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Abstract tigations. In contrary, our method combines object extrac-
tion with local low level similarity information between the
In this paper we introduce a new probabilistic method corresponding image parts in a unibed probabilistic model.
which integrates building extraction with change detection It will be shown that we can benept from evidences such as
in remotely sensed image pairs. A global optimization pro- building changes can be found in tbleangedareas, while
cess attempts to Pnd the optimal conbguration of buildings,multiple object views from the different time layers may in-
considering the observed data, prior knowledge, and inter- crease the detection accuracy of tmehangeduildings.
actions between the neighboring building parts. The ac-  Another important issue is related to object modeling.
curacy is ensured by a Bayesian object model veripcation, The bottom-uptechniques [5] construct the buildings from
meanwhile the computational cost is signibcantly decreasedprimitives, like roof blobs, edge parts or corners. Although
by a non-uniform stochastic object birth process, which pro- these methods can be fast, they may fail if the primitives
poses relevant objects with higher probability based on low- cannot be reliably detected. On the other haimgerse

level image features. methodg4] assign a btness value to each possible object
conbguration and an optimization process attempts to Pnd
1. Introduction the conbguration with the highest conbdence. In this way,

Bexible object appearance models can be adopted, and it is
Following the evolution of built-up regions is a key is- also straightforward to incorporate prior shape information
sue of high resolution aerial and satellite image analysis.and object interactions. However, large computational cost
Numerous previous approaches address building extractioris needed for the search in the high dimension population
[5, 7, 9] at a single time instance. This process can be highlyspace meanwhile local maxinud the bPtness function can
facilitated by using Digital Elevation/Surface Model inputs mislead the optimization.
(DEM/DSM) [3, 7] extracted from stereo image pairs as  In the proposed model we attempt to merge the advan-
the buildings can be separated from the ground by the estages of both low level and object level approaches. The
timated height data. However in lack of multiview infor-  applied Multiple Birth and Death technique [4] evolves the
mation, the building identibcation becomes a challenging population of buildings by alternating object proposition
monocular object recognition task [8]. (birth) and removal deatl steps in a simulated anneal-
Recent approaches on building change detection [3] as-ing framework. The exploration in the population space
sume usually that for the earlier time layer a topographic is driven by simple region descriptors, however the object
building database is alreadyailable, thus the process can veribcation follows the robustversemodeling approach.
be decomposed into old model veribcation and new build-
ing exploration phases. On the other hand, many imagez_ Problem formulation
repositories do not contain metatd, therefore the task re-
quires automatic buildigmdetection in each image. The input of the proposed method consists of two co-
Several low level change detection methods have beerregistered aerial or satellite images which were taken from
proposed for remote sensing [2], which search for statisti- the same area with several months or years time differences.
cally unusual differences between the images without usingWe expect the presence of registration or parallax errors, but
explicit object models. Although they are usually consid- we assume that they only cause distortions of a few pixels.
ered as preprocessing Plters, there have been less attempte consider each building to be constructed from one or
given to justify how they can support the object level inves- many rectangular building segments, which we aim to ex-



Figure 1. Demonstration of the rectangle parameters

tract by the following model. o ) % . i —ggdnaen
Denote byS the common pixel lattice of the input im- ; 1 i})...8modal uGM

ages and bys S a single pixel. Letu be a rectangu-
lar building segment candidate. For purposes of dealing

with multiple time layers we assign to an image index °
Bag (u) { 1,2, } ,where QO indicates unchanged object, Figure 2. Kernel density estimation of the local gradient orienta-
while @0 and20 correspond to building segments which tions over rectangles around two selected pixels: a building center
appearnly in the pbrstor second image respectively. Let Sandanempty site.

be Ry S the set of pixels corresponding to Ry is

90 90 60 30 ] 30 60 90

60 30 30 60
(degree) (degree)

described by the Pve rectangle parameteysandc, cen- lation. If W, (s) covers a building, thes( ) function has
ter coordinatesg, , & side lengths and  [S90 ,+90 ] two peaks located i80 distance in the -domain (Fig. 2).
orientation (see Fig. 1). This property can be measured by correlatig§ ) with an

