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Abstract

A circuit in a simple undirected graph G = (V,E) is a sequence of vertices {v1, v2, . . . , vk+1}
such that v1 = vk+1 and {vi, vi+i} ∈ E for i = 1, . . . , k. A circuit C is said to be edge-simple
if no edge of G is used twice in C. In this article we study the following problem: which is
the largest integer k such that, given any subset of k ordered vertices of an infinite square
grid, there exists an edge-simple circuit visiting the k vertices in the prescribed order? We
prove that k = 10. To this end, we first provide a counterexample implying that k < 11.
To show that k ≥ 10, we introduce a methodology, based on the notion of core graph, to
reduce drastically the number of possible vertex configurations, and then we test each one
of the resulting configurations with an ILP solver.

Keywords: square grid, edge-simple circuit, prescribed vertices, ILP solver.

1 Introduction

A circuit in a simple undirected graph G = (V,E) is a sequence of vertices {v1, v2, . . . , vk+1}
such that v1 = vk+1 and {vi, vi+i} ∈ E for i = 1, . . . , k. A circuit C is said to be edge-simple
if no edge of G is used twice in C. An edge-simple circuit is also called closed trail in the
literature. The existence of a circuit through a prescribed set of vertices or edges has been an
important graph-theoretical question for many years [Dir60,Lov76,HT82,Kaw04,BL81,BH91,
EHL84, EGL91, KL82, ABHM99, GHHT04, FS92]. Typically, high connectivity is a powerful
sufficient condition for the existence of such circuits. For instance, it is well known that in
a k-vertex-connected graph any subset of k nodes [Dir60] or any subset of k − 1 independent
edges [HT82] is included in a cycle. A circuit C is a cycle if no vertex of G is used twice in C,
except for v1 = vk+1.

However, knowing specific properties of the graph often permits to prove much stronger
results. In this article we focus on the existence of edge-simple circuits through specified vertices
in the infinite square grid (or equivalently, a large enough torus), which is a widely studied 4-
connected graph. In addition, we do not require the circuit only to visit a subset of vertices, but
also to visit them in a prescribed order. It is clear that such a circuit in the square grid always
exists for any ordered subset of 4 vertices. After thinking for a few minutes it is also easy to
convince oneself that the same holds for 5 vertices. On the other hand, it seems intuitive to
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suspect that this property will not be true for an arbitrary large subset of ordered vertices of the
square grid. Therefore, the following question arises: which is the largest integer k such that,
given any subset of k ordered vertices of an infinite square grid, there exists an edge-simple
circuit visiting the k vertices in the prescribed order? Here, we prove that k = 10.

To obtain this result, one has a priori to test the existence of an edge-simple circuit visiting
k vertices in the prescribed order on the grid, for all possible placements and orderings of the k
vertices. Since the number of possible placements and orderings is prohibitively large, we intro-
duce a methodology, based on the notion of core graph, to reduce the number of configurations
to be tested. We first provide some background and motivations for the problem in Section 2.
We then show in Section 3 that checking the feasibility of a configuration on the grid is equiv-
alent to checking its feasibility on an auxiliary graph, called internal graph. Then, in Section 4
we introduce the notion of core graphs to reduce drastically the number of internal graphs to
be tested. In Section 5 we give a counterexample establishing the upper bound k ≤ 10. In Sec-
tion 6 we match this upper bound with an ILP solver to exhaustively test all the orderings for a
small list of possible configurations that we obtained after applying the reductions of Sections 3
and 4. Finally, Section 7 concludes the article.

2 Background and Motivation

Connectivity is one of the cornerstone concepts of graph theory. Maybe the most archetypal
results are Menger’s classical theorems [Die05], which say that a graph is k-vertex-connected
(resp. k-edge-connected) if and only if it contains k vertex-disjoint (resp. edge-disjoint) paths
between any two vertices. There is a huge literature concerning extremal problems of cycles
in k-connected graphs. For instance, it is well known that in a k-vertex-connected graph any
subset of k nodes [Dir60] or any subset of k−1 independent edges [HT82] is included in a cycle.
There are a number of works giving necessary or sufficient conditions for the existence of a cycle
through a specified set of vertices in a general graph [Kaw04,BL81,EGL91,KL82].

Some stronger results have been given for specific classes of graphs, like 3-connected cubic
graphs [EHL84,EGL91]. For this class of graphs it is known that there exists a cycle through
any 9 vertices, and that there exists a cycle which passes through any 10 given vertices if and
only if the graph is not contractible to the Petersen graph [EHL84] in such a way that each of
the 10 vertices maps to a distinct vertex of the Petersen graph. If, in addition, the 3-connected
cubic graph is planar, then there exists a cycle through any 23 vertices [ABHM99]. Another
example can be found in [FS92], where the authors provide necessary and sufficient conditions
for a given graph embedded on the torus to contain edge-disjoint cycles satisfying prescribed
topological properties.

