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Abstract: Code optimization is an important area of research that has remarkable con-
tributions in addressing the challenges of information technology. It has introduced a new
trend in hardware as well as in software. Efforts that have been made in this context led to
introduce a new foundation, both for compilers and processors.
In this report we study different techniques used for sequential decomposition of mappings
without using extra variables. We focus on finding and improving these techniques of compu-
tations. Especially, we are interested in developing methods and efficient heuristic algorithms
to find the decompositions and implementing these methods in particular cases. We want to
implement these methods in a compiler with an aim of optimizing code in machine language.
It is always possible to calculate an operation related to K registers by a sequence of assign-
ments using only these K registers. We verified the results and introduced new methods. We
described In Situ computation of linear mapping by a sequence of linear assignments over
the set of integers Z and investigated bound for the algorithm. We introduced a method for
the case of boolean bijective mappings via algebraic operations over polynomials in GF (2).
We implemented these methods using Maple.
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Décomposition séquential des opérations pour
l’optimisation des compilateurs

Résumé : L’optimisation de code est un domaine de recherche en plein essor et dont
les contributions pour faire face aux défis inhérents aux technologies de l’information sont
considérables. Elle a introduit une nouvelle tendance dans le matériel ainsi que dans le
logiciel. Les efforts qui ont été réalisés dans ce contexte ont conduit à introduire de nouveaux
fondements, à la fois pour les compilateurs et les processeurs.
Dans ce rapport, nous étudions différentes techniques de décomposition séquentielle in situ
d’applications. Nous nous concentrons sur la recherche et l’amélioration de techniques de
calcul et sur le développement d’heuristiques efficaces pour trouver ces décompositions, et
mettons en œuvre ces méthodes de calcul dans un compilateur afin d’optimiser du code en
langage machine. Il est toujours possible de calculer une opération reliée à K registres par
une série d’affectations à l’aide de ces seuls K registres. Nous avons vérifié les résultats
et introduit de nouvelles méthodes. Nous avons décrit le calcul in situ de la cartographie
linéaire par une séquence d’affectations linéaires sur l’ensemble des entiers Z et étudié la
complexité de l’algorithme. Nous avons introduit une méthode pour le cas des applications
via des opérations booléennes bijectives algébriques sur les polynômes en GF (2). Nous avons
mis en œuvre ces méthodes en utilisant Maple.

Mots-clés : Algèbre linéaire, théorie des nombres, fonctions booléennes, polynômes,
calcul séquentiel, optimisation de la mémoire / compilateur / processeur, algorithmes in
situ, performance algorithmique, recherche multi-objectifs.
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Chapter 1
Background

This chapter consists of three main sections. In the first section, we describe the basic
concepts of compiler and processor and the necessary background which is required to un-
derstand the terminologies. The second section explains the motivations and objectives.
The last section describes a number of applications of compilers and processors.

1.1 Introduction

In this section, we describe some basic concepts about compilers, processors, registers op-
timization, code optimization, techniques for compiler optimization, examples of compilers,
types of optimizations and classification of microprocessors.

1.1.1 Compilers

A computer programmer typically writes softwares using high-level programming languages
e.g. C++, Java etc. People can understand these languages but not directly the proces-
sors. Assembly language is the language that the processor can understand (the machine
language). Two different pieces of code in assembly language could be equivalent in what
they do, but perform this work using a different sequence of steps.
For example, when adding three numbers 1, 2 and 3 together, there are different ways, the
computer could execute this. One way would be to add 1 and 2 together and then add
3 to that result (1 + 2) + 3. Another way to add the three numbers would be to add 2
and 3 together, and then add 1 to that result (2 + 3) + 1. A compiler has many choices in
which specific implementation of assembly language it will choose in making the translation
from the high-level programming language [43]. A high level language must be converted to
a language that a processor can understand, this task is performed by the compiler. The
compilers were introduced in the early 1950′s.
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Programmer’s code
(High-level language),

Programmer can understand

Compiler using optimization

Optimized code(machine language)
Computer can understand

Figure 1.1: Complier interaction

A compiler (more generally, translator) is a software application that converts the code
written by the programmer into machine language [18]. For example,

❼ gcc : converts C/C++ programs to assembly/machine code

❼ f2c : converts Fortran programs to C programs

❼ latex2html: converts Latex documents to HTML documents

❼ Java : converts Java programs to JVM byte code

❼ ps2pdf: converts Post Script files to PDF files

1.1.2 Compiler Optimization

The main purpose of compiler optimization is to reduce the time taken by the program
to be executed. The process focuses also to minimize the usage of memory storage and
power consumption. Compiler optimization enables the program to be more efficient and
ultimately the whole process helps to increase the speed for compilation. Usually three types
of optimizations are considered:

❼ Global optimization seeks to reorder the sequencing of a program in order to eliminate
redundant computations (moving invariant operations outside loop bodies, colapsing
loops, etc.).

❼ Register optimization adjusts the allocation of machine registers to variables and in-
termediate quantities in such a way as to minimize the number of a register has to be
stored and later reloaded.

2
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❼ Local (time) optimization seeks to adapt the code to exploit particular features of the
machine architecture and to remove local mishandling such as loading a register with
a value that it already contains.

There exist some code optimization problems that are considered to be NP-complete, or
even undecidable [26, 20].

1.1.3 Compiler Optimization Techniques

There exist many compiler optimization techniques [48] but the work that has been done
for the classification of these techniques can be improved. These methods can be divided
into two main categories i.e. static and dynamic. These two approaches developed in
parallel with a small interaction and optimization like parallelization has been obtained.
Recently, the program parallelization of existing code came to forefront due to the fact that
the major industrials focus to multi-core based architecture [47].

Static analysis of references to scalable data structures e.g. arrays can be very help-
ful, for the purpose of thread level parallelization. It helps in proving sufficient conditions
to observe the independence about the behaviour of array indexes, solving linear integer
equations with constraints [30], special cases of array data flow (privatization) and outright
pattern matching.
Pointer analysis and shape analysis are also the important techniques but they are not very
successful techniques [47].
Compiler optimization techniques operate on three levels: machine dependent, architecture
dependent and independent. Instruction-level sensitivities of a compiler is described in the
machine dependent. Architecture dependent includes parts of a program that relate to the
general hardware implementation, but not to a specific machine. Architecture independent
focus on that aspects of program formulation that do not depend on a particular computer
system or even on a type of implementation (e.g. pipeline processing). Optimizations orig-
inating in the academic and scientific community tend to be global, while, until recently,
manufacturers have concentrated on local and machine-dependent techniques [53, 42].
Some Programming techniques take advantage of the optimizing compilers and the system
architecture, e.g. BLAS, a library of Basic Linear Algebra Subroutines. The subroutines
included in this library are able to provide significant enhancement in the performance of a
program that is numerically intensive.
ESSL, Engineering Scientific Subroutine Library. In fact, the ESSL library is an extension
of BLAS library and includes high-performance mathematical routines for chemistry, engi-
neering, and physics.
PESSL (a Parallel ESSL) is another library that exists for SMP machines. Compiler options
and the use of preprocessors like KAP and VAST, available from third-party vendors [13].
Several run-time techniques have been introduced by computer architects on the basis of
hardware. This enabled the processor that it can run any ready instruction from an instruc-
tion window [32, 35, 56]. Costly pipeline stalls has been prevented by bad execution and

3
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detection of branches. Now the instruction can be stored in their dynamic execution order
by using trace cache [21, 45]. Many run-time optimization has been introduced on the basis
of hardware by latest microprocessors.

1.1.4 Processors

The processor, also known as the microprocessor (designed for microcomputers and micro
controllers) or CPU (Central Processing Unit), is a complete computation engine that is
integrated in a single chip. In fact, it is an integrated circuit, containing the arithmetic,
logic, and control circuitry, and is used to interpret and execute instructions from a com-
puter program.
This integrated circuit, in combination with other integrated circuits that provide memory
to store and execute the program, form a chip.
Microprocessor registers used to hold temporary results, when the computation is being
performed. Since these registers and microprocessors are made by the same technology,
therefore there is no speed disparity between them. Moreover, these registers acts as pro-
cessor memory.
To improve the performance of microprocessor a small memory has been introduced between
microprocessor and main memory. This small memory is called cache memory, it is expen-
sive but fast and is first time introduced in IBM 360/85 computer. The first microprocessor

Figure 1.2: Microprocessor

4
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was the Intel 4004, introduced in 1971. It was able to perform only subtraction and addition
up to 4 bits at a time but everything was first time on a single chip.
The microprocessors can be classified on the basis of:

❼ the semiconductor technology of their design e.g. TTL, CMOS or ECL.

❼ the width of the data format (4, 8, 16, 32, 64-bit) they process

❼ their instruction set e.g. CISC or RISC

Due to the low power consumption, CMOS (complementary-metal-oxide semiconductor)
technology is preferred to used in portable computers and in other devises that used batteries
while TTL (transistor-transistor logic) is commonly used.

When high performance is needed, the ECL(emitter-coupled logic) is used. For example,
Older high-end mainframe computers, like the Enterprise System/9000 members of IBM’s
ESA/390 computer family, used ECL but current IBM mainframes use CMOS [6].
Four-bit devices are good for simple control applications and they are not so costly.
CISC, (complex-instruction-set computer) processors, which have 70 to several hundred in-
structions, are easier to program than RISC, (reduced-instruction-set computer) processors,
but are slower and more expensive [2, 28, 52, 55].

1.1.5 Processor optimization

How efficiently and effectively the processor executes instructions (provided in the form of
a program designed by using some high level language) is determined by its internal design,
also called its architecture. A processor can be considered as a combination of small blocks
that organize to make a system. To help optimize the design space, a model is required
that can predict the performance of a processor as a function of the delays of the underlying
blocks. With such a model, one can evaluate how a change in the delay of a given module will
affect the system’s performance and can use this information to optimize a design. Because
the design space is complicated, therefore, it may be difficult to know how changing the
delay of a module will affect the overall performance of a processor [2].
Processor architect continue their efforts to improve the performance of processor every year.
Some of the major techniques used by processor architects are the use of Wider data buses
and registers, Floating point Units, Pipe lining and super scale architecture.
As processor speed continues to increase faster than memory speed, optimization to use the
memory hierarchy efficiently become ever more important.
Blocking [24] or tiling [60] is a well-known technique that improves the data locality of
numerical algorithms [1, 29, 31, 38, 40]. The improvement obtained from tiling can be far
greater. Tiling can be used for different levels of memory hierarchy such as physical memory,
caches and registers; multi-level tiling can be used to achieve locality in multiple levels of
the memory hierarchy simultaneously [59]. The number of registers available on a processor
and the operations that can be performed using those registers has a significant impact on
the quality of code generated by optimizing compilers.

5
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1.2 Applications

In recent years, the incorporation of computers into a large number of devices e.g. laptop,
palmtop, telephone etc., has been increased significantly. In designing such devices the
important factors that must be considered are space, weight, power consumption. But this
will lead to the limited amount of memory availability.

A similar requirement is to use more and more sophisticated software in such devices,
such as encryption software in telephones, or speech or image processing software in laptops
and palm-tops.
It is not always possible to run an application on such devices that require memory more
than the available. This makes it desirable to try to reduce the size of applications where
possible [49].
A fast computer program (as a result of compiler optimization) is not only useful for
computer scientist and computer architecture, it affects the general public as well. Compiler
optimization helps to increase the efficiency and capabilities of not only the sophisticated
software but also increase the demand of newly introduced computer based devices.
Ultimately, compiler optimization directly affect the computer based technology used in
particular as well as in common life.
For example, an improvement in computer programs for the medical community can affect
all communities. An improved resolution of images obtained through scanning process has
a direct affect on doctors and patients. An optimization will lead the life of the public to
an ease.
A number of soft wares are being used only for the purpose of research to observe the
output of different results. A maple program can take more than a week to see the output
of a program, but if the same program yield the result within one hour or less, imagine,
how fast will be the conclusions based on these results.

Microprocessors are the result of the semiconductor industrys ability to place an ever-
greater number of transistors in a single integrated circuit. Optimized processors at the
heart of mobile products enable communications, computing, and multimedia functions
to be efficiently executed. Low power, high performance, and small form factor are key
attributes. Open standards enable OS flexibility.
Microprocessors also play supporting roles within larger computers as smart controllers for
graphics displays, storage devices, and high-speed printers.
However, the vast majority of microprocessors are used to control everything from consumer
appliances to smart weapons. The microprocessor has made possible the inexpensive hand-
held electronic calculator, the digital wristwatch, and the electronic game.
Microprocessors are used to control consumer electronic devices, such as the programmable
microwave oven and DVD player; to regulate gasoline consumption and anti lock brakes in
auto mobiles; to monitor alarm systems; and to operate automatic tracking and targeting
systems in aircraft, tanks, and missiles and to control radar arrays that track and identify
aircraft, among other defence applications. IntelrCoreTM i7 processor is the most ever
advanced desktop processor, introduced by Intel corporation recently in 2008. The Core

6



CHAPTER 1. BACKGROUND 1

Figure 1.3: Processor Application

i7 processor is the first member of a new family of Nehalem processor designs and is the
most sophisticated ever built, with new technologies that boost performance on demand and
maximize data throughput. The Core i7 processor speeds video editing, immersion games
and other popular Internet and computer activities by up to 40 percent without increasing
power consumption.

Figure 1.4: IntelrCoreTM i7 processor

7



1.3. MOTIVATIONS AND OBJECTIVES 1

1.3 Motivations and objectives

Since half a century, code optimization is considered to be an important area of research.
It has introduced a new trend in hardware as well as in softwares. Efforts that have been
made in this context led to introduce a new foundation, both for compilers and processors.
New ideas have been introduced e.g. inter procedural whole program analysis, coloring-
based register allocation, static single assignment form, array dependence analysis, pointer
alias analysis, loop transformations, adaptive profile-directed optimizations, and dynamic
compilation.
Multi core processors have been introduced almost in all new computers. This multi core
trend in the computer industry is forcing a new paradigm shift in compilers to face new
challenges [50, 51]. The code of the program that is to be compiled has high effect on
optimization. A large number of optimization has been introduced by modern compilers.
These compilers have different effect on quality and size of code, time taken and energy
consumption etc. [27].
In [7, 8, 9, 10, 11], it is shown that it is always possible to calculate an operation related
to K registers by a sequence of assignments using only these K registers. Moreover, if this
operation is linear or bijective, the number of assignments is at most 2k. In the general case,
this number of assignments is at most 4k.
For example, the bijection E on 3 bits defined by

E(A, B, C) = (1 + A + C + AB, A, B + AB + AC)

can be calculated by a sequence of 4 assignments as given below:

A := A + B + C

B := A + B + C

C := A + C + AB

A := 1 + A + C + BC

Such kinds of calculations generalize the traditional principle of the exchange of two bits
A, B by the sequence:

A := A + B

B := A − B

A := A − B

We are intended to study these methods and to improve these techniques of calculations,
and especially to develop methods and efficient heuristic algorithms to find these decompo-
sitions and implement these methods in compilers.

We are interested in improving the bounds of these calculations, to obtain new methods
of calculation for particular cases and implementing these methods in a compiler with an
aim of optimizing code in machine language.

8



CHAPTER 1. BACKGROUND 1

It is a fact that current computer architectures reach their theoretical limits of performance.
However, it is still possible to gain performance of calculations by performing calculations
in a new way.
This implementation can be provided in hardware through the design of new processors, in
the software, by optimizing compilers upstream (pre-level language compilers) and down-
stream (post-machine language compilers).
The current architectures use one or more processors equipped each one with a relatively
low number of registers.
However, these registers are constantly requested in the operations. It is often advisable to
minimize the use of registers.