_ appropriately matched bi-modal density function:
3. Feature selection

In the proposed model, low level and object level fea- (s,m) = s()2(,md )d
tures are distinguished. Low level descriptors are extracted
around each pixel such as typical color or texture, and lo- Where 2(.) is a mixture of two Gaussians with mean val-
cal similarity between the time layers. They are used by Uesm andm + 90 respectively, and a same deviatidn
the exploration process to estimate where the buildgags ~ for both componentsi( is parameter of the process). Off-
be located, and how thesanlook like: thebirth step gen- €t (ns) and value () of the maximal correlation can be
erates objects in the estimated built-up regions with higher obtained as:
probability. On the other hand, object level features char-
acterize a given object candidateexploited for the btness
calculation of the proposed oriented rectangles. Buildin . . . . .
veribcation is prim%ril?/ based on the objectglevel featureg. P|xels_W|th high  are more ""?'V centers of bu_"d'
thus their accuracy is crucial. Since apart from the similar- ings, which can be C(.)de(.j in an-birth map P, (s) =
ity measure, the upcoming descriptors are calculated for the s/ s . Thenomination comes from the fact that the

two input images separately, we often do not indicate thefrequency of'proposmg an object swill be proportional
) . I . to the local birth factoPy(s).
image index in this section.

On the other hand, offsens offers an estimate for the

3.1. Low level features of building identibcation dominant gradient direction ikii(s). Thus for objectu
proposed with centes, we model its orientation agu) =

The brst feature exploits the fact that regions of buildings m_+  where , is a zero-mean Gaussian random variable
should contain edges iperpendiculardirections, which  jith 3 small deviation parameter.
can be robustly characterized lycal gradient orientation We have observed in various experiments that the
histograms [6]. Let be gs the intensity gradient vector at  gradient feature is usually able to roughly estimate the built-
s with magnitude|| g|| and angle s. Let beW(s) the up regions. However, in several cases the detection can be
rectangulat x | sized window around, wherel is chosen  repned considering other descriptors such as roof colors or
so thatW(s) can cover an average building narrowly. For shadows [9]. Some of the roof colors can be bltered us-

Ms = argmaxp, (seo 0 (S:M) s= (s,my)

eachs we calculate the weighted; density ofW (s): ing illumination invariant color representations, as the hue
channel in HSV color spacé&ssume that we can extract in
1 1 S . this way apc(s) { 0,1} indicator mask, wherg¢(s) =1
()= Ns h' Il ol -k h means that pixe$ has roof color. We calculate the color
rwWis) feature forsas s = | (s He(r) and the color birth-
whereNs = | Wi (s) [l ol andh is the kernel band- map asPS(s) = s/ , g r. Note that obviously this

width parameter, we used doim kernels for quick calcu-  information cannot be used for grayscale inputs, and even



(a) Object candidate  (b) Gradient map (c) Masked gradient map

Figure 4. Demonstration of the gradient feature
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Figure 3. Comparing the(.) functions in the two image layers re-
garding two selected pixels.corresponds to an unchanged point ;
andr to a built-up change. (a) Red roof (b) Color mask

Figure 5. Demonstration of the color roof feature

in color images thei.(s) Plter usually bnds only a part of
the roofs which have typical Ored colorsO ([9] and Fig 5(b)), .