The disjoint paths problem. Observe that, in a general (di)graph, the problem of deciding
whether there exist edge-disjoint paths between given pairs of vertices is NP-complete [Kar75]
(even if the graph is a square grid [Kv82]). When the number of pairs of vertices is bounded by
a constant, the disjoint paths problem is polynomial in undirected graphs [RS95], NP-complete
in directed graphs [LR80] (even with only two pairs of vertices [FHW80]), and polynomial in
symmetric directed graphs [JP09].

However, all these results do not take into account the order in which the cycle visits the
prescribed set of nodes. This is a natural constraint, since for example in telecommunication
networks it may be important to connect a subset of nodes in such a way that each node
numbered i has capability to communicate only with the two nodes numbered i − 1 and i + 1
(modulo the cardinality of the subset of nodes). This could be the case, for instance, of the
classical token ring networks defined by the standard IEEE 802.5. That is, there exists a whole
class of problems to consider when the constraint on the order is introduced. In this article we
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Figure 1: A configuration X (defined by the full dots) and its corresponding internal graph G.

study one of these problems in square grids.
When designing a telecommunication network, the fault tolerance is a crucial issue. Observe

that the simplest network which is able to support any single link failure is an edge-simple
circuit, and that is one of the main reasons why the study of such circuits is important. The
study of the square grid is also natural, due among other reasons to its extensive use in parallel
computing. In this context, it is interesting to know which is the largest integer k for which
there always exists a circuit visiting any ordered subset of at most k nodes. Observe also that
without taking into account the ordering, there exists a cycle (and thus, a circuit) visiting any
subset of vertices of the square grid, since the square grid is a Hamiltonian graph.

It is worth mentioning that the square grid is in some sense the common skeleton of planar
graphs. Indeed it is well-known that every planar graph of branchwidth at least ℓ contains an
(⌊ℓ/4⌋ × ⌊ℓ/4⌋)-grid as a minor [RST94]. Therefore, a square grid is inside every planar graph,
and any edge-disjoint circuit in a minor of a graph can be easily transformed to an edge-disjoint
circuit in the graph itself.

3 Preliminaries

In this section we introduce some definitions to be used throughout. We use standard graph
terminology (see, for instance, [Die05]).

Definition 1 (Configuration, feasible configuration) A configuration X is a subset of ver-
tices of the infinite square grid. A configuration X is feasible if, for any permutation σ of the
vertices of X, there exists an edge-simple circuit in the infinite square grid joining the vertices
of X following the ordering given by σ.

Definition 2 (Internal graph, internal and external degree) Given a subset
X = {u1, . . . , un} of nodes in the square grid, the internal graph G = (V,E) of X is the graph
with V = {v1, . . . , vn}, and for ui, uj ∈ X, {vi, vj} ∈ E if and only if ui and uj are on the same
row (or column) and there is no other z ∈ X between ui and uj on that row (or column).

Given u ∈ X, the internal degree din(u) of u is the degree of u in the internal graph G of
X, i.e., dG(u). Similarly, the external degree of u ∈ X is dout(u) = 4− din(u). A vertex u ∈ X
is isolated if din(u) = 0.

For example, in Fig. 1, a configuration X in the square grid (defined by the full dots) and
its corresponding internal graph G are depicted. The vertex labeled u satisfies din(u) = 3 and
dout(u) = 1.

Since we deal with an infinite square grid, any two vertices of an internal graph G with
external degree at least one can be connected with a path in the grid without using any edge of
G. This is because a vertex that has external degree at least one has no neighbor in the internal
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Figure 2: Some feasible internal graphs on 10 vertices.

graph along an infinite semirow or semicolumn of the grid. This fact can be modeled in the
following way: given an internal graph G, we construct a (multi)graph Ĝ from G by adding a
new vertex ∞ and, for each vertex u ∈ V (G), dout(u) copies of the edge {u,∞}.

Definition 3 (Feasible internal graph) An internal graph G is feasible if, for all the per-
mutations σ of the vertices of G, there exists an edge-simple circuit in Ĝ joining the vertices of
G following the ordering given by σ.

The following lemma follows easily from the above definitions.

Lemma 3.1 A configuration X is feasible if its internal graph G is feasible.

Observe that the fact that G is feasible is a sufficient (but not necessary) condition for X
to be feasible. Intuitively, the internal graph captures the most difficult case among all the
configurations having the same internal graph.

Before getting into technical results, and in order to get familiar with the problem, the
curious reader may verify that the internal graphs on 10 vertices depicted in Fig. 2 (together
with a numbering of their vertices) are feasible. We shall see in Section 6 that this fact is not
a coincidence, since any configuration on 10 vertices is feasible.

4 Reducing the Problem

We now prove several technical lemmata to be used in the sequel of the article. The objective
is to reduce the number of configurations to be tested.

Lemma 4.1 Any internal graph in which all vertices have external degree at least 2 is feasible.

Proof: Let G be an internal graph in which all vertices have external degree at least 2,
and assume that the vertices are ordered v1, v2, . . . , vk by the permutation σ. Then the circuit
{v1,∞, v2,∞, v3, . . . , vk−1,∞, vk,∞, v1} is a solution in G. �

Lemma 4.2 If an internal graph G is feasible then any internal graph H that is a subgraph of
G is feasible.