9
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Chapter 2
IN SITU Computations

The conversion of input into output under well defined sequence of basic computational
steps leads to the theory of sequential computations. A sequential program implements a
mathematical function that maps a set of inputs to a set of outputs. These mathematical
functions are well defined. The notion of computable functions has been introduced earlier
by Church, Kleene and Turing. These functions are frequently used in untyped lambda
calculus, recursive functions, and Turing machines [17, 33, 57].
Although, these basic models help in designing and reasoning for programming languages,
domain theory and denotational semantics introduced by Scott and Strachey, and provide a
global mathematical setting for sequential computation, building on top of the foundational
theories [54]. This interconnects different programming languages and makes connection
with the mathematical world of algebra, topology, and logic. It inspires the programming
languages, type disciplines, and reasoning methods.

2.1 In-place (In-situ) Algorithm:

An in-place algorithm converts data structure using a minimal constant extra storage space.
When such algorithms run, the input is overwritten by the output. For example, heap sort
is an in-place sorting algorithm.
An operation is said in-place operation if it does not alter the normal state of the system
like a file backup can be stored over a running system without altering the speed of the
system, while an in-place operation depends on the sophistication of the system.
In order to improve cache performance, an algorithm or application should increase data
reuse, decrease cache conflicts, and decrease cache pollution. A large amount of cache pollu-
tion will increase the bandwidth requirement of the application, even though the application
is not using more data [41].
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In the next example, two linear assignments are being reused and modified repeatedly to
compute a linear mapping E.

Example 1. The mapping E : (x, y) −→ (377x + 610y, 610x + 987y)
can be computed by the following eight assignments:

x := −x − 2y

y := −3x − y

x := −x − 3y

y := −3x − y

x := −x − 3y

y := −3x − y

x := x + 3y

y := 2x − y

Observe that, the sequence of eight assignments is actually the repetition of two opera-
tions. The main advantage of such computation is the minimum usage of memory available.

2.2 In Situ Decomposition of linear mappings:

A linear mapping E : Sn −→ Sn can be decomposed into a sequence of mappings f : Sn −→
S. The mapping E can be written as E : X := AX, where A = [ai,j ] is a square matrix of
size n, with ai,j ∈ R and X is a vector with n variables. Each mapping f : Sn −→ S could
be considered as a linear assignment. These assignments can be computed by an in situ
program that require no extra variables other than input variables. This in situ program
can be simply written as follows:
for i = 1 to k do

xpi
:= ai1x1 + ai2x2 + · · · + ainxn

enddo
where x1, x2, · · · , xn are the input variables and the output variables. The length of program
is determined by the number β of assignments.

Example 2. .Consider a mapping E that can be written as E : X := AX, such that

X :=









x1

x2

x3

x4









and A :=









2 3 5 8
3 5 8 13
5 8 13 21
8 13 21 34









12



CHAPTER 2. IN SITU COMPUTATIONS 2

The given mapping E can be decomposed into the following sequence of 6 linear assignments:

x1 := x1 + x2 + 2x3 + 3x4

x2 := x1 + x2 + x3 + 2x4

x3 := 2x1 + 3x2

x4 := x3 + x1 + 2x2

x1 := x3 − x1 − 2x2

x2 := x3 − x1

Observe that, the given mapping has been decomposed into a sequence of linear mappings
in a way that, no extra variable other than the input variables is used.

2.3 State of the Art:-

In recent years, many computer scientists investigated the area of optimization including
compiler optimization, processor optimization, mization, algorithm optimization etc. The
optimization of specific linear algebra problems has been discussed on a large scale because
such kinds of optimization effect on processor performance. Whaley and Dongarra discuss
optimizing the widely used Basic Linear Algebra Subroutines (BLAS) in [58].
Chatterjee et al. discuss layout optimizations for a suite of dense matrix kernels in [16].
Park et al. discuss dynamic data remapping to improve cache performance for the DFT
in [44]. Frigo, et al. in [22], which discusses the cache performance of cache oblivious
algorithms for the matrix transpose, FFT, and sorting. Optimizing blocked algorithms has
been extensively studied [36].

Most of the optimization algorithms depend on heuristics and approximations because
several problems of optimizations are NP-complete. It may happen that a particular
algorithm fails to produce better code or even worse. Code optimization transform a piece
of code to make it more efficient without changing its output or side-effects [12].

An important optimization, affecting the performance of compiler code, is register
allocation. Register allocation has been studied extensively in compilation and is a
NP-complete problem. In 1981, Chaitin et al [14, 15] modelled the problem of assigning
temporary variables to k machine registers as the problem of colouring, with k colours the
interference graph associated to the variables.

In general, register access is faster than memory access. Hence it is preferable to use
register than memory whenever it is possible. When it is not possible to use register then
some variables must be transferred to memory. This load/store operation has its cost.
To avoid this cost some classical approaches have been introduced like in graph colouring
algorithms [4].

13
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An iterated register coalescing algorithm, proposed by Appel and George [23] is a mod-
ified version of previous developments by Chaitin et al. [14, 15], and Briggs et al. [5]. In
these heuristics, spilling, coalescing (removing register-to-register moves), and colouring (as-
signing variables to registers) are done in the same framework. These techniques are very
useful in compiler optimization but still have to be revised to get better results.

Burckel et al. [8] have introduced methods to design programs/electronic circuits, for
performing any operation on k registers of any sizes in a processor, in such a way that one
uses no other working memory (such as other registers or external memories). In this way,
any operation is performed with at most 4k−3 assignments of these registers, or 2k−1 when
the operation is linear or bijective. These methods are directly connected with processor
and compiler optimization.

In [7], it is proved that any mapping on {0, 1}
n

can be computed by an in situ calculus
without using extra variable. It is proved that three types of assignments are sufficient to
perform these computations [9]. In [10], it is proved that any mapping E on {0, 1}

n
has a

sequential computation in at most n2 steps. In [11], it is proved that any linear mapping of
n dimension can be computed with a sequence of 2n−1 linear assignments. It is also proved
that every mapping E on Sn can be computed by an in situ program of length 5n− 4. The
bound has been improved up to 4n − 3 when S is a power of 2. The maximal length of the
program is 2n − 1 for bijective mappings [8].

2.4 Sequential Computation over R:

In this section, we describe the proof that linear mappings on any field R admit sequential
computation. Next, we explain, how the algorithm computes linear mappings sequentially
over the field R. To illustrate completely the ideas, we quoted different examples. We also
quote some examples to explain, how the inverse mappings can be computed. We will also
introduce an alternative approach to compute a linear mapping of dimension 2. We can also
compute inverse mappings using this approach. We explain this approach by giving different
examples.

Proposition 1. Let E be a linear mapping on Kn, where K is a field and n is a positive
integer. There exists a sequence f1, f2, · · · , fn−1, fn, gn−1, · · · , g2, g1 of linear mappings
from Kn to K such that the program :

x1 := f1(x1, x2, · · · , xn)
x2 := f2(x1, x2, · · · , xn)
... :=

...
...

xn−1 := fn−1(x1, x2, · · · , xn)
xn := fn(x1, x2, · · · , xn)

xn−1 := gn−1(x1, x2, · · · , xn)
... :=

...
...

x2 := g2(x1, x2, · · · , xn)

14
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x1 := g1(x1, x2, · · · , xn)

performs the operation X := E(X) for any X = (x1, x2, · · · , xn) in Kn .
In addition:
For any i, gi will be xi or xi + xj for some j > i.
E will be bijective ⇐⇒ fi[i] 6= 0 for any i.
For any i, if fi[i] = 0 then gi = xi and fj [i] = 0 for any j ≥ i.

Proof. The mapping E := E(X) can be considered as X := AX, where A is a matrix
of coefficients i.e. aji ∈ K, for i, j = 1, 2, · · · , n. Each row of the matrix AX represents
the components of mapping E at current values of the variables (x1, x2, · · · , xn) and is
considered to be a linear mapping . For example, the jth row aj1 + aj2 + aj3 + . . . + ajn, of
matrix AX will be the Ej component of mapping E. These linear mappings can be denoted
by Fi for i = 1, 2 · · · , n. To manage the second sequence, the integers ri can be introduced.
The first sequence fi can be computed by an iterative procedure as given below:
For i from 1 to n, the following steps will be performed keeping ri = i at the beginning.

Case 1: If aii = α 6= 0, then fi := Fi, and xi will be modified to xi := αxi + ∆, where
∆ does not depend on xi. For any aji 6= 0, j > i, we will use the reference α−1(xi−∆)
to compute next mappings.

Case 2: If aji = α = 0, ∀j ≥ i, then fi := Fi, and xi := ∆, where ∆ does not depend
on xi. Since aji = 0, ∀j ≥ i, therefore no reference of xi will be required for the next
steps.

Case 3: If aii = α = 0, and aji 6= 0 for some j > i, then we can select aji = β such
that β 6= 0. We will perform the operation Fi := Fi − Fj i.e. subtract jth row from
ith row so that ά = −β 6= 0, where ά denotes the new value of α. In this way, we will
be again in case 1 and by the hypothesis the value Ei − Ej will be assigned to xi.
The operation Fi := Fi −Fj will introduce an assignment to the second sequence that
can be obtained by adding Ej to xi with ri := j.

Computation of the second sequence:
The integers ri, that has been introduced, will be used to build the second sequence of
assignments.
Therefore from i = n to 1, the following steps will be performed iteratively.

Step 1: If ri = i, then xi has been assigned in the first sequence and nothing to do
more.

Step 2: If ri = j such that j > i. Then because it results by the operation Fi := Fi−Fj ,
therefore gi := xi + xj , but for i = n, this situation will not exist.

The mapping E will not be injective in the Case-2 of the computation of first sequence but
if aii 6= 0 for any i, then we can compute E−1 as well.
Write the assignments, obtained, from last to first.

15



2.4. SEQUENTIAL COMPUTATION OVER R: 2

Compute xi := α−1(xi − ∆) from xi := αxi + ∆, (α 6= 0). Use these references in the next
assignments so that E−1 will be computed.

2.4.1 Explanation:

In this section, we will explain, the above proposition. We explain different cases by giving
different examples for each case separately.

Example 3. Consider a linear mapping E of the form

E (x1, x2, x3) −→ (3x1 + 7x2 + 5x3, 8x1 + 4x2 + 9x3, 2x1 + x2 + 6x3)

We know that, for a vector X := (x1, x2, x3), the mapping E can be written as X := AX,
where A denotes the matrix of coefficients. Therefore, for the given mapping E, matrix A
will be of the form as given below.

A =





3 7 5
8 4 9
2 1 6





Since α = 3 6= 0. Therefore, the first assignment is:

x1 := 3x1 + 7x2 + 5x3 (2.1)

The initial value of x1 will be
1

3
(x1 − 7x2 − 5x3)

Now, for β = 8, we perform the operation

x2 := x2 − βx1 + β
{

α−1 (x1 − ∆)
}

on second row and for β = 2, we perform the operation

x3 := x3 − βx1 + β
{

α−1 (x1 − ∆)
}

on third row of matrix A.

So, x2 := 8x1 + 4x2 + 9x3 − 8x1 + 8

{

1

3
(x1 − 7x2 − 5x3)

}

.

x2 :=
8

3
x1 −

44

3
x2 −

13

3
x3 (2.2)

and x3 := 2x1 + x2 + 6x3 − 2x1 +
2

3
(x1 − 7x2 − 5x3)

x3 :=
2

3
x1 −

11

3
x2 +

8

3
x3

16
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After performing this operation the matrix A will take the form

A =













3 7 5

8

3
−

44

3
−

13

3
2

3
−

11

3

8

3













Now, the initial value of second assignment, x2 will be,

8

44
x1 −

3

44
x2 −

13

44
x3

The computation of third assignment:

For, α = −
44

3
and β = −

11

3
, We perform the following operation:

x3 := x3 − βx2 + β
{

α−1 (x2 − ∆)
}

x3 :=
2

3
x1 −

11

3
x2 +

8

3
x3 +

11

3
x2 −

11

3

{

8

44
x1 −

3

44
x2 −

13

44
x3)

}

x3 :=
1

4
x2 +

15

4
x3 (2.3)

Combining (2.1), (2.2) and (2.3), we get the required assignments, that are

x1 := 3x1 + 7x2 + 5x3

x2 :=
8

3
x1 −

44

3
x2 −

13

3
x3

x3 :=
1

4
x2 +

15

4
x3

Computing the Inverse of Matrix A:

For a non-singular matrix A, we can also compute A−1, by a sequence of assignments. We
write, the sequence of assignments that can compute mapping E, from bottom to top, each
assignment xi := αxi + ∆ as xi := α−1 {xi − ∆}. Applying this technique on the sequence
of assignments

x1 := 3x1 + 7x2 + 5x3

x2 :=
8

3
x1 −

44

3
x2 −

13

3
x3

x3 :=
1

4
x2 +

15

4
x3

17
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we get the corresponding sequence of assignments that can compute A−1 and consequently,
the mapping E−1.

x3 :=
4

15
x3 −

1

15
x2

x2 :=
8

44
x1 −

3

44
x2 −

13

44
x3

x1 :=
1

3
x1 −

7

3
x2 −

5

3
x3

A−1 =





















−1

11

37

165
−

43

165

2

11
−

8

165
−

13

165

0 −
1

15

4

15





















Example 4. Consider a linear mapping

E (x1, x2, x3) −→ (5x2 + 7x3, x2 + 4x3, 3x1 + 2x3)

For a vector X := (x1, x2, x3), the mapping E can be written as X := AX, where A is a
matrix of coefficients. Therefore matrix A will be.

A =





0 5 7
0 1 4
3 0 2





Since a11 = 0 = α. But a13 = 3 = β. Therefore we have to subtract third row of matrix A
from first row. The operation will be R1 := R1 − R3.
After the completion of this operation, the matrix A will take the form:

A =





−3 5 5
0 1 4
3 0 2





Now the first assignment will be of the form:

x1 := −3x1 + 5x2 + 5x3 (2.4)

The initial value of x1 will be
1

3
(−x1 + 5x2 + 5x3)

Now, we will perform the operation

x2 := x2 − βx1 + β
{

α−1 (x1 − ∆)
}

18
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and
x3 := x3 − βx1 + β

{

α−1 (x1 − ∆)
}

The matrix A will take the form

A =





−3 5 5
0 1 4
−1 5 7





The second assignment will be
x2 := x2 + 4x3 (2.5)

Now, the initial value of second assignment, x2 will be

x2 − 4x3

And for the computation of third assignment:
For, α = 1 and β = 5, We perform the following operation:

x3 := x3 − βx2 + β
{

α−1 (x2 − ∆)
}

We will get the third assignment as

x3 := −x1 + 5x2 − 13x3 (2.6)

The first assignment of second sequence that is obtained by the operation R1 := R1−R3 will
be.

x1 := x1 + x3

Hence the required assignments are

x1 := −3x1 + 5x2 + 5x3

x2 := x2 + 4x3

x3 := −x1 + 5x2 − 13x3

x1 := x1 + x3

Computing Inverse of Matrix A:

We can compute A−1 by applying the same technique as described before i.e. by inverting
the assignments and rewriting from bottom to top.

x1 := x1 − x3

x3 :=
1

13
(−x1 + 5x2 − x3)

x2 :=
4

13
x1 −

7

13
x2

x1 :=
1

3
(−x1 + 5x2 + 5x3)
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A−1 =





















2

39
−

10

39

1

3

4

13
−

7

13
0

−
1

13

5

13
0





















Example 5. Consider a linear mapping

E (x1, x2, x3) −→ (3x1 + 5x2 + 7x3, x2 + 4x3, 2x3)

For a vector X := (x1, x2, x3), the mapping E can be written as X := AX, where A is a
matrix of coefficients. Therefore matrix A will be.