Another evidence for the presence of buildings can be3'3' Object-level features
obtained by the detection of their cast shadows [5, 9]. Ex-  |n this section we introduce different object level image
ploiting that the darkness and direction of shadows arefeatures. Based on them we debne energy terms denoted by
globalimage features, one can often extract a (noisy) binary () (u) which evaluate the building hypothesis ioin the
shadow maslusn(s), for example by bltering pixels from i image (hereafter we ignore thesuperscript). (u) is
the dark-bluecolor domain [9]. Thereafter building candi- interpreted as the negative building btness value and a rect-
date regions can be identiPediagge areas lying nextto  angle with (u) < 0is called anattractive object. Since
the shadow blobs in the opposite shadow direction (Fig. 6). adding attractive objects may decrease the energy of the

We used a constant birth rag"(s) = pg" within the ob-  population [4], they are efbcient building candidates.
tained candidate regions and a signibcantly smaller constant e begin with gradient analysis. Below the edges of a
S outside. relevant rectangle candida®, we expect that the magni-

Since the main goal of theombined birth maps to  tudes of the local gradient vectors are high and the orienta-

keep focus on all building calidate areas, we derived it  tions are close to the normal vector of the closest rectangle
with the maximum operator from the feature birth maps: side (Fig. 4). , feature is calculated as:

Pu(s) = max P, (s),PS(s),PS"(s) s S. Forinput

without shadow or color information we can ignore the cor- -
responding feature in a straightforward way. Note that we
generate birth and orientation maps for both images which

will be denoted byP{" (s), m{, i { 1,2}. where R , is the dilated edge map of rectangtg, S
{ (u), (u) +90 } is the edge orientation d®, around
s Ry, andq, is the number of the pixels iR . The
The gradient orientation statistics also offer a tool for data-energy term is calculated as:(u) = Q( y,d ,D )
low level region comparison. Matching thé(.) and 2(.) where the following non-linea® function is used [4]:
functions can be considered aw/ltevel similarity checking
of the areas arourslin the two images, based on Obuilding-
focusedO textural features (B)y Moreover, these descrip-
tors are independent of illumination and coloring effects,
and robust regarding parallax and registration errors. For The calculation of theoof color feature is demonstrated
measuring the local textural dissimilarities, we used the in Fig. 5. Here we dePne thg, object-neighborhood and

Il oll- cos sS 3§
s Ry

3.2. Low level similarity feature

1éé(—0 ifX<do

Q(x,dp,D) = S0 & .
(.o, D) exp $25% §1 if x dy

Bhattacharyya distance of the distributions: calculate theGs (u) = ﬁ s R, Hc(s) internal and
5 G(U) = 5+ ¢ 1, 1S uc(s) external bliing factors
b(s) = Slog ) 2()d (# denotes the area in pixels). Finally the energy term is set
as c(u)=max Q(Gr(u),d§,Dg),Q(C(u),dS,D§)
The binary similarity map is obtained d&(s) = 1 iff Theshadow ternis derived in analogous manner, but we

b(s) < bg, B(s) = 0 otherwise. locate the checked neighborhood aig#l in the shadow



image pair several building ptatypes can be detected si-
multaneously if we connect the terms of the different proto-
types with themin (logical OR) operator. For example, in

the Budapest pair (Fig. 11) we use two prototypes: the brst
prescribes the edge and shadow constraints, the second one
the roof color alone, thus the joint energy is calculated as:

! o\
Figure 6. Demonstration of the shadow feature

(W=min max{ (u), (U}, <) .
4. Marked Point Process model

Let beH the space ofi objects. Using a bounded Borel
’ setH H ,the conbguration space is debPned as [4]:

= object candidate estimated symmetry -- ggrl;[sid_z hihs_totgram = ns n-— { U]_, y Un} H n
== bright side histogram e

n=0
Denote by an arbitrary object conbgurati¢niq, ..., un}

[ in . We debne a neighborhood relation ifl: u v if
/ their rectangle®, andR, intersect.
A A A We introduce a non-stationary data-dependent Gibbs dis-

tribution on the conbguration space &y ( ) = 1/Z -
exp[S b( )], whereZ is a normalizing constant, and

