in the set. JD
refers to the proposed model; reference methods EV & SD and evaluation rates MO, FO, MC, FC & DA are deÞned in Sec. 6.

MO FO MC FC DA
Data Set #CH #UCH EV SD JD EV SD JD EV SD JD EV SD JD EV SD JD

BUDAPEST 20 21 3 3 1 8 8 2 3 1 1 5 11 1 0.73 0.70 0.78
BEIJING 13 4 0 1 0 5 2 1 0 0 0 2 3 0 0.48 0.77 0.85
SZADA 31 6 4 3 1 1 0 1 3 3 2 2 3 0 0.78 0.74 0.83
ABIDJAN 0 21 1 2 0 0 2 0 0 0 0 0 4 0 0.84 0.78 0.91

Figure 12. Results on ABIDJAN images (DGAc� France). Top:
separate detection (SD) method, where all the indicated changes
are false alarms. Bottom: proposed joint model (JD).
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