A =





3 5 7
0 1 4
0 0 2





Since a11 = 3 6= 0 = α. Therefore the first assignment will be of the form:

x1 := 3x1 + 5x2 + 7x3 (2.7)

The initial value of x1 will be
1

3
(x1 − 5x2 − 7x3)

Since β = 0 both for second and third row, therefore, Matrix A will remain unchanged, and
no reference of x1 is used to compute the second assignment.
The second assignment will be

x2 := x2 + 4x3 (2.8)

In computation of third assignment, we also do not need to use any reference of first or
second assignment. Therefore, for such kinds of mappings the sequence of assignments can
be written directly from the mapping.

x3 := 2x3 (2.9)

Hence the required assignments are

x1 := 3x1 + 5x2 + 7x3

x2 := x2 + 4x3

x3 := 2x3

Computing Inverse of Matrix A:
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The three assignments that can compute the inverse of matrix A can be written by applying
the technique of inverting and rewriting the assignments from bottom to top:

x3 :=
1

2
x3

x2 := x2 − 4x3

x1 =
1

3
(x1 − 5x2 − 7x3)

A−1 =













1

3
−

5

3

13

6

0 1 −2

0 0
1

2













Example 6. Consider a linear mapping

E (x1, x2, x3) −→ (5x2 + 7x3, x2 + 4x3, 2x3)

For a vector X := (x1, x2, x3), the mapping E can be written as X := AX, where A is a
matrix of coefficients. Therefore matrix A will be.

A =





0 5 7
0 1 4
0 0 2





Since a11 = 0 = α and β = 0 for all other cases, therefore we do not need to perform any
operation, and the required assignments can be written directly from the given mapping or
from the matrix A.

x1 := 5x2 + 7x3

x2 := x2 + 4x3

x3 := 2x3

Computing Inverse of Matrix A:

Since the matrix A is a singular, therefore A−1 does not exist. It is also obvious that the
assignment

x1 := 5x2 + 7x3

is not an invertible assignment.
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2.4.2 An alternative approach:

Lemma 1. Every linear mapping E: (x, y) −→ (mx + ny, px + qy), where m, n, p, q ∈ Z,
can be computed by a sequence of at most 3 linear assignments with rational coefficients.

Proof. Consider a sequence of three linear assignments:

x := ax + by

y := cx + dy

x := ex + fy

Where a, b, c, d, e, and f are rational In sequential computation, the linear assignments will
take the form:

x := ax + by

y := cax + (cb + d)y

x := (ea + fca)x + (eb + fcb + fd)y

The given Linear mapping E(x, y) −→ (mx + ny, px + qy), can be viewed as a matrix of
order 2 × 2 as below.

(

m n
p q

)

= A(say)

We can establish a system of four equations as given below:

m = ea + fca

n = eb + fcb + fd (5)

p = ca

q = bc + d

Moreover, Determinant(A) = m ∗ q − p ∗ n = a ∗ e ∗ d
=⇒ The product of three variables a, e and d should must be equal to the Determinant of
matrix A. Therefore, a, e and d, will be the factors of Determinant of matrix A.
The general solution of system (5) of equations is:

a = −
fp − m

e
, b = −

fq − n

e
, c = −

pe

fp − m
, d = −

mq − np

fp − m
(2.10)

Bézout’s identity states that, if two integers a and b are relatively prime then there exist
u, v ∈ Z such that au + bv = 1.
Using Bézout’s identity, we can construct a new matrix, such that we can compute the
mapping.
Suppose that m and p are relatively prime i.e. gcd(m, p) = 1.
Using Bézout’s identity, we can find u, v ∈ Z such that um + vp = 1
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Multiply first row of the matrix A, by u and second by v, so that, u and v will be the
common factor of entries of first and second row respectively, the new matrix will satisfy
the required conditions.
We will return to the original matrix by performing the operations.

y := (
1

v
)y and x := (

1

u
)x

If m and p are not Co prime, then we can make m and p Co prime by extracting their gcd.
We will solve the mapping as, for Co prime case and finally we will assign the GCD to a.

The above lemma can be explained by the following examples.

Example 7. Consider the linear mapping

E : (x, y) −→ (55x + 89y, 34x + 21y)

such that matrix A will represent the coefficients.

A =

(

m n
p q

)

=

(

55 89
34 21

)

Since GCD(55, 89) = 1, Therefore, we can apply Bézout’s identity to find integers u and v
such that 55u + 89v = 1
A number of solutions is possible for u and v. One of them is u = 13, v = −21
Multiply first row of matrix A by u and second by v, we will get

Á =

(

um un
vp vq

)

=

(

715 1157
−714 −441

)

Using

a = −
fp − m

e
, b = −

fq − n

e
, c = −

pe

fp − m
, d = −

mq − np

fp − m
(2.11)

we will have a = 1, b = 716, c = −714, d = 510783, e = 1, f = −1
Hence the sequence of assignments is as given below:

x := x + 716y

y :=
1

13
(−714x + 510783y)

x := −
1

21
(x − y)

2.4.3 Computing the Inverse Mapping:

We can also compute the inverse mapping using this alternate approach. We will explain
the idea by giving different examples as follows.
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Example 8. In fact, the sequence of assignments that compute the mapping E represented
by a matrix

Á =

(

715 1157
−714 −441

)

is given by

x := x + 716y

y := −714x + 510783y

x := x − y

The sequence of assignments that can compute the Á−1 can also be obtained by inverting
and rewriting the sequence of assignments used in computation of Á.

x := x + y

y :=
1

510783
{714x + y}

x := x − 716y

Á−1 =







−
21

24323
−

89

39291
34

24323

55

39291







We can compute the A−1 by making some changes in the above sequence of assignments i.e.,
we will multiply the first column of Á−1 by u and second by v. Therefore the sequence of
assignments that can compute A−1 is as under:

x := u ∗ x + v ∗ y

y :=
1

510783
{714x + v ∗ y}

x := x − 716y

The A−1 corresponding to matrix A is given below:

A−1 =







−
21

1871

89

1871
34

1871
−

55

1871







<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

We give another example to explain the case, when the entries of the first column of matrix
A are not Co prime
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Example 9. Consider the mapping E: (x, y) −→ (25x + 13y, 35x + 21y), whose coeffi-
cients can be expressed by a matrix.

A =

(

m n
p q

)

=

(

25 13
35 21

)

Since GCD(25, 35) = 5, Extract gcd from the first column, it will make the column co prime

B =

(

m n
p q

)

=

(

5 13
7 21

)

Now GCD(5, 7) = 1, Therefore Applying Bézout’s identity 5u + 7v = 1, we can have a
number of solutions, one of them is u = −4, v = 3
Multiply first row by u and second by v, we will get

B =

(

um un
vp vq

)

=

(

−20 −52
21 63

)

Solving the system of equations, we will have a = 1, b = 11, c = 21, d = −168, e = 1, f = −1
such that the sequence of assignments for a = 1, is:

x := x + 11y

y := −
1

4
(21x − 168y)

x :=
1

3
(x − y)

Now just replace a = 5,The assignments for a = 5, are

x := 5x + 11y

y := −
1

4
(21x − 168y)

x :=
1

3
(x − y)

2.5 Sequential Computation over Rings:

In this section, we explain how a linear mapping can be computed by a sequence of linear
assignments over rings specifically over the ring Z/NZ. We begin with a lemma of Em-
manuel Thomé, next we will explain a proposition in detail. We will also explain the idea
of computing a mapping over Z/NZ completely by giving different examples.

Lemma 2. Let x1, · · · , xn be Co prime integers. Let N be an integer. There exists integers
λ2, · · · , λn such that x1 +Σiλixi ∈ (Z/NZ)∗, where (Z/NZ)

∗
denotes the group of invertible

elements.
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Proof. Suppose that N is a prime power pv. It is given that the integers xi are Co prime,
therefore there exist an integer i0 (say) such that xi0 is Co prime to p. If x1 is itself Co
prime to p, then one can select i0 = 1. If x1 is not Co prime to p i.e. If x1 is divisible
by p, then x1 + xi0 is Co prime to p. So the result holds when N = pv . For each prime
power dividing N , we can therefore construct n integers λpv

1 , · · · , λpv

n such that λpv

1 = 1 and
Σi(λi)

pv

xi ∈ (Z/pv
Z)

∗
.

Using the Chinese Remainder Theorem, these vectors combine into a global solution
(1, λ2, · · · , λN ) satisfying the required property.

2.5.1 Assignment Matrices:

Assignment matrices have been used to prove the result. An assignment matrix is actually
the modified form of identity matrix having a row different from identity matrix.

Definition 1. A matrix A is said to be an assignment matrix, if there exist an integer i0
such that for all row and column indices (i, j), one has either i = i0 or Ai,j = δj

i . So, if A
is a square matrix then A− I has at most one non-zero row, where I is the identity matrix.

Example 10. Consider a square matrix A as given below:





2 3 5
4 7 1
5 6 7





The given matrix can be decomposed into the following four assignment matrices under
modulo 8 operation.

A1 :=





7 1 4
0 1 0
0 0 1



 A2 :=





1 0 0
4 3 1
0 0 1



 A3 :=





1 0 0
0 1 0
7 1 2



 A4 :=





1 0 7
0 1 0
0 0 1





Proposition 2. Let N be an integer. Any n×n matrix over (Z/NZ) can be written as the
product of at most 2n − 1 assignment matrices.

Proof. The result can be easily proved by the help of induction on the number of rows
(representing by n) of the given matrix. Therefore if n = 1, the result is obvious.
For n > 1, we can proceed as follows. Consider the first column of the given matrix A
(say). Suppose that the a11 is not an invertible element under modulo N . Let g represent
the GCD of the first column i.e. g = (a11, a21, · · · , an1). We can construct an invertible
element using the lemma as given above. We apply this lemma to make a combination
of the coefficients of this column equal to g times an invertible element of (Z/NZ), with
the constraint that this combination has its first multiplier equal to 1. This implies that
the n × n matrix T defined by ti,j = δj

i for i > 1, and t1,j = λj , where the multipliers
1, λ2, · · · , λn are obtained from the lemma above. Clearly the matrix T is an invertible
assignment matrix, and the product TA has a coefficient at position (1, 1) which is equal
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to g times an invertible element modulo N . Now assuming that a1,1 ∈ g(Z/NZ)∗ . Let
n′ be the number of columns of A . Let G = diag(g, 1, · · · , 1), and let A′ be the integer
matrix AG−1 (A′ has coefficients in Z because g is the GCD of the first column). We have
a′
1,1 ∈ (Z/NZ

∗) . We form an n′ × n′ assignment matrix U defined by ui,j = δj
i for i > 1,

and u1,j = a′
1,j . The matrix U is invertible modulo N (its determinant is a′

1,1 ). The first

row of the matrix A′′ = A′ ∗ U−1 is equal to (1, 0, · · · , 0). Notice further that UG is an
assignment matrix as well (even though not invertible modulo N ). Putting together the
different results we have that A = T × A′′ × (UG), where the matrix T may be omitted.
Applying the result inductively on A′′ completes the proof.

2.5.2 Explanation and Construction:

For the given matrix A, if a1,1 is invertible then matrix T will be the identity matrix of the
same order as of matrix A and A′ = AG−1.
Otherwise matrix T will be defined by tij = δijfori > 1andt1,j = λj

i.e. the first row of the matrix T will consist of the multipliers 1, λ1, · · · , λn, obtained by
lemma given above. Matrix T may be a single matrix or T = T1, T2, · · · , Tn depending on
number of prime factors of N .
An invertible matrix L can be constructed by solving the system TL = A.
i.e. L1 = T1A, L2 = T2A, · · · , Ln = TnA, and A = (T1 ∗T2, · · · , Tn)Ln. g is the GCD of first
column of matrix Li obtained after Ti transformation. So if A = (T1 ∗ T2, · · · , Tn)Lf . Then
A′ = LfG−1, where Lf denote the final invertible matrix after Ti, 1 ≤ i ≤ n transformation.
Matrix A will finally satisfy the relation A = (T1 ∗ T2, · · · , Tn)A′′UG.

Example 11. Consider a mapping E : (x1, x2) −→ (2x1 +3x2, 5x1 +7x2). The coefficients
can be represented by a square matrix

M =

(

2 3
5 7

)

Suppose that N = 8 = 23.
For pv = 2, (2, 2) 6= 1,=⇒ m1,1 is not invertible.
Since λ2 = 1, therefore

Matrix T =

(

1 1
0 1

)

Now, solving the system below

(

1 1
0 1

) (

a b
c d

)

=

(

2 3
5 7

)

a = −3mod 8 = 5, b = −4mod 8 = 4, c = 5, d = 7
New matrix

M =

(

5 4
5 7

)
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G =

(

5 0
0 1

)

and G−1 = 5−1

(

1 0
0 5

)

mod 8 =

(

5 0
0 1

)

M ′ = MG−1

(

5 4
5 7

) (

5 0
0 1

)

=

(

25 4
25 7

)

mod8 =

(

1 4
1 7

)

U =

(

1 4
0 1

)

, U−1 =

(

1 −4
0 1

)

M ′′ = M ′U−1 =

(

1 4
1 7

) (

1 −4
0 1

)

=

(

1 0
1 3

)

UG =

(

1 4
0 1

) (

5 0
0 1

)

=

(

5 4
0 1

)

TM ′′UG =

(

10 11
5 7

)

mod8 =

(

2 3
5 7

)

Hence the sequence linear assignments that can compute the given mapping is as follows:

a := 5a + 4b

b := a + 3b

a := a + b

Example 12. Consider a mapping E : (x1, x2) −→ (2x1 + 3x2, 5x1 + x2). The coefficients
can be represented by a square matrix

M =

(

2 3
5 1

)

and N = 6 = 21 ∗ 31

m1,1 is not invertible with respect to pv = 2, (2, 2) 6= 1
λ1 = 1, and λ2 = 1,

T1 =

(

λ1 λ2

0 1

)

=

(

1 1
0 1

)

Now,
(

1 1
0 1

) (

a b
c d

)

=

(

2 3
5 1

)

=⇒ a = −3mod6 = 3, b = 2, c = 5, d = 1
New matrix

L1 =

(

3 2
5 1

)

Observe that l1,1 is not invertible, For pv = 3, (3, 3) 6= 1
λ1 = 1, and λ2 = 1,

T2 =

(

1 2
0 1

)
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Now,
(

1 2
0 1

) (

a b
c d

)

=

(

3 2
5 1

)

=⇒ a = −7 mod 6 = 5, b = 0, c = 5, d = 1
New matrix

L2 =

(

5 0
5 1

)

G =

(

5 0
0 1

)

andG−1 = 5−1

(

1 0
0 5

)

mod 6 = 5

(

1 0
0 5

)

=

(

5 0
0 1

)

M ′ = MG−1

(

5 0
5 1

) (

5 0
0 1

)

=

(

25 0
25 1

)

mod 6 =

(

1 0
1 1

)

U =

(

1 0
0 1

)

, U−1 =

(

1 0
0 1

)

M ′′ = M ′U−1 =

(

1 0
1 1

)

UG =

(

5 0
0 1

)

T1T2M
′′UG =

(

20 3
5 1

)

mod 6 =

(

2 3
5 1

)

Hence the sequence of linear assignments that computes the given mapping is:

a := 5a

b := a + b

a := a + 3b

*

2.5.3 Computation of Inverse Mapping:

In this section, we will explain, by examples, how to compute inverse of a square matrix,
by a sequence of assignments over the ring Z/NZ. Consequently, the method will lead to
compute E−1.