Figure 7. Demonstration of the roof homogeneity feature

Figure 8. FloodPll based feature for roof completeness o( )= Ap(u)+ - I (u,V) (1)

u u,v
direction (Fig. 6). Thereafter we derive the internal resp. v

1

external values g (U) = - 18 pen(s) and Here Ap (u) and | (u,v) are the data dependent unary

and the prior interaction pentials, respectively and is

o(U) _: #Tlush s T Msn(s), while the energy term a weighting factor between the two energy terms. Thus
(u) is calculated in the same way ag(u). Note that  the maximum likelihood conbgation estimate according
the (u) term proved to be robust even if the shadow blobs 4 Po () can be obtained asy. = arg min o( ).
had various sizes due to the diversity of building heights. Unary potentials characterize a given building segment
In grayscale satellite imagesof homogeneitpffers of- candidates = {c,,c,, e ,@, , } as a function of the lo-

ten another useful feature. Fig. 7 shows an example ofca| image data in both images, but independently of other
how to describe two-side homogenous roofs. After extract- gpject of the population:

ing the symmetry axis of the object candidatewe can _ e, @
characterize the OpeakednessO of the dark and bright sideP (W = 1w 23] W+ w2y (u)+
histograms by calculating their kurtosig(u) and p(u)

respectively. However, as shown in Fig. 8 the homogene-+ 2~ I (u= 1 1S B(s) + I )¢ 1.2} B(s)
ity feature may have false maxima for incomplete roofs, ! s Ry s Ry
therefore roof completeness should be measured at the sameherelg; { 0, 1} is the indicator function of eveiit, and
time. Thus we derive thE, RoodPll mask ofi, which con- as debned earlier? (u) and @ (u) are the building ener-

tains the pixels reached by RoodPlIl propagations from thegies in thel® resp.2" image (Sec. 3.3), whilB(.) is the
internal points oRy. If the homogenous roof is complete, low level similarity mask between the two time layers (Sec.
Fu must have low intersection with theH, resp. NV, 3.2). The last term penalizes unchanged objedis)(= )
OhorizontalO and OverticalO neighborhood redion@-d. in the regions of textural differences, and new/demolished
8). Finally, the  (u) energy term can be constructed from buildings ( (u) { 1,2}) in changelessreas.
the kurtosis and completeness descriptors in a similar man-  On the other handhteraction potentials enforce prior
ner to the previous attributes. geometrical constraints: th@enalize intersection between
The proposed framework enables RBexifdature inte-  different object rectangles ating the time layer (Fig. 4):
grationdepending on the image properties. For each build-

ing prototype we can prescribe the fulbliment of one or Fu,v)= 1wy vy - M
many feature constraints whosesubter[ns are connected (Ru v)
with the max operator in the prototypeOs joint energy term where (u) (v) relation holds iff (u) = (v), or

(logical AND in the negative btness domain). In a given (u)= ,or (v)=



Table 1. Main properties of the test data sets.
| Data Set| Type | Color| Shadow Gradient Kurtosis

Budapest Optical | Yes | Yes Good Partial

) R BEIING | QBird | No | Yes Weak | Partial
0 ,’ /’/ 1 SZADA Optical | Yes | No Weak No
! ! ABIDJAN| lkonos | No | No Sharp | Yes

Figure 9. Intersection feature

5. Optimization

We estimate the optimal object conbguration by the Mul-
tiple Birth and Death Algorithm [4] as follows:

Initialization: calculate thé®{" (s) andm{’ (i { 1,2})
birth maps, and start with an empty populatiorr

Main program:initialize the inverse temperature param-
eter = ¢ andthe discretization step= ¢, and alternate
birth and death steps.

1. Birth step for each pixels S, if there is no object Q\
with centers in the current conbguration, pick up

{ 1,2, } randomly, let beP, = Pé )(S) if Figure 10. Results on two samples from theASA images

(source: MTA-SZTAKI®). Blue rectangles denote the detected

2}, Py = bl) (), Péz) (s)pif = ;and unchanged objects, red rectangles the changed (new, demolished
{1,2}, P max {P(

choose birth irs with probability P, or modibed) ones.