Example 13. Consider a linear mapping

E (x1, x2, x3) −→ (2x1 + 8x2 + 6x3, 3x1 + 13x2 + 7x3, 5x1 + 5x2 + x3)
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We are interested to compute a sequence of linear assignment under modulo 9.
Observe that, for a vector X := (x1, x2, x3), the mapping E can be written as X := AX,
where A is a matrix of coefficients. Therefore matrix A will be.

A =





2 8 6
3 13 7
5 5 1





After performing modulo operation.

A =





2 8 6
3 4 7
5 5 1





The sequence of linear assignments that can compute mapping E, under modulo 9 operation,
is given by

x1 := 2x1 + 8x2 + 6x3

x2 := 6x1 + x2 + 7x3

x3 := 7x1 + 3x2 + x3

Computing Inverse of Matrix A:

We can get a sequence of assignments that can compute E−1 and ultimately A−1. We obtain
this sequence of assignments by inverting and rewriting the assignments (from bottom to top)
that compute the mapping E.

x3 := x3 − 7x1 − 3x2

x2 := x2 − 6x1 − 7x3

x1 := 2−1 (x1 − 8x2 − 6x3)

In the last assignment, we will replace 2−1 by 5 because 2 ∗ 5 = 1 mod 9, so that the last
assignments becomes invertible modulo 9.
Hence the sequence of assignments that can compute the inverse mapping under modulo 9
is as given below:

x3 := x3 − 7x1 − 3x2

x2 := x2 − 6x1 − 7x3

x1 := 5 (x1 − 8x2 − 6x3)

Consequently, we get the inverse of matrix A.

A−1 =





7 2 7
7 4 2
2 6 1





30



CHAPTER 2. IN SITU COMPUTATIONS 2

Verifying the product of assignment matrices:

The matrix

A =





2 8 6
3 13 7
5 5 1





is decomposed into three assignment matrices under modulo 9 operation, these matrices are
as given below:

A1 =





2 8 6
0 1 0
0 0 1



 A2 =





1 0 0
3 13 7
0 0 1



 A3 =





1 0 0
0 1 0
5 5 1





Clearly the product of matrices A3 ∗ A2 ∗ A1 = A.

2.5.4 Inverses mod k:

An integer a has an inverse mod k if and only if GCD(a, k) = 1. It is not always true that
a with a 6≡ 0 (mod k) has an inverse mod k, e.g. 2 6≡ 0 (mod 4). Since 2 × 2 = 4 ≡ 0 mod
4. Thus 2 has no inverse. Otherwise, we could multiply both sides of

2 × 2 ≡ 0 mod 4

by the inverse of 2 and get the false result 2 ≡ 0 mod 4. If p is a prime number, then for
each a 6≡ 0 mod p has a multiplicative inverse mod p.

Existence of Inverse of Matrix A:

Consider again the mapping

E (x1, x2, x3) −→ (2x1 + 8x2 + 6x3, 3x1 + 13x2 + 7x3, 5x1 + 5x2 + x3)

as given in Example 2. This mapping can also be computed by the following sequence of
assignments under modulo 12.

x1 := 5x1 + 5x2 + 9x3

x2 := 3x1 + 10x2 + 4x3

x3 := x1 + 4x3

x1 := x1 + 3x2

By inverting and rewriting this sequence of assignments, we get the following sequence of
assignments.

x1 := x1 − 3x2

x3 := 4−1 (x3 − x1)

x2 := 10−1 (x2 − 3x1 − 4x3)

x1 := 5−1 (x1 − 5x2 − 9x3)
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Observe that, the second and third assignments are not invertible because the integers 4 and
10 have not their inverses under modulo 12 operation. Moreover, the Determinant of matrix
A

|A| =

∣

∣

∣

∣

∣

∣

2 8 6
3 13 7
5 5 1

∣

∣

∣

∣

∣

∣

= 248

is not invertible modulo 12. Thus A−1 modulo 12 is not computable by the sequence of
assignments as given above. Hence, to compute inverse mapping the linear assignments
should must be invertible.
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Chapter 3
In Situ Computation of Linear

Mappings over Z:

In this chapter, we describe In Situ computation of linear mapping by a sequence of linear
assignments over the set of integers Z. We start in proving a proposition and then we explain
the algorithm completely by giving different examples.

Proposition 3. Let E be a linear mapping on Zn, where Z is the set of integers and n
is a positive integer. There exists a finite sequence f1, f2, · · · fn, gn−1, · · · , g2, g1 of linear
mappings from Zn to Z such that the program :

x1 := f1(x1, x2, · · · , xn)

x2 := f2(x1, x2, · · · , xn)

... :=
...

...

xn := fn(x1, x2, · · · , xn)

xn−1 := gn−1(x1, x2, · · · , xn)

... :=
...

...

x2 := g2(x1, x2, · · · , xn)

x1 := g1(x1, x2, · · · , xn)

performs the operation X := E(X) for any X = (x1, x2, · · · , xn) in Zn. The sequence
gn, gn−1, · · · , g2, g1 contains exactly n number of assignments.

Proof. The mapping E := E(X) can be considered as X := AX, where A is a matrix
of coefficients i.e. aij ∈ Z for i, j = 1, 2, · · · , n. Each row of the matrix AX represents



3

a component of the mapping E at current values of the variables (x1, x2, · · · , xn) and is
considered to be a linear mapping . For example, the jth row aj1 + aj2 + aj3 + . . . + ajn, of
matrix AX will be the Ej component of mapping E.

Case 1: If aij < 0, for j > i, then multiply jth column by −1, so that aij > 0 and xj

will be modified to xj := −xj . Similarly, if aii < 0, then ith column will be multiplied
by −1, so that aii > 0 and xi will be modified to xi := −xi.

Case 2: If aii > aij , for j > i, then the program will perform the operation Ci :=
Ci − Cj , and xj will be modified to xj := αxj + ∆, where ∆ does not depend on xj .
Ci denotes the ith column of matrix A.

Case 3: If aij ≥ aii, for j > i, then the program will perform the operation Cj :=
Cj − Ci, and xi will be modified to xi := αxi + ∆, where ∆ does not depend on xi.

Case 4: If aii = 0, then the program will perform the operation Ci := Ci −Cj , and xj

will be modified to xj := αxj + ∆, where ∆ does not depend on xj .

The whole procedure works iteratively until the matrix A modified to be a triangular matrix.
After the completion of this procedure the matrix A will become a lower triangular matrix
L (say) as given below.

L :=























l11 0 0 . . . 0 0 0
l21 l22 0 . . . 0 0 0
l31 l32 l33 . . . 0 0 0
...

...
... . . .

...
...

ln−2,1 ln−2,2 ln−2,3 . . . ln−2,n−2 0 0
ln−1,1 ln−1,2 ln−1,3 . . . ln−1,n−2 ln−1,n−1 0
ln1 ln2 ln3 . . . ln,n−2 ln,n−1 lnn























The last n assignments can be obtained directly from the matrix L and that will be of the
form.

xn := ln1x1 + ln2x2 + ln3x3 + . . . + ln,n−2xn−2 + ln,n−1xn−1 + lnnxn

xn−1 := ln−1,1x1 + ln−1,2x2 + ln−1,3x3 + . . . + ln−1,n−2xn−2 + ln−1,n−1xn−1

xn−2 := ln−2,1x1 + ln−2,2x2 + ln−2,3x3 + . . . + ln−2,n−2xn−2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

x3 := l31x1 + l32x2 + l33x3

x2 := l21x1 + l22x2

x1 := l11x1
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Let Á and V́ denote the modified form of the matrix A and vector V after performing any
operation. After each operation it should must preserve and compute the original mapping
effectively i.e.

MV = ḾV́

If T denotes the transformation matrix then

Ḿ = MT

V́ = T−1V

=⇒ ḾV́ = M(TT−1)V = MV

Observe that, to compute mapping E the last n assignments are not necessarily to be
invertible, because in this last sequence of assignments, the reference of initial assignments
are not required to be used for the next assignments.
The similar linear assignments can be combined to a single linear assignment that have the
same effect.
In general, if the assignment xi := αxi +∆ repeated k times then we can write it as a single
assignment of the form

xi := αkxi + ∆
(

αk−1 + αk−2 + . . . + α2 + α1 + α0
)

We can modify the algorithm to avoid from repeated similar assignments.

3.0.5 Explanation and Construction:

Consider a linear mapping

E (x1, x2, x3) −→ (5x1 − 3x2 + 5x3, 3x1 − 7x3, 4x1 + 8x2 + 13x3)

We are interested to compute the given mapping by a sequence of linear assignments such
that the coefficients of these assignments are integers. The coefficients of the given mapping
E can be taken as a square matrix A:

A :=





5 −3 5
3 0 −7
4 8 13





We shall compute the mapping E by applying the procedure, keeping in mind different cases,
as described above in the proposition 2. Since a12 < 0, therefore, we perform the operation
C2 := −C2 because we are in the first case. The linear assignment corresponding to this
operation is x2 := −x2 and the matrix A will be modified to the form

A :=





5 3 5
3 0 −7
4 −8 13




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Since a11 = 5 > a12 = 3, therefore, we perform the operation C1 := C1 −C2 because we are
in the second case. The linear assignment corresponding to this operation is x2 := x1 + x2

and the matrix A will be modified.

A :=





2 3 5
3 0 −7
12 −8 13





Now, a12 = 3 ≥ a11 = 2 therefore, we are in the third case and we perform the operation
C2 := C2 − C1. The linear assignment corresponding to this operation is x1 := x1 + x2 and
the matrix A will be modified.

A :=





2 1 5
3 −3 −7
12 −20 13





Since a11 = 2 > a12 = 1, therefore, we perform the operation C1 := C1 − C2. The linear
assignment corresponding to this operation is x2 := x1 + x2 and the matrix A will be
modified.

A :=





1 1 5
6 −3 −7
32 −20 13





Since a12 = 1 ≥ a11 = 1, therefore, we perform the operation C2 := C2 − C1. The linear
assignment corresponding to this operation is x1 := x1 + x2 and the matrix A will be
modified.

A :=





1 0 5
6 −9 −7
32 −52 13





Observe that a12 became zero, We will continue this process until a13 = 0.
Since a13 = 5 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear assignment
corresponding to this operation is x1 := x1 + x3. The matrix A will be modified.

A :=





1 0 4
6 −9 −13
32 −52 −19





Since a13 = 4 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear assignment
corresponding to this operation is x1 := x1 + x3. The matrix A will be modified.

A :=





1 0 3
6 −9 −19
32 −52 −51




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Since a13 = 3 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear assignment
corresponding to this operation is x1 := x1 + x3. The matrix A will be modified.

A :=





1 0 2
6 −9 −25
32 −52 −83





Since a13 = 2 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear assignment
corresponding to this operation is x1 := x1 + x3. The matrix A will be modified.

A :=





1 0 1
6 −9 −31
32 −52 −115





Since a13 = 1 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear assignment
corresponding to this operation is x1 := x1 + x3. The matrix A will be modified.

A :=





1 0 0
6 −9 −37
32 −52 −147





Now the first column will remain unchanged throughout the next operations, we will focus
on second diagonal entry.
Since a23 = −37 < 0, we perform the operation C3 := −C3. The linear assignment corre-
sponding to this operation is x3 := −x3. The matrix A will be modified.

A :=





1 0 0
6 −9 37
32 −52 147





Since a22 = −9 < 0, we perform the operation C2 := −C2. The linear assignment corre-
sponding to this operation is x2 := −x2. The matrix A will be modified.

A :=





1 0 0
6 9 37
32 52 147





Since a23 = 37 ≥ a22 = 9, we perform the operation C3 := C3 − C2. The linear assignment
corresponding to this operation is x2 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 9 28
32 52 95





since a23 = 28 ≥ a22 = 9, we perform the operation C3 := C3 − C2. The linear assignment
corresponding to this operation is x2 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 9 19
32 52 43




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Since a23 = 19 ≥ a22 = 9, we perform the operation C3 := C3 − C2. The linear assignment
corresponding to this operation is x2 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 9 10
32 52 −9





Since a23 = 10 ≥ a22 = 9, we perform the operation C3 := C3 − C2. The linear assignment
corresponding to this operation is x2 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 9 1
32 52 −61





Since a22 = 9 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 8 1
32 113 −61





Since a22 = 8 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 7 1
32 174 −61





Since a22 = 7 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 6 1
32 235 −61





Since a22 = 6 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 5 1
32 296 −61





Since a22 = 5 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 4 1
32 357 −61




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Since a22 = 4 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 3 1
32 418 −61





Since a22 = 3 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 2 1
32 479 −61





Since a22 = 2 > a23 = 1, we perform the operation C2 := C2 − C3. The linear assignment
corresponding to this operation is x3 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 1 1
32 540 −61





Since a23 = 1 ≥ a22 = 1, we perform the operation C3 := C3 − C2. The linear assignment
corresponding to this operation is x2 := x2 + x3. The matrix A will be modified.

A :=





1 0 0
6 1 0
32 540 −601





The matrix A converted into a lower triangular matrix. The last three assignments
will be written directly from this lower triangular matrix. These three assignments are:
x3 := 32x1 + 540x2 − 601x3, x2 := 6x1 + x and x1 := x1

Hence the given mapping E can be computed by the sequence of assignments as given below:

x2 = −x2

x2 = x1 + x2

x1 = x1 + x2

x2 = x1 + x2

x1 = x1 + x2

x1 = x1 + x3

x1 = x1 + x3

x1 = x1 + x3
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x1 = x1 + x3

x1 = x1 + x3

x3 = −x3

x2 = −x2

x2 = x2 + x3

x2 = x2 + x3

x2 = x2 + x3

x2 = x2 + x3

x3 = x2 + x3

x3 = x2 + x3

x3 = x2 + x3

x3 = x2 + x3

x3 = x2 + x3

x3 = x2 + x3

x3 = x2 + x3

x3 = x2 + x3

x2 = x2 + x3

x3 = 32 ∗ x1 + 540 ∗ x2 − 601 ∗ x3

x2 = 6 ∗ x1 + x2

x1 = x1

The total number of assignments is 28, and can be reduced to 14 by combining consecutive
assignments of the same variable.

x2 = −x2

x2 = x1 + x2

x1 = x1 + x2

x2 = x1 + x2

x1 = x1 + x2

x1 = x1 + 5x3

x3 = −x3

x2 = −x2
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x2 = x2 + 4x3

x3 = x2 + 8x3

x2 = x2 + x3

x3 = 32x1 + 540x2 − 601x3

x2 = 6x1 + x2

x1 = x1

3.0.6 Computing Inverse mapping over Z:

We can compute the inverse mapping E−1 over Z by inverting each assignment in the
sequence (that can compute mapping E) and rewriting from bottom to top. We explain by
the following example

Example 14. Suppose that E be a linear mapping and is defined as

E (x1, x2) −→ (8x1 + 13x2, 13x1 + 21x2)

The matrix of coefficients A is

A :=

(

8 13
13 21

)

The given mapping E can be computed by the following sequence of assignments

x1 := −x1 − 2x2

x2 := 3x1 + x2

x1 := x1 − 3x2

x2 := 2x1 + x2

Now, to compute E−1, invert each assignment and rewrite from bottom to top. We get the
following sequence of linear assignments that can compute E−1.

x2 := x2 − 2x1

x1 := x1 + 3x2

x2 := x2 − 3x1

x1 := −x1 − 2x2

Consequently, we can compute A−1, i.e.