If birth is chosen irs: generate a new object with o .

centers, image index , set thee, (u), e (u) param- To justify the fact that we addressed both object extrac-

eter randomly between prescribed maximal and min- tion and change detection in the same probabilistic frame-

imal side lengths, and orientatiorfu) following the work, we compared the proposed method (hereafter joint
) detection - JD) to the conventional approach where the

S Tl s o distiton 2 shoe " 52 iings are sepataely eatted i he two mage lyers,
and the change information is posteriorly estimated through
2. Death stepConsider the conbguration of objects comparing the location and gmetry of the detected objects
{u1,...,un} and sort it from the highest to the lowest (separate detection - SD). As Fig. 12 shows, the SD method
value ofAp (u). For each objeat taken in this order,  causes false change alarms as low contrasted objects may
compute (W= o(/ {u)S p(),derivethe be erroneously missed from one of the image layers, and

death rateas follows: due to noise, false objects can appear frequently in case of
a (u) . the less robust one-view information.
d (u=-——"7, with a(u=e - i -
= , = Relevance of the applied multiple feature based build-
1+ a (u) . ) . X
ing appearance models is coarpd to the Edge Veribcation
and removes from  with probabilityd (u). (EV) method. In EV similarly to [9], shadow and roof color

information is only used to coarsely detect the built-in ar-
eas, while the object veribcation is purely based on match-
ing the edges of the building candidates to the Canny edge

Convergence tesif the process has not converged yet,
increase the inverse temperatureand decrease the dis-
cretization step with a geometric scheme, and go back to . L :
the birth step. The convergence is obtained when all the ob-MaP extracted over the estimated built-in regions,

: - : In the quantitative evaluation we measured the number of
ects added during the birth step, and only these ones, have . . . o
Jbeen Killed duliir:ggthe delath ster)) y v missing and falsely detectedbjects (MO and FO), missing

and false change alarms (MC, FC), and the pixel-level ac-
curacy of the detection (DA). For the DA-rate we compared
the resulting building footpnt masks to the ground truth
We evaluated our method on four signibcantly different mask, and calculated the F-rate of the detection (harmonic
data sets whose main properties are summarized in Table mean of precision and recall). Results in Table 2 conbrm
1. Qualitative resultare shown in Fig. 10D12. the generality of the proposed model and the superiority of
1The authors would like to thank the test data providers: Asdxeg, the joint detection (JD) framework over the SD and EV ap-

Budapest; French Defense Agency (DGA); Liama Laboratory of CAS, Proaches (Io_wer object-lgvekrors, and higher DA rates).
China; and MTA-SZTAKI, Hungary. Further details of evaluation can be found in [1].

6. Experiments
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Figure 11. Results of the proposed model (

JD) on two image pairs. TopaBesTdata (only an image part is shown - source: Aasdr«

Geteg © ). Bottom: BEIJING (Liama Laboratory CAS China). Unchanged (blue) and changed (red) objects are distinguished.

Table 2. Quantitative evaluation results. #CH and #UCH denote the total number of changed resp. unchanged buildings in the set. JD

refers to the proposed model; reference methods EV & SD and evaluation rates MO, FO, MC, FC & DA are debned in Sec. 6.

MO FO MC FC DA
Data Set | #CH | #UCH EV| SD| JD EV| SD| JD EV| SD| JD EV| SD| JD|| EV | SD | JD
BUDAPEST| 20 21 3 (3|18 |82 |3 |1 (1|5 ]|11|1 ||0.73 0.70f 0.78
BEIJING 13 4 O|1 |0 |52 |1)0]|0]|0¢Y2 |3 |0/ 048 0.77] 0.85
SZADA 31 6 4 |3 |1 |20 |1 |3 3|22 |3 |0 0.78 0.74/ 0.83
ABIDJAN | O 21 1 (12|00 }|2 |0 (0|0 |0 |0 |4 |0 | 084 0.78 091

Figure 12. Results on &DJAN images (DGA® France). Top:

(2]

(3]

[4]

5]

[6]

[7]

separate detection (SD) method, where all the indicated changes

are false alarms. Bottom: proposed joint model (JD).
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