A−1 :=

(

−21 13
13 −8

)
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Existence of Inverse matrix A−1:

The computation of inverse mapping is not always possible over Z by a sequence of linear
assignments. Consider the following example

Example 15. Consider a mapping E

E (x1, x2, x3) −→ (2x1 + 3x2 + 5x3, 3x1 + 4x2 − 7x3, 8x2 + 13x3)

The mapping E can be computed by the following sequence of assignments.

x1 = x1 + x2

x2 = 2x1 + x2

x2 = x1 + x2

x1 = −x1

x1 = x1 + x2

x1 = x1 + 5x3

x3 = −x3

x2 = x2 + 7x3

x3 = 24 ∗ x1 − 16 ∗ x2 + 219 ∗ x3

x2 = x2

x1 = x1

The matrix of coefficients A for the mapping E can be written as

A :=





2 3 5
3 4 −7
0 8 13





and

A−1 :=
1

219





108 1 −41
−39 26 29
24 −16 −1





But
1

219
/∈ Z. Observe that the assignment

x3 = 24 ∗ x1 − 16 ∗ x2 + 219 ∗ x3

is not invertible. Therefore the inverse mapping E−1 can be computed by inverting and
rewriting the above sequence of assignments. Moreover E−1 is computable by the sequence
of assignments iff E is a bijective mapping. Hence the given mapping E is not a bijective
mapping.
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3.0.7 Investigating Bounds for the number of assignments:

We are interested to find the minimum number of assignments required to compute a given
linear mapping over Z. We proceed by developing different relations between mappings that
can help to find the minimum number of assignments and we investigate through finding
different counter examples. We are giving a proof below that shows that six assignments
are not sufficient to compute any linear mapping over Z

2.

Lemma 3. It is not possible that every linear mapping

E : (x, y) −→ (mx + ny, px + qy)

, where m, n, p, q ∈ Z, can be computed by a sequence of at most 6 linear assignments

x := ax + by

y := cx + dy

x := ex + fy

y := gx + hy

x := ix + jy

y := kx + ly

where a, b, c, d, e, f, g, h, i, j, k, and l ∈ Z,

Proof. Consider a linear mapping E(x, y) −→ (461x + 286y, 353x + 219y), that can be
viewed as a matrix of order 2 × 2 as given below.

(

461 286
353 219

)

= A(say)

We can establish a system of four equations(by evaluating assignments) as given below:

461 = a(ie + ifc + jge + jgfc + jhc)

286 = ieb + ifcb + ifd + jgeb + jgfcb + jgfd + jhcb + jhd

353 = 461k + lgea + lgfca + lhca (2)

219 = 286k + lgeb + lgfcb + lgfd + lhcb + lhd

Determinant(A) = mq − pn = aedihl
=⇒ The product of six variables a, d, e, h, i, and l should must be equal to the determinant
of matrix A.
Since, the determinant of matrix A is equal to 1. Therefore, a ∗ e ∗ d ∗ h ∗ i ∗ l = 1 and each
of six variables can take only the value {1,−1}.
There are P (6, 2) + 2 = 32, cases of assigning values to a, d, e, h, i, and l.
Let us consider one case that is a = 1, e = 1, d = 1, h = 1, i = 1, l = 1.
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We will have equations:

460 = fc + jg + jgfc + jc

286 = 461b + f + jgf + j

353 = 461k + g + gfc + c (3)

218 = 286k + 353b − 461bk + gf

There are three possible general solutions for system (3) of equations:
The first possible solution is of the form:

c =
461

j
, j = j, f = f, b = −

1

461
j +

286

461

k =
1

461

−460j + 461f + 353j2

j2
, g = −

1

j

The second possible solution is of the form:

j = j, g =
460

j
, k =

1

461

−460 + 353j

j

b = −f −
1

461
j +

286

461
, f = f, c = 0

The third possible solution is of the form:

j = j, g = g, k = −
1

461

461g + c − 353 − 353jg

1 + jg

c = c, b =
1

461

jg − 460 + 286c

c
, f = −

−460 + jg + jc

c(1 + jg)

Consider the first possible solution:

Suppose that g = −
1

j
∈ Z =⇒ j = 1 or − 1

Now, If j = 1 then

g = −1 ∈ Z, but b = −
1

461
+

286

461
=

285

461
/∈ Z

Similarly, If j = −1 then

g = 1 ∈ Z, but b =
1

461
+

286

461
=

287

461
/∈ Z

Therefore integer solution is not possible in the first solution.
In the second possible solution:

g =
460

j
, k =

1

461

−460 + 353j

j
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k can be written as k =
−g + 353

461

Observe that if k ∈ Z then −g + 353 ≥ 461

=⇒ g ≤ 353 − 461 =⇒ g ≤ −108

But, since g is a divisor of 460, and, g can take only the value {−115,−230,−460} because
g ≤ −108. But for any of these values {−115,−230,−460} k /∈ Z.
Notice that,

if g = −230 then k =
230 + 353

461
=

583

461
/∈ Z

if g = −115 then k =
115 + 353

461
=

468

461
/∈ Z

if g = −460 then k =
460 + 353

461
=

813

461
/∈ Z

Therefore integer solution is not possible using second possible solution.
Now, in the third possible solution:

b =
1

461

jg − 460 + 286c

c
and f = −

−460 + jg + jc

c(1 + jg)

Since c divides both jg − 460 + 286c and −460 + jg + jc, therefore, if b, f ∈ Z then there
should exist k1, k2 ∈ Z such that

460 − jg − jc = ck1 (3.1)

and
460 − jg = c(286 − 461k2) (3.2)

By (3.1) and (3.2)
c(j + k1) = c(286 − 461k2)

=⇒ j + k1 = 286 − 461k2

=⇒ k2 = −
−286 + k1 + j

461

If k2 ∈ Z then −286 + k1 + j ≥ 461

=⇒ k1 + j ≥ 747 (3.3)

But form equation (3.1) c =
460 − jg

j + k1

and if c ∈ Z then
j + k1 ≤ 460 − jg (3.4)
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By (3.3) and (3.4), we can write

460 − jg = 747 =⇒ jg = −287

=⇒ For j and g to be integers, they should must be factors of 287 and

{±1, ±7, ±41, ±287}

are the possible factors of 287.
Let, for example, g = −287 then j = 1

=⇒ k1 = 746 =⇒ k2 = −1 =⇒ c = 1

But, then, f = −
−460 − 287 + 1

1 − 287
= −

34

13
/∈ Z

For all divisors of 287, f /∈ Z.
The other 31 possibilities of assigning values {1,−1} to a, d, e, h, i, and l also do not work
and can be proved by the similar arguments.

We have established a useful relation between different mappings with coefficients taken
from Fibonacci sequence. Next, we explain a proof related to these relations.

Definition 2. We will define a Fibonacci-like sequence as

Fn = Fn−1 + Fn−2

where F0 = F1 = 1.

Definition 3. We will define a Fibonancci-like matrix to be a matrix in the form

(

Fn−1 Fn

Fn Fn+1

)

We define also the relations

(

0 1
1 1

)n+1

=

(

Fn−1 Fn

Fn Fn+1

)

(

F2 F3

F3 F4

)

∗

(

F4n+1 F4n+2

F4n+2 F4n+3

)

=

(

F4n+4 F4n+5

F4n+5 F4n+6

)

Lemma 4. Let En : (x, y) −→ (Fn−1x + Fny, Fnx + Fn+1y) be the mapping on Z
2, where

Fn is the Fibonacci number. The mapping E4k+2 can be computed with 2k + 2 number of
assignments, where k = 0, 1, 2, · · · , n.
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Proof. For n = 2, E2 = (F1x + F2y, F2x + F3y) can be expressed as

A2 =

(

1 2
2 3

)

The assignments for A2 =

{

x := x + 2y
y := 2x − y

A3 =

(

2 3
3 5

)

The assignments for A3 =







x := x + 2y
y := 3x − y
x := −x + y

Observe that

A3 =

(

2 3
3 5

)

∗ A2 =

(

1 2
2 3

)

= A6 =

(

8 13
13 21

)

The assignments for A6 =























x := x + 2y
y := 3x − y
x := −x + y
x := x + 2y
y := 2x − y

=















x := x + 2y
y := 3x − y
x := −x + 3y
y := 2x − y

Similarly, A3 =

(

2 3
3 5

)

∗ A6 =

(

8 13
13 21

)

= A10 =

(

55 89
89 144

)

The assignments for A10 =







































x := x + 2y
y := 3x − y
x := −x + y
x := x + 2y
y := 3x − y
x := −x + 3y
y := 2x − y

=































x := x + 2y
y := 3x − y
x := −x + 3y
y := 3x − y
x := −x + 3y
y := 2x − y

In general, A3 ∗ A4k+2 = A4k+6

The assignments for A4k+6 =



































































x := x + 2y
y := 3x − y
x := −x + y
x := x + 2y
y := 3x − y
x := −x + 3y

}

...
y := 3x − y
x := −x + 3y

}

y := 2x − y

=











































x := x + 2y
y := 3x − y
x := −x + 3y

}

...
y := 3x − y
x := −x + 3y

}

y := 2x − y
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The number of assignments for A4k+2 is equal to 2k + 2.

Proposition 4. The mapping E : Z
m −→ Z

m, m > 2

E : (x1, x2, x3, · · · , xn) =













F1x1 + F2x2 + F3x3 + . . . + Fmxn

F2x1 + F3x2 + F4x3 + . . . + Fm+1xn

F3x1 + F4x2 + F5x3 + . . . + Fm+2xn

· · · · · · · · · · · · · · · · · ·
Fnx1 + Fn+1x2 + Fn+2x3 + . . . + F2n−1xn













such that Fn := Fn−1 + Fn−2, ∀n ∈ Z, can be computed with m + 2 number of linear
assignments.

Proof. The given mapping E can be imagined as X := AX where A is a matrix such that
whose entries satisfy the relation Fn := Fn−1 + Fn−2, ∀n ∈ Z. we construct the first two
mappings as given below:

x1 := x1 + x2 + 2x3 + 3x4 + 5x5 + . . .

x2 := x1 + x2 + x3 + 2x4 + 3x5 + . . .

Next, we require only two elements (first and second) to compute the mapping.

x3 := F1x1 + F2x2

x4 := x3 + (F2 − F1)x1 + F1x2

x5 := x3 + x4

x6 := x4 + x5

· · · · · · · · · · · ·

xn := xn−2 + xn−1

Finally, we construct two mappings as follows.

x1 := x3 − (F2 − F1) x1 + F1x2

x2 := x3 − x1

This sequence of assignments compute mapping E effectively, and the number of these
assignments are n + 2.
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Lemma 5. Let E : Z
2 −→ Z

2 be a linear mapping defined as E(x, y) −→ (mx+ny, px+qy).
Let E can be computed by a sequence of linear assignments

x := a1x + b1y

y := b2x + a2y

x := a3x + b3y

y := b4x + a4y

... :=
...

...

x := ak−1x + bk−1y

y := bkx + aky

where ai, bi ∈ Z,∀ 1 ≤ i ≤ k, k ∈ Z, and k ≥ 2. Then for m, n, p, q ∈ Z

m ∗ q − p ∗ n = a1 ∗ a2 ∗ a3 . . . ak−1 ∗ ak

where m ∗ q − p ∗ n is the determinant of the matrix ”A”, that represents coefficients of
mapping E.

A =

(

m n
p q

)

Proof. Suppose that ∆ denotes the determinant of the matrix A, then we have to prove that

∆ = a1 ∗ a2 ∗ a3 . . . ak−1 ∗ ak

Consider, the evaluation of the given sequence of linear assignments

x := a1x + b1y (3.5)

y := b2a1x + (b2b1 + a2)y (3.6)

x := [a3a1 + b3(b2a1)]x + [a3b1 + b3(b2b1 + a2)] (3.7)

y := [a4(b2a1) + b4{a3a1 + b3(b2a1)}]x

+ [a4(b2b1 + a2) + b4{a3b1 + b3(b2b1 + a2))}]y (3.8)

x := [a5{a3a1 + b3(b2a1)} + b5{a4(b2a1) + b4(a3a1 + b3(b2a1))}]x

+ [a5{a3b1 + b3(b2b1 + a2)} + b5{a4(b2b1 + a2)

+ b4(a3b1 + b3(b2b1 + a2))}]y (3.9)

y := [a6{a4(b2a1) + b4(a3a1 + b3(b2a1)} + b6{a5(a3a1

+ b3(b2a1) + b5(a4(b2a1) + b4((a3a1 + b3(b2a1)))}]x

+ [a6{a4(b2b1 + a2) + b4(a3b1 + b3(b2b1 + a2))}

+ b6{a5(a3b1 + b3(b2b1 + a2)) + b5{a4(b2b1 + a2)

+ b4(a3b1 + b3(b2b1 + a2))}}]y (3.10)
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... :=
...

...
...

...
...

...

x := [ak−1(x-component of (k-3)th assignment)

+ bk−1(x-component of (k-2)th assignment)]x

+ ak−1(y-component of (k-3)th assignment)

+ bk−1(y-component of (k-2)th assignment)]y (3.11)

y := [ak(x-component of (k-2)th assignment)

+ bk(x-component of (k-1)th assignment)]x

+ ak(y-component of (k-2)th assignment)

+ bk(y-component of (k-1)th assignment)]y (3.12)

Now,

Determinant of the Matrix = [(x-component of (k-1)th assignment)

∗ (y-component of (k)th assignment)]

− [(y-component of (k-1)th assignment)

∗ (x-component of (k)th assignment)]

= m ∗ q − p ∗ n = ∆ (3.13)

Therefore, we can write

m = [ak−1(x-component of (k-3)th assignment)

+ bk−1(x-component of (k-2)th assignment)]x

n = ak−1(y-component of (k-3)th assignment)

+ bk−1(y-component of (k-2)th assignment)]y

p = [ak(x-component of (k-2)th assignment)

+ bk(x-component of (k-1)th assignment)] = f + c

q = ak(y-component of (k-2)th assignment)

+ bk(y-component of (k-1)th assignment)] = e + d

where f = ak(x-component of (k-2)th assignment)

c = bk(x-component of (k-1)th assignment)

e = ak(y-component of (k-2)th assignment)

d = bk(y-component of (k-1)th assignment)

∆ = m ∗ q − n ∗ p = me − nf + md − nc
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Since md − nc = 0, Therefore ∆ = me − nc, that is

∆ = ak−1ak[(x-component of (k-3)th assignment)

∗ (y-component of (k-2)th assignment)]

+ akbk−1[(x-component of (k-2)th assignment)

∗ (y-component of (k-2)th assignment)]

− ak−1ak[(x-component of (k-2)th assignment)

∗ (y-component of (k-3)th assignment)]

− akbk−1[(y-component of (k-2)th assignment)

∗ (x-component of (k-2)th assignment)]

After simplification, we will have

∆ = ak−1ak[(x-component of (k-3)th assignment)

∗ (y-component of (k-2)th assignment)]

− [(x-component of (k-2)th assignment)

∗ (y-component of (k-3)th assignment)] (3.14)

Observe that it is again in the form of (a). Hence by continuing this process of evaluation,
we will have

∆ = ak ∗ ak−1 ∗ ak−2 . . . a4 ∗ a3 ∗ a2 ∗ a1

Example 16. Let E : Z
2 −→ Z

2 be a linear mapping defined as E(x, y) −→ (33x +
307y, 103x + 610y). The coefficients of mapping can be represented as a matrix A of size
2 × 2 as follows.

A =

(

33 307
103 610

)

Determinant (A) = −11491

The mapping E can be computed by the following sequence of linear assignments

x := x + 9y

y := 3x + y

x := x + 3y

y := 2x + y

x := x + y

y := 8012x − 11491y

Product of coefficients ais = −11491
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Chapter 4
In Situ Computation of Boolean

Mappings

In this chapter, we describe the in situ computation of boolean mappings. A Boolean map-
ping describes how to determine a Boolean value output based on some logical combination
from Boolean inputs. Boolean mappings are very important in the theory of complexity as
well as in the design of circuits and chips for digital computers. The properties of Boolean
mappings play a crucial role in cryptography, particularly in the design of symmetric key
algorithms ( a class of algorithms for cryptography that use boolean function keys for both
decryption and encryption), e.g. Two fish, Serpent, Blowfish, CAST5, RC4, TDES, and
IDEA.

Boolean mappings can be represented in propositional logic, or as multivariate polyno-
mials over GF (2). To perform numerical computations on logical symbols, was one of the
work of George Boole in the theory of logic.
Boolean mappings have a number of applications in different areas including artificial in-
telligence, propositional logic, circuit design, electrical engineering, game theory, reliability
theory and combinatorics. The representation of boolean functions as a boolean polynomial
is an extensive method in boolean algebra. Boolean polynomials play an important role
in Reed-Muller codes (Error Correcting codes). The widespread use in electronics of inte-
grated circuits that include “modulo 2 adders” focuses the attention on the representation
of Boolean functions in the form of polynomials. Every boolean function can be represented
as a polynomial. Polynomial methods have been employed extensively in circuit complexity.
Boolean polynomials occur either directly or as a tool in the problem of decomposing a
boolean function. The decomposition of boolean function is considered to be an important
problem in the design of logic circuits. The decomposition of switching function is very
important. A switching function is f : {0, 1}

n
−→ {0, 1}. Boolean polynomial have a large

number of applications in various fields including graph theory, law, medicine, operations
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research and spectroscopy[19, 39, 37, 3, 46].
Burckel et al. [11] have proved that any linear boolean mapping with input variables n can
be computed with a double sequence of linear assignments of the same number of variables
as given in the input. This result leads to a decomposition of boolean matrices and directed
graphs. Burckel et al. also proved that every boolean mapping is decomposable in 4n − 3
boolean functions.
Next, we start by explaining the basic concepts. Then, we explain the in situ computation
of bijective boolean mappings. Then, on the basis of this result, we explain the in situ
computation of general boolean mappings and verified the results. We quoted definitions
that are necessary to prove these results. At the end, we introduce a new method for the
case of boolean bijective mappings via algebraic operations over polynomials in GF2.

Boolean Mappings:

We describe here the basic concept of boolean mapping and we explain it with the help of
an example and truth table.

Definition 4. A Boolean function/mapping is a function/mapping f from the Cartesian
product {0, 1}

n
to {0, 1} . Alternatively, we write f : {0, 1}

n
−→ {0, 1}. The set {0, 1}

n
,

by definition, the set of all n-tuples (x1, · · · , xn) where each xi is either 0 or 1, is called the
domain of f . The set {0, 1} is called the Co domain (or, sometimes, range) of f . There
are 22n

, n-ary functions for every n.

One way to represent a boolean function whose domain is finite uses a table. Each element
x of the domain has a row of the table listing the domain element x and the corresponding
function value f(x). These tables make easy to understand and construct these functions
from tables.

Example 17. Consider the boolean mappings y1, y2, and y3 from {0, 1}
3

to {0, 1} defined
as follows:

y1 = x1 + x2 ∗ x3

y2 = x1 + x2 + x1 ∗ x3 + x1 ∗ x2 + x2 ∗ x3

y3 = x3 + x1 ∗ x2 + x2 ∗ x3

The table (4.5) represents the functions y1, y2 and y3.
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x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 0 1 1

Table 4.1: Truth Table 1

4.1 Computing Bijective Boolean Mappings

If one can compute bijective boolean mapping with an in situ program that consist of a
set of assignments then the inverse bijective mapping can also be computed with the same
number of assignments that can be obtained by inverting the assignments and rewriting
from bottom to top.

Definition 5. An in situ program that can compute a boolean mapping E : {0, 1}
n
−→

{0, 1}
n
, consists in a sequence of assignments of one bit component that can be written as

xj := fj (x1, · · · , xn)

where fj : {0, 1}
n
−→ {0, 1} is a linear mapping and j is the index for the input variables.

Theorem 1. A bijective mapping E defined over {0, 1}n can be computed by an in situ
program of the form.

fn, fn−1, · · · , f3, f2, f1, g2, g3, · · · , gn−1, gn

and of length 2n − 1

Proof. We proceed by induction over n.
For n = 1, the program will be x1 := f1(x1).
Now, we have to prove that the statement is true for n > 1. We will make use of bipartite
graph. Suppose that G = (X,Y, A) be the bipartite multi-edges graph defined by X = Y =

{0, 1}
n−1

, and (x, y) ∈ X × Y is in A with the label xnyn, for xnyn ∈ {0, 1} if and only if
E(x, xn) = (y, yn).
The degree of vertices of graph G will be exactly 2 due to the bijection E and graph G
will be the union of disjoint even cycles due to the reason that it is 2-color-able regular
bipartite graph. Therefore, by definition graph G is 2-color-able[25]. We mention that this
is a particular case of a general result by König on regular graphs [34], from which this
proof can be generalized to any mapping on a finite set. Let us colour the edges of G with
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elements of {0, 1}. Now define two mappings E0, E1 on {0, 1}
n−1

and two mappings fn, gn

from {0, 1}
n

to {0, 1} as follows. For each colour i ∈ {0, 1} and every edge (x, y) with colour
i and labeled xnyn, define

Ei(x) = y

fn(x, xn) = i

gn(y, i) = yn

By construction, any mapping Ei is bijective on {0, 1}
n−1

. Then under induction hypothesis,
each Ei admits an in situ program of the form:

f i
n−1, · · · , f i

2, f
i
1, g

i
2, · · · , gi

n−1

Define for every i ∈ {0, 1} and x ∈ {0, 1}
n−1

.

fj(x, i) = f i
j(x) forj = n − 1, · · · , 1

gj(x, i) = gi
j(x) forj = 2, · · · , n − 1

In other words,

fj(x, xn) = xn.f1
j (x) + (1 + xn).f0

j (x) forj = n − 1, · · · , 1

gj(x, xn) = xn.g1
j (x) + (1 + xn).g0

j (x) forj = n − 1, · · · , 1

By construction we have obtained an in situ program of length 2(n − 1) − 1 + 2 = 2n − 1
for E:

xn := fn(x1, · · · , xn)

xn−1 := fn−1(x1, · · · , xn) = f i
n−1(x1, · · · , xn−1)

xn−2 := fn−2(x1, · · · , xn) = f i
n−2(x1, · · · , xn−1)

...
...

...
...

x2 := f2(x1, · · · , xn) = f i
2(x1, · · · , xn−1)

x1 := f1(x1, · · · , xn) = f i
1(x1, · · · , xn−1)

x2 := g2(x1, · · · , xn) = gi
2(x1, · · · , xn−1)

...
...

...
...

xn−2 := gn−2(x1, · · · , xn) = gi
n−2(x1, · · · , xn−1)

xn−1 := gn−1(x1, · · · , xn) = gi
n−1(x1, · · · , xn−1)

xn := gn(x1, · · · , xn) = gn(y1, · · · , yn−1, i)

In other words at the first step, the component xn equals a colour i, Then Ei(x1, · · · , xn−1)
is computed by induction in 2(n-1)-1 steps. At the step before last, we have (x1, · · · , xn−1) =
(y1, · · · , yn−1). At the last step we have xn = yn.
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We describe below, two examples to explain the theorem 1.

Example 18. Consider the bijective boolean mapping E1 defined over {0, 1}3 as given below.

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

E1−−→

x1 x2 x3

0 0 0
1 1 1
0 0 1
0 1 1
1 0 1
0 1 0
1 0 0
1 1 0

Table 4.2: Table

The bijective mapping E1 can be computed by performing the following operations.

x1 := 1 + x2 + x1x3 (f ′
1)

x2 := 1 + x1 + x2 + x1x3 + x2x3 + x1x2 (f ′
2)

x3 := x1 + x2 + x3 + x2x3 (f ′
3)

x2 := x1 + x2 + x1x3 (g′2)

x1 := 1 + x1 + x2 + x3 + x2x3 (g′1)

After performing the first three operations f ′
1, f ′

2, f ′
3 , the mapping E1 transform into the

boolean mapping that is still bijective then after performing operations g′2, g′1 we get the
required mapping.

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f ′

1
, f ′

2
, f ′

3−−−−−−→

x1 x2 x3

1 1 0
1 1 1
0 0 1
0 1 1
1 0 1
0 1 0
0 0 0
1 0 0

g′

2
, g′

1−−−→

x1 x2 x3

0 0 0
1 1 1
0 0 1
0 1 1
1 0 1
0 1 0
1 0 0
1 1 0

Table 4.3: Table

We describe another example to explain all steps in the computation of boolean bijective
mapping.
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Example 19. Consider the bijective boolean mapping E2 defined over {0, 1}3 as given below.

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

E2−−→

x1 x2 x3

1 1 1
0 1 1
1 1 0
0 0 1
0 0 0
1 0 1
1 0 0
0 1 0

Table 4.4: Table

The given bijective mapping E2 can be computed by performing the following operations.

x1 := 1 + x1 + x2 + x3 + x2x3 (f ′
1)

x2 := x1 + x2 + x1x3 (f ′
2)

x3 := x3 + x1x2 (f ′
3)

x2 := x2 + x3 + x1x3 (g′2)

x1 := x1 + x2 + x2x3 (g′1)

We illustrate step by step the computation of bijective mapping E2 as given below.

Lemma 6. Every assignment xi := fi(x1, · · · , xn) performed in an in situ program to
compute a bijective mapping must be linear in xi,i.e.

fi(x1, · · · , xn) = xi + h(x1, · · · , xi−1, xi+1, · · · , xn)

Proof. There are two possible cases for the mapping fi (x1, x2, x3 · · · , xn) for x1 ∈ {0, 1} i.e.
fi (0, x2, x3 · · · , xn) or fi (1, x2, x3 · · · , xn)
For each of these cases, there exist two possibilities for the output value i.e.

fi (0, x2, x3 · · · , xn) = 0 (a)

fi (0, x2, x3 · · · , xn) = 1 (b)

fi (1, x2, x3 · · · , xn) = 0 (c)

fi (1, x2, x3 · · · , xn) = 1 (d)

In the computation of bijection, exactly, one of the equations from (a,b) and one of the
equations from (c,d) will hold.
Since the pair of equations (a,c) and (b,d) cannot hold simultaneously due to the bijection,
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x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f ′

1−→

x1 x2 x3

1 0 0
0 0 1
0 1 0
0 1 1
0 0 0
1 0 1
1 1 0
1 1 1

f ′

2−→

x1 x2 x3

1 1 0
0 0 1
0 1 0
0 1 1
0 0 0
1 0 1
1 0 0
1 1 1

f ′

3−→

x1 x2 x3

1 1 1
0 0 1
0 1 0
0 1 1
0 0 0
1 0 1
1 0 0
1 1 0

g′

2−→

x1 x2 x3

1 1 1
0 1 1
0 1 0
0 0 1
0 0 0
1 0 1
1 0 0
1 1 0

g′

1−→

x1 x2 x3

1 1 1
0 1 1
1 1 0
0 0 1
0 0 0
1 0 1
1 0 0
0 1 0

Table 4.5: Table

therefore, the only two possible pairs of equations (a,d) and (b,c) will hold. But the pair
(a,d) will define the mapping

fi (x1, x2, x3 · · · , xn) = x1

and the pair (b,c) defines
fi (x1, x2, x3 · · · , xn) = x1 + 1

Therefore for all cases
fi(x1, · · · , xn) = x1 + h(x2, · · · , xn)

where, h(x2, · · · , xn) = 0, for the pair (a,d)

and, h (x2, · · · , xn) = 1, for the pair (b,c)

.

4.2 Computing General Boolean Mappings

In this section, we describe the in situ computation of mappings over {0, 1}n with the
supposition that two different vectors may have the same image that is not the case for
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bijective mappings. we will describe upper bound over the length of the program that we
use to compute these mappings. We describe some basic definitions that will help to prove
the assertions. We will use the mapping φ : {0, 1}n −→ {2n} defined as

φ(x1, x2, x3, . . . , xn) = 2n−1.xn + . . . + 22.x3 + 2.x2 + x1,∀n > 0

and we also make use of simple mapping (that can be computed with n assignments ) to
prove the upper bound over the length of program.
The idea consist in decomposing the mapping E of {0, 1}n in F ◦ P ◦G where F and G are
bijective and P is simple. This will lead to a sequence of 5n−4 assignments to compute the
mapping E.

Definition 6. For every M > 0, a mapping f on {0, . . . ,M} is a step mapping if for every
0 ≤ x ≤ y ≤ M :

0 ≤ f(y) − f(x) ≤ y − x

In particular one has f(x) ≤ f(x + 1) ≤ f(x) + 1. A mapping E on {0, 1}n is simple if the
mapping E′ on [2n] such that

E(x) = y ⇔ E′(φ(x)) = φ(y)

is a step mapping.

Proposition 5. Every simple mapping E on {0, 1}n, ∀n > 0, is computed by an in situ
program of length n of the form

p1, p2, . . . , pn

precisely, for E(x1, x2, x3, . . . , xn) = y1, y2, y3, . . . , yn and for each i = 1, 2, . . . n

pi(y1, . . . , yi−1, xi, . . . , xn) = yi

Proof. For n input variables the n assignments are minimal. Therefore each function pi

must return its correct final value to each of its corresponding component xi. This method
for in situ computation of simple mapping is unique possible. However the correctness of
this method is still remains to prove due to the fact that the mappings being computed are
simple.

Next, we describe a definition that will use to decompose a mapping as a composition of
three mappings.

Definition 7. For n > 0, let E be a mapping on {0, 1}n. A decomposition of E is a triple
of mapping (F, P, G) on {0, 1}n, such that E = F ◦P ◦G with F, G bijective and P simple.

For a given mapping E on {0, 1}n, the decomposition can be build in a way that we
can group the vectors with same images via a bijective mapping G which give intermediary
consecutive images in lexicographical order to vectors with same final images. This will
actually maps the sets E−1(x) for x ∈ {0, 1}n onto consecutive intervals of [2n] via φ ◦ G.
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The second step consists in the identification of vectors with the same final image via a
simple mapping P such that φ ◦ P ◦ φ−1 maps consecutive intervals of [2n] on consecutive
values of [2n]. The third step consists in the attribution of the correct final image value to
each vector obtained by P ◦G via another bijective mapping F , that is F (P (G(x))) = E(x).
Then F is completed arbitrarily to a bijective mapping on {0, 1}n.

Corollary 1. Every mapping E on {0, 1}n is computed by an in situ program of length
5n − 4 of the form

f1, . . . , fn, gn−1, . . . , g1, p2, . . . , pn−1, f
′
n, . . . , f ′

1, g
′
2, . . . , g

′
n

Proof. The proof can be constructed easily by using the above procedure of decomposition.
Suppose that E = F ◦ P ◦ G, i.e. the triple (F, P, G) be the decomposition of E, where
F, G are bijective mappings and P is a simple mapping. It has been proved in theorem 1
that both F and G can be computed by a sequence of 2n − 1 assignments respectively.
Similarly, the simple mapping P can be computed by a sequence of n assignments as proved
in proposition 5. Combining these number of assignments E, then can be computed by a
sequence of 5n − 2 assignments, of the form

f1, . . . , fn, gn−1, . . . , g1, p2, . . . , pn−1, f
′
n, . . . , f ′

1, g
′
2, . . . , g

′
n

Two more assignments can be reduced by selecting a sequence of 2n−1 assignments in such
a way that it begins with the first variable for G and with the last for F . Moreover, two
successive assignments of the same component can be combined into a single assignment.
Therefore, g1, p1 can be replaced by a single assignment g1 and pn, f ′

n can be replaced by
the assignment f ′

n.
Finally, we will get a sequence of 5n − 4 assignments.

Definition 8. A mapping v : [2n] −→ N defined by v(0) + . . . + v(2n − 1) = 2n is called

valuation. We denote v(l), the value of l ∈ [2n], and by extension v(A) =
∑

l∈A

v(l) for

A ⊆ [2n].
A valuation v is called boolean compatible if ∀ i such that 0 ≤ i ≤ n and all 0 ≤ j < 2n−i.

∑

j2i≤l<(j+1)2i

v(l) = 0 mod 2i

Definition 9. Let v be the valuation, a mapping Pv : {0, 1}n −→ {0, 1}n is called projection
of v such that for l from 0 to 2n − 1, v(l) consecutive elements of {0, 1}n are mapped onto
φ−1(l), beginning with (0, . . . , 0) ∈ {0, 1}n for the first l with v(l) 6= 0. Pv is a simple
mapping.

Lemma 7. Let v be a boolean-compatible valuation.
For Ii,j = φ−1([j2i, (j + 1)2i − 1]) and for some k, k′ ∈ [2n−i],
where 0 ≤ i ≤ n and j ∈ [2n−i], we have

P−1
v (Ii,j) =

⋃

k≤l≤k′

Ii,l
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Proof. Suppose that the converse image of an interval of [2n] by the mapping φ is an interval
of {0, 1}n. Also, the converse image of an interval {0, 1}n by the mapping Pv is an interval of

{0, 1}n due to the fact that Pv is a simple mapping. we have |P−1
v (Ii,j)| =

∑

j2i≤l<(j+1)2i

v(l)

by definition of Pv

For all l ∈ φ(I, i, j), if v(l) = 0 then P−1
v (Ii,j) may be empty. we have

∑

j2i≤l<(j+1)2i

v(l) =

0 mod 2i, due to the fact that v is boolean compatible. Thus |P−1
v (Ii,j)| = 0 mod 2i. By

induction on j for a fixed i, the result can be proved. If j = 0 then |P−1
v (Ii,0)| = k.2i for some

k ∈ [2n−i]. If P−1
v (Ii,j) is not empty, then it is an interval of {0, 1}n containing (0, . . . , 0)

by definition of Pv. Since this interval has a lenght k.2i multiple of 2i, it is of the form
⋃

0≤l≤k

Ii,l. If the property is true for all l with 0 ≤ l < j, then P−1
v (

⋃

0≤l<j

Ii,l) =
⋃

0≤l<j′

Ii,l.

Since |P−1
v Ii,j | = k.2i for some k ∈ [2n−i], we must have P−1

v (
⋃

0≤l≤j

Ii,l) =
⋃

0≤l≤j′+k

Ii,l,

hence P−1
v (Ii,j) =

⋃

j′<l≤j′+k′

Ii,l

Lemma 8. Let v be a boolean compatible valuation. Let a, b ∈ {0, 1}n, and let 1 ≤ i ≤ n.,
If for all l ≥ i we have al = bl, then for all l ≥ i we have Pv(a)l = Pv(b)l

Proof. We want to prove that al = bl =⇒ Pv(a)l = Pv(b)l.
Suppose that Pv(a)l 6= Pv(b)l. Using lemma 7 there exist l, where, k ≤ l ≤ k′ such that
al 6= bl.
A contradiction. Hence our supposition is wrong.

Proposition 6. Let E be a bijective mapping on {0, 1}n computable by an in situ pro-
gram f1, . . . , fn. Then the mapping E ◦ Pv is computed by an in situ program of the form
p1, p2, . . . , pn, where v is a boolean compatible valuation. Precisely, for E(x1, x2, . . . , xn) =
(y1, . . . , yn) and for each i = 1, 2, . . . , n: pi(y1, . . . , yi−1, xi, . . . , xn) = yi

Proof. To prove the assertion, we use the same argument as used for the computation of
simple mappings i.e. due to the fact that the number of assignments is minimal, necessarily
each function pi must give its correct final value to each component xi. But the correctness
of the method is still to be proved.
On contrary basis, suppose that, at some step i, two different vectors x, x′ become the same
vector, say z, whereas their final images y = E ◦ Pv(x) and y′ = E ◦ Pv(x′) are different.
Because, now, they become the same vector, one has yi−1 = y′

i−1 = zi−1, . . . , y1 = y′
1 = z1.

On the other side, one has xn = x′
n = zn, . . . , xi = x′

i = zi which implies, by lemma 8
Pv(x)l = Pv(x′)l = z′l for all l ≥ i.
Assume Pv(x) 6= Pv(x′). Since E is bijective, then the mapping E′ programmed by the
sequence f1, . . . , fi−1 is also bijective. But since E is programmed by f1, . . . , fn, where
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each component is modified at most once, we must have E′(Pv(x)) = E′(Pv(x′)) =
(z′n, . . . , z′i, z

′
i−1, . . . , z1). A contradiction. Hence Pv(x) = Pv(x′) and y = y′

Definition 10. A boolean compatible decomposition of E defined over {0, 1}n for n > 0 is
a triple of mappings (F, P, G) on {0, 1}n, such that E = F ◦P ◦G with F , G bijective and P
is the projection Pv of a boolean compatible valuation v = v′ ◦ σ, where v′(l) is the number
of elements of which image by E is φ(l).

We describe an algorithm in the following that build one of the mapping as described in
the above definition.

Algorithm:

Define a valuation v by v(l) = |E−1(φ(l))|
Define a permutation σ such that v ◦ σ is boolean-compatible
Define a bijection G of {0, 1}n compatible with v ◦ σ
Set i=0;
for l from 0 to 2n − 1 do

for j from 1 to v ◦ σ(l) do
for every x ∈ {0, 1}n with E(x) = φ(l) do

G(x):=φ−1(i);
i:=i+1;

end

end

end
Define P = Pv;
Define a bijection F of {0, 1}n such that E = F ◦ P ◦ G;
for Every x ∈ {0, 1}n do

F(P(G(x))):=E(x);
end
Complete the definition of F, keeping F bijective.

Theorem 2. Every mapping E on {0, 1}n is computed by an in situ program of length 4n−3
of the form

f ′′
1 , . . . , f ′′

n , g′′n−1, . . . , g
′′
2 , f1, . . . , fn, g′n−1, . . . , g

′
1

Proof. Let (F, P, G) be a boolean-compatible decomposition of E (definition 10) . Let
f ′
1, . . . , f

′
n, g′n−1, . . . , g

′
1, resp f ′′

1 , . . . , f ′′
n , g′′n−1, . . . , g

′′
1 be the sequence of 2n − 1 assignments

computing F , resp, G, by theorem 1. Let F ′ be the mapping on {0, 1}n defined by the
sequence f ′

1, . . . , f
′
n. Then by proposition 6 the mapping F ′ ◦ P is computed by a sequence

of n assignments f1, . . . , fn. Then E is computed by the sequence of 4n − 2 assignments
f ′′
1 , . . . , f ′′

n , g′′n−1, . . . , g
′′
1 , f1, . . . , fn, g′n−1, . . . , g

′
1, where the indices are the indices of the con-

cerned variables. Of course g′′1 , f1 can be replaced by a single g1. Then we have a sequence
of 4n − 3 assignments.
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Next, we introduce a method for the case of boolean bijective mappings via algebraic
operations over polynomials in GF (2).

4.3 A First Tool

In this section, we describe a method that computes a boolean function linear in x1 and
y1, where y1, y2, y3, . . ., yn are bijective mappings over x1, x2, x3, . . ., xn and x1, x2, x3,
. . ., xn are inverse bijective mappings over y1, y2, y3, . . ., yn. In the context of Lemma 6,
this will lead to the existence of in situ computation of bijective boolean mappings. Further
investigation will lead to design an efficient algorithm that will help to reduce the complexity
and ultimately to reduce the memory usage.

4.3.1 The Algorithm

Consider boolean bijective mappings as given below:

y1 := f1 (x1, x2, x3, · · · , xn)

y2 := f2 (x1, x2, x3, · · · , xn)

y3 := f3 (x1, x2, x3, · · · , xn)

· · · · · · · · · · · ·

yn−1 := fn−1 (x1, x2, x3, · · · , xn)

yn := fn (x1, x2, x3, · · · , xn)

We are interested to compute a polynomial that is linear both in x1 and y1. We can compute
such kinds of polynomial by proceeding the following steps.
Step-1:
Compute the inverse mappings of each of y1, y2, y3, · · · , yn−1, yn. These inverse mappings
can be written as

x1 := g1 (y1, y2, y3, · · · , yn)

x2 := g2 (y1, y2, y3, · · · , yn)

x3 := g3 (y1, y2, y3, · · · , yn)

· · · · · · · · · · · ·

xn−1 := gn−1 (y1, y2, y3, · · · , yn)

xn := gn (y1, y2, y3, · · · , yn)

64



CHAPTER 4. IN SITU COMPUTATION OF BOOLEAN MAPPINGS 4

Step-2:
Compute the possible products of permutations of y1, y2, y3, · · · , yn−1, yn.

y1y2, y1y3, · · · , y1yn

y2y3, y2y4, · · · , y2yn

y3y4, y3y5, · · · , y3yn

· · · · · · · · · · · ·

y1y2y3, y1y2y4, · · · , y1y2yn

y1y3y4, y1y3y5, · · · , y1y3yn

· · · · · · · · · · · ·

y1y2y3y4, y1y2y3y5, · · · , y1y2y3yn

y1y2y3y4y5, y1y2y3y4y6, · · · , y1y2y3y4yn

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Step-3: Compute the possible products of permutations of x1, x2, x3, · · · , xn−1, xn e.g.

x1x2, x1x3, · · · , x1xn

x2x3, x2x4, · · · , x2xn

x3x4, x3x5, · · · , x3xn

· · · · · · · · · · · ·

x1x2x3, x1x2x4, · · · , x1x2xn

x1x3x4, x1x3x5, · · · , x1x3xn

· · · · · · · · · · · ·

x1x2x3x4, x1x2x3x5, · · · , x1x2x3xn

x1x2x3x4x5, x1x2x3x4x6, · · · , x1x2x3x4xn

· · · · · · · · · · · ·

· · · · · · · · · · · ·

We want to obtain a polynomial of the form

y1 + h1 (y2, y3, y4, · · · , yn) = x1 + h2 (x2, x3, x4, · · · , xn) (4.1)

We can introduce coefficients (a1, a2, a3, · · · , ai, · · · , ) to generate an expression of the form

y1 + a1y2 + a2y3 + a3y2y3 + · · · (4.2)

Eliminate the products involving x1, and establish a system of equations in variables,
a1, a2, · · · , ai, , · · · . Substituting back these values of a1, a2, · · · , ai, , · · · in (4.2), we will
have the required polynomial.

65



4.3. A FIRST TOOL 4

4.3.2 Explanation and Construction

Consider the boolean bijective mappings as given below:

y1 := 1 + x2 + x1x3

y2 := 1 + x1 + x2 + x1x2 + x2x3 + x1x3

y3 := x1 + x2 + x3 + x2x3

These mappings can be represented in the form of a table as given below: To compute the

x1 x2 x3 y1 y2 y3

0 0 0 1 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 1
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 1 0 0

Table 4.6: Truth Table 2

polynomial that is linear in x1 as well as in y1, we will proceed as follows.
Compute the possible products as given below:

y1y2 := 1 + x1 + x2 + x1x2

y1y3 := x1 + x3 + x1x2 + x2x3

y2y3 := x3 + x1x3

y1y2y3 := x3 + x2x3 + x1x3 + x1x2x3

Compute the Inverse mappings:

x1 := 1 + y1y3 + y2y1 + y3

x2 := 1 + y1y3 + y2y3 + y2

x3 := y1 + y2 + y1y3

Compute the possible products:

x1x2 := 1 + y2 + y3 + y2y3

x1x3 := y1 + y2 + y1y3 + y2y3

x2x3 := y1 + y2y3 + y1y3 + y2y1

x1x2x3 := y1 + y1y3 + y2y1 + y1y3y2
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For α, β and γ we can make an expression

y1 + αy2 + βy3 + γy3 (4.3)

= (1 + x2 + x1x3)

+ α (1 + x1 + x2 + x1x2 + x2x3 + x1x3)

+ β (x1 + x2 + x3 + x2x3)

+ γ (x3 + x1x3)

We can establish a system of equations by comparing the coefficients of unwanted products
e.g. x1x3 etc.

1 + α + γ = 0

α = 0

α + β = 1

=⇒ β = 1, γ = 1

Substituting the values of α, β and γ in (4.3), we get the required solution. Hence the
solution that is linear in x1 and y1 is given as under.

x2x3 + x1 := 1 + y1 + y2y3 + y3
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Chapter 5
Maple Implementation

In this chapter, we describe complete code of algorithms that we have discussed in the
previous chapters. We implemented these algorithms in Maple language.

5.1 Algorithm {In situ computation over Z} :

❼ In this section, we describe an In Situ algorithm that can compute linear mappings
sequentially over the set of integers Z. We split the algorithm in three parts so that it
is convenient to illustrate. This algorithm takes a square matrix as input and return
the corresponding sequence of assignments as out put. Moreover it return the number
of assignments used.

Input: Square matrix and its size
Output: Assignments
Assignments:=proc();
Local variables i, j, s;
Global variables P, M, N;
for i from N by −1 to 1 do

s := 0;
for j to N do

s := s + M [i, j] ∗ x[j];
end
P := [op(P ), x[i] = s];

end
End proc:

Algorithm 1: First part of the Algorithm
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Input: Square matrix and its size
Output: Lower Triangular Matrix
Lower Triangular:=proc();
Local variables i, j, a;
Global variables P, M, N, x, X, Z;
P:=[];
This section will triangulate the matrix;
for i from 1 to N do

for j from i+1 to N do
Coloperations(i,j);
print(i,j,M);

end

end
print(”Lower Triangular Matrix”);
print(M);
print(”Assignments are:”);
Assignments();
print(P);
print(”Number of assignments=”,nops(P));
print(”Verification”);
for i to N do

X[i] := Z[i];
end
for a in P do

for i to N do
if op(1, a) = x[i] then

X[i] := eval(subs(x = X, op(2, a)));
end

end

end
for i to N do

print(X[i]);
end
End proc;

Algorithm 2: Second part of the Algorithm

We split the algorithm in three parts so that it could be adjusted on the page. Next, we
will describe the third part of the algorithm, that take Square matrix and its size as input,
perform column operations and return the corresponding sequence of assignments.
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Local variables a, b, c, cc, d, dd, k, Global variables P, M, N;
while M [i, j] 6= 0 do

a := M [i, i];
b := M [i, j];
if b < 0 then

P := [op(P ), x[j] = −x[j]];
for k to N do

M [k, j] := −M [k, j];
end

end
else if a < 0 then

P := [op(P ), x[i] = −x[i]];
for k to N do

M [k, i] := −M [k, i];
end

end
else if a > b then

cc := trunc(a/b);
dd := cc − 1;
d := amod b;
if d = 0 then

P := [op(P ), x[j] = dd ∗ x[i] + x[j]];
for k to N do

M [k, i] := M [k, i] − dd ∗ M [k, j];
end

end
else

P := [op(P ), x[j] = cc ∗ x[i] + x[j]];
for k to N do

M [k, i] := M [k, i] − cc ∗ M [k, j];
end

end

end
else if a = 0 then

P := [op(P ), x[j] = x[i] + x[j]];
for k to N do

M [k, i] := M [k, i] − M [k, j];
end

end
else if b >= a then

c := trunc(b/a); P := [op(P ), x[i] = x[i] + c ∗ x[j]];
for k to N do

M [k, j] := M [k, j] − c ∗ M [k, i];
end

end

end
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5.2 Algorithm {Computing Boolean polynomial} :

❼ The Algorithm construct truth tables and then bijective boolean mappings from these
truth tables. It forms a system of equations and finally return possible polynomials
that are linear both in x1 and y1.

N:=3 (any integer); M := 2N ;
binary:= proc(a,k);
local variables i,l,b;
b:=a; l:=[];
for i to k do

l:=[b mod 2, op(l)];
b := trunc(b/2);

end
l;
End proc:

Algorithm 3: A part of the Algorithm 5.2

binaryL:= proc(a,k);
local variables i,l,b;
b:=a; l:=[];
for i to k do

l:=[op(l),b mod 2];
b:=trunc(b/2);

end
l;
End proc: for i to M do

X[i]:=binary(i-1,N);
end
End proc:

Algorithm 4: A part of the Algorithm 5.2
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sous:=proc(f, p);
Local variables a, ok;
ok:=false; for a in f do

if convert(expand(a + p), mod2) = 0 then
ok:=true;

end

end
ok;
End Proc:

Algorithm 5: A part of the Algorithm 5.2

fctx:= proc(l);
local variables i, j, k, s, p;
global variable X;
s := 0;
for i to M do

if l[i] = 1 then
p:=1;
for k from 1 to N do

if X[i][k]=1 then
p := p ∗ x[k] else

p := p ∗ (1 + x[k])
end
;

end

end
s := s + p + p ∗ s;

end

end
s:=convert(expand(s), mod2);
s;
End proc:

Algorithm 6: A part of the Algorithm 5.2
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fcty:=proc(l);
Local variables i, j, k, s, p;
Global variable Y;
s:=0;
for i to M do

if l[i]=1 then
p:=1;
for k from 1 to N do

if Y[i][k]=1 then
p := p ∗ y[k];
else

p := p ∗ (1 + y[k])
end
;

end

end
s := s + p + p ∗ s;

end

end
s := convert(expand(s), mod2);
s;
End proc:

Algorithm 7: A part of the Algorithm 5.2
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test:=proc(f) ;
for i to M do

Y[i]:=binary (f[i],N);
end
print(”——————————————————————————–”);
print(f);
for i to M do

print(X[i],Y[i]);
end
for j to N do

l:=[];
for i to M do

l:=[op(l),Y[i][j]];
end
YY[j]:=fctx(l);

end
for j to N do

l:=[];
for i to M do

l:=[op(l),X[i][j]];
end
XX[j]:=fcty(l);

end
print(”MAPPING”);
s:=[];
for j to N do

s:=[op(s),y[j]];
end
ss:={};
for j to N do

ss:=ss union {y[j]=YY[j]};
end
for k to N do

if k = 2 then
print(”products”);

end
t:=combinat[choose](s,k);
for pp in t do

p:=1;
for a in pp do

p := p ∗ a;
end
q:=subs(ss,p);
q:=convert(expand(q),mod2);
print(p,”===”,q);

end

end
Algorithm 8: A part of the Algorithm 5.2

74



CHAPTER 5. MAPLE IMPLEMENTATION 5

print(”INVERSE MAPPING”);
s:=[];
for j to N do

s:=[op(s),x[j]];
end
ss:={};
for j to N do

ss:=ss union {x[j]=XX[j]};
end
for k to N do

if k=2 then
print(”products”);

end
t:=combinat[choose](s,k);
for pp in t do

p:=1;
for a in pp do

p := p ∗ a;
end
q:=subs(ss,p);
q:=convert(expand(q),mod2);
print(p,”===”,q);

end

end
print(”SOLUTIONS THAT ARE LINEAR IN Y1 and X1”);
col([0]); print(”SOLUTION BY LINEAR SYSTEM”);
syst();
End Proc:

Algorithm 9: A part of the Algorithm 10

prx:= proc(k);
Local variables i,l,p;
Global variables N; l:=binaryL(k,N);
p:=1;
for i to N do

if l[i] = 1 then
p := p ∗ x[i];

end

end
p;
End proc

Algorithm 10: A part of the Algorithm 5.2

75



5.2. ALGORITHM {COMPUTING BOOLEAN POLYNOMIAL} : 5

syst:=proc();
Local variables Z, i, j, p, px, py, pyx, s, c, k;
Global variables XX,YY,M;
s := (k[y[1]] = 1);
print(”CONDITIONS”);
print(”MUST BE LINEAR IN Y1==¿”,s);
s := s;
for i to M-1 do

px:=prx(i);
if has(px,x[1]) then

c:=0;
for j to M-1 do

py:=pry(j);
pyx:=pryx(j);
if sous(pyx + Z, px)and((py = y[1])ornothas(py, y[1])) then

c := c + k[py];
end

end
if px = x[1] then

c := (c = 1);
else

c := (c = 0)
end
;

end
if c 6= (0 = 0) then

s := sunionc;
end
if px = x[1] then

cond:=”MUST CONTAIN” ;
else

cond:=”MUST HAVE NO”
end
;

end
print(cond, px,”===¿”,c);

end

end
Algorithm 11: A part of the Algorithm 5.2
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print(”THE LINEAR SYSTEM IS”);
print(s);
s:=msolve(s,2);
print(”THE GENERAL SOLUTION FORM IS”);
print(s);
s := subs(Z1 = 0, s);
s := subs(Z2 = 0, s);
s := subs(Z3 = 0, s);
s := subs(Z4 = 0, s);
s := subs(Z5 = 0, s);
s := subs(Z6 = 0, s);
s := subs(Z7 = 0, s);
s := subs(Z8 = 0, s);
print(”A PARTICULAR SOLUTION IS”);
print(s);
p:=0;
for j to M-1 do

py:=pry(j);
c:=subs(s,k[py]);
if c 6= k[py] then

p := p + c ∗ py;
end

end
print(”SOLUTION FOR THE POLYNOMIAL LINEAR IN X1 and Y1=”,p);
End Proc:

Algorithm 12: A part of the Algorithm 13

idem:=proc(p,q) ;
Local variables i,ok;
ok:=true;
for i from 2 to N do

if (p[i] 6= q[i]) then
ok:=false;

end

end
ok;
End Proc:

Algorithm 13: A part of the Algorithm 5.2
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col:=proc(c) ;
Local variables i, j, k, ok;
k:=nops(c);
ok:=true;
for i to k do

for j from i+1 to k do
if idem(X[i],X[j]) and (c[i]=c[j]) then

ok:=false;
end
if idem(Y[i],Y[j]) and (c[i]=c[j]) then

ok:=false;
end

end

end
if not ok then

else if k=M then
print(fctx(c),”====”,fcty(c));
else

col([op(c),0]);
col([op(c),1]);

end

end

end
End Proc:

Algorithm 14: A part of the Algorithm 5.2

pry:=proc(k);
Local variables i, l, p;
Global variable N;
l:=binaryL(k,N); p:=1;
for i to N do

if l[i]=1 then
p := p ∗ y[i];

end

end
p:=convert(expand(p),mod2);
p;
End proc

Algorithm 15: A part of the Algorithm 5.2
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pryx:=proc(k);
Local variables i, l, p;
Global variables N,YY; l:=binaryL (k,N); p:=1; for i to N do

if l[i]=1 then
p := p ∗ Y Y [i];

end

end
p:=convert(expand(p),mod2); p;
End Proc:

Algorithm 16: A part of the Algorithm 5.2

all:=proc(f) ;
Local variables i;
Global variables M;
if nops(f)=M then

test(f) else
for i from 0 to M-1 do

if not member(i,f) then
all([op(f),i]);

end

end

end

end
End Proc:

Algorithm 17: A part of the Algorithm 5.2
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ex:=proc(k) ;
Local variables f,a;
Global variables M;
if k = 0 then

all([]);
if k=1 then

f:=[];
while nops(f) < M do

a:=rand() mod M;
if not member(a,f) then

f:=[op(f),a];
end

end
test(f);

end

end
End Proc:

Algorithm 18: A part of the Algorithm 5.2
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5.3 Algorithm {In situ computation over Z/NZ}

❼ Algorithm that compute a mapping E over Z/NZ by a sequence of linear assignments.
This algorithm takes a square matrix as input and return the corresponding assignment
matrices as out put. We can construct sequence of linear assignments directly from
these assignment matrices.

gcd–multipliers := proc(x::list, alpha::integer, i::integer);
Local variables tmp , fac, projections,l,j,k,mres;
fac := ifactors(alpha)[2];
projections := []:;
for k from 1 to nops(fac) do

l := [seq(0, j=1..nops(x))];
l[i] := 1;
if igcd(x[i], fac[k][1]) 6= 1 then

for j from 1 to nops(x) do
if igcd(x[j], fac[k][1]) = 1 then

l[j] := 1;
break;

end

end

end
projections := [op(projections), l];

end
tmp := [seq(fac[k,1]ˆfac[k,2], k=1..nops(fac))];
mres := [];
mres :=[op(mres), chrem(projections, tmp)][];
End Proc:

Algorithm 19: A part of the Algorithm 5.3

creatematrix := proc(d::integer);
Local variables M, i;
M := Matrix(d,d,0);
for i from 1 to d do

M[i,i] := 1:
end
return M;
End Proc:

Algorithm 22: A part of the Algorithm 5.3
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isone := proc(M::Matrix);
Local variables i, j;
for i from 1 to RowDimension(M) do

for j from 1 to ColumnDimension(M) do
if M [i, j]! = 1 then

return false:
end

end

end
return true;
End Proc:

Algorithm 20: A part of the Algorithm 5.3
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with(ListTools);
matrixop := proc(Ma::Matrix, N::integer);
Local variables i, j, k, nr, nc, left, right, g, l, T, G, M, U, final, F;
M := copy(Ma);
left := [];
right := [];
nr := RowDimension(M);
nc := ColumnDimension(M);
for k from 1 to min(nr, nc) do

g:= igcd ( seq(M[i,k], i=1..nr) );
if g = 1 then

continue;
end
if igcd(M [k, k]/g,N) 6= 1 then

l := gcd–multipliers([seq(M[i,k]/g, i=1..nr)], N, k);
T := creatematrix(nr)mod N;
for j from 1 to nr do

T[k,j] := l[j];
end
M := Multiply(T , M)mod N: left := [op(left), MatrixInverse(T )modN ];

end
G:= creatematrix(nc);
G[k,k] := M[k,k]: M := Multiply(M , MatrixInverse(G))mod N;
U := creatematrix(nc);
for j from 1 to nc do

U [k, j] := M [k, j];
end
M := Multiply(M , MatrixInverse(U))mod N;
right := [op(right), Multiply(U , G)mod N ];

end
final := [];
for i from 1 to nops(left) do

if isone(left[i]) = false then
final := [op(final), left[i] ];

end

end
for i from nops(right) to 1 by -1 do

if isone(right[i]) = false then
final :=[op(final), right[i]];

end

end
Reverse(final);
End Proc:

Algorithm 21: A part of the Algorithm 5.3
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5.4 Algorithm:

❼ Algorithm that compute a mapping E : Z
m −→ Z

m, m > 2, where Z is a set of
integers, defined as

E : (x1, x2, x3, · · · , xn) =













F1x1 + F2x2 + F3x3 + . . . + Fmxn

F2x1 + F3x2 + F4x3 + . . . + Fm+1xn

F3x1 + F4x2 + F5x3 + . . . + Fm+2xn

· · · · · · · · · · · · · · · · · ·
Fnx1 + Fn+1x2 + Fn+2x3 + . . . + F2n−1xn













such that Fn := Fn−1 + Fn−2, ∀n ∈ Z, can be computed with m + 2 number of linear
assignments. The algorithm takes only 2 initial entries of the square matrix A at positions
a11 and a12 and construct all other coefficients and return the linear assignments that
can compute the mapping E.

Input: integer
Output: fibonacci numbers
oo:= proc(n);
local variables i, f, s;
s:=[1];
f [1] := 1;f [2] := 1;
for i from 2 to n do

f [i + 1] := f [i] + f [i − 1];
s := [op(s), f [i + 1]];

end
End proc;

Algorithm 23: a part of the Algorithm
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Input: integer
Output: assignments
ass:= proc(N);
local variables j, jj, ii, xxx, first, second, m, p, pp, s, xx;
p:=0; pp:=0; first:=2; second:=3 ;
if N ≤ 2 then

print(”N must be greater than 2”);
else

s:=oo(N);
for j from 2 to N do

p:=p+s[j-1]*x[j];
end
xx[1]:=x[1]+p;
for jj from 2 to N-1 do

pp:=pp+s[jj-1]*x[jj+1];
end
print(x[1],”=”,xx[1]);
xx[2]:=xx[1]+x[2]+pp;
print(x[2],”=”,x[1]+x[2]+pp);
xx[3]:=first*xx[1]+second*xx[2];
print(x[3],”=”,first*x[1]+second*x[2]);
if N > 3 then

xx[4]:=xx[3]+((second-first)*xx[1]+first*xx[2]);
print(x[4],”=”,x[3]+(second-first)*x[1]+first*x[2]);
if N > 4 then

for iii from 5 to N do
xx[iii]:=xx[iii-2]+xx[iii-1];

end

end

end
for v from 5 to N do

print(x[v],”=”,x[v-2]+x[v-1]);
end
print(x[1],”:=”,x[3]-((second-first)*(x[1])+(first)*(x[2])));
print(x[2],”:=”,x[3]-x[1]); print(”*******************************”);
xxx[1]:=xx[3]-((second-first)*(xx[1])+(first)*(xx[2])); xxx[2]:=xx[3]-xxx[1];
print(x[1]=xxx[1]); print(x[2]=xxx[2]);
for ii from 3 to N do

print(x[ii]=xx[ii]);
end

end

end
End;
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5.5 Conclusions:

The in situ computation of mapping by a sequence of assignments, without using any
extra variable other than the variables available as input variables, is a new way in code
optimization according to the best of our knowledge. This way of computation helps
directly to reduce the memory usage and ultimately the idea can be implemented in
compiler/processor optimization, register allocation and chip designing.
The sequential decomposition of matrices is a powerful tool for computations of linear
transformations using minimal memory. We prove that, for such computation extra
memory than input variables is not required. We prove the sequential decomposition of
linear mapping over field and extended this idea over the Ring and set of integers. It is
still an open path for the researchers to improve the efficiency of these algorithms and to
find the minimum number of assignments required to compute a linear mapping using in
situ computation. The parallel applications of this work, in the decomposition of matrices
may lead to solve system of linear equations, to triangularize a matrix efficiently etc.
Since the matrices can be triangulate with different methods, therefore we can find the
applications of in situ computations of mappings corresponding to these methods. For
example, Triangularization of a square matrix, using Extended Euclidean Algorithm leads
to find the sequence of linear assignments that can compute linear mappings using in situ
program, consists of these linear assignments. The upper bound, of Extended Euclidean
Algorithm, that has been found by Lame theorem can be helpful to find the number of
assignments used by corresponding in situ program, and the lower bound will yield a new
interesting results both for such algorithms and in situ programs.

We have also described that in situ computation of general and bijective boolean map-
pings and presented a suitable bound for this computation. We introduce a new method on
the basis of bijective boolean mappings via algebraic operations over polynomials in GF2.
This new method is a powerful tool to compute in situ boolean mappings. Initially, this
method compute linear boolean polynomials that are linear both in x1 and y1.
The main motivation of the work presented is the processor performances because the ap-
plication of this work concerns to hardware as well as software in the sense of chip designing
and compiler optimization.
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