Proof: Let G be a feasible internal graph, and let H be a subgraph of G. Assume first that
|V (H)| = |V (G)|, and let v1, . . . , vk be an ordering of the vertices of H. Consider a solution
C in G for the same ordering v1, . . . , vk of the vertices of G. A solution in H is obtained from
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Figure 3: We can restrict ourselves to core graphs. An arrow from a graph G to a graph H
means that if G is feasible, so is H (due to either transformation T1 or transformation T2).

C by replacing each each {u, v} ∈ E(G) \ E(H) with the edges {u,∞}, {∞, v}. Otherwise, if
|V (H)| = k < n = |V (G)|, given an ordering v1, . . . , vk of V (H), consider a solution C in G for
an ordering of V (G) that coincides with v1, . . . , vk when restricted to V (H). Then the above
replacement transforms C into a solution in H. �

The proofs of the three following lemmas can be found in [CGS09]. Two internal graphs G1

and G2 are said to be equivalent if G2 is feasible if and only if G1 is.

Lemma 4.3 Any two isomorphic internal graphs G1 and G2 are equivalent.

Lemma 4.4 If an internal graph G is feasible, then any internal graph G′ that can be obtained
from G via the following transformation T1 is also feasible:

(1) Choose from G an isolated vertex u and an edge {x, y}.

(2) Remove u, add a new vertex v, and replace the edge {x, y} with the edges {x, v}, {v, y}.

Lemma 4.5 If an internal graph G is feasible, then any internal graph G′ that can be obtained
from G via the following transformation T2 is also feasible:

(1) Choose from G two vertices u and w, such that u is isolated and din(w) ≤ 3.

(2) Remove u, and add a new vertex v and the edge {w, v}.

Combining inductively Lemmas 4.4 and 4.5, we deduce that if G′ is an internal graph
obtained from a feasible graph G with a sequence of the transformations T1 and T2, then G′ is
also feasible. In practice, this means that in any internal graph we can take the vertices that
lie in the middle of a path and the vertices with internal degree one, and put them as isolated
vertices. If the resulting graph is a feasible internal graph, then by Lemmas 4.4 and 4.5, so is
the original one. In other words, we can restrict ourselves to internal graphs G whose connected
components (except isolated vertices) have at least two vertices in each row and each column.

Definition 4 (Core graph, ℓ-core graph) An internal graph is a core graph if all its non-
edgeless connected components have at least two vertices in each row and each column. A core
graph G on k vertices is an ℓ-core graph if G has k − ℓ isolated vertices.

Lemmas 4.4 and 4.5 imply that we can restrict ourselves to core graphs. For instance,
consider the example of Fig. 3. The leftmost internal graph (which is the same example of
Fig. 1) can be obtained by a sequence of the transformations T1 and T2. Thus, to prove that
the three internal graphs of Fig. 3 are feasible it is enough to prove it for the rightmost graph,
which is a 7-core graph.

This simplification reduces the number of configurations dramatically. In particular, the
above discussion together with Lemma 4.1 proves that all forests are feasible. Therefore, if we
want to know if all the configurations on k vertices are feasible, it suffices to test all the core
graphs on k vertices; this is the topic of Section 6 for k = 10. Summarizing,
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Figure 5: Counterexample (G, σ) of Proposition 5.1 showing that
k < 11, together with the vertex sets defined in the proof.

Proposition 4.1 If all the core graphs on k vertices are feasible, then all the configurations on
k vertices are feasible.

Note that if all the configurations on k vertices are feasible, then clearly so are all the configu-
rations on k′ vertices, for every k′ < k.

We introduce a last criterium to deduce the feasibility of an internal graph on 10 vertices.
The proof can be found in [CGS09].

Lemma 4.6 All the 10-core graphs on 10 vertices whose non-edgeless connected components
can be obtained from a triple edge by subdividing edges are feasible.

5 Upper Bound: k < 11

In this section we show an unfeasible counterexample proving that k < 11. For the sake of the
presentation, we first describe a simple configuration showing that k < 12.

Given a set X = {1, 2, 3, . . . , 12} of ordered nodes in a square grid G, let Xe (resp. Xo)
be the subset of nodes of X with an even (resp. odd) number, and note that any path joining
two consecutive vertices must go from Xo to Xe, or viceversa. Let Xo be the set displayed in
Fig. 4. Then, regardless of the placement of Xe, we need at least 12 edges outgoing from the
graph induced by Xo to route the 12 paths, but there are only 10 such edges (the thick edges
in Fig. 4). So, this configuration is unfeasible for any placement of Xe.

Before providing the counterexample showing that k < 11, we need the following definition.

Definition 5 (Internal path) Given an internal graph G, a permutation σ of X, a solution
C to the instance (G, σ), and a subset S ⊆ X, an internal path in S is a subpath P of C linking
two consecutive vertices of X according to σ, such that P is a subgraph of G[S].

Given a subset of vertices S ⊆ X, the paths originating from S are paths with at least one
endpoint in S.

Proposition 5.1 k < 11.

Proof: Let (G, σ) be the internal graph on 11 vertices together with the ordering depicted in
Fig. 5.
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Suppose for the sake of contradiction that there exists a solution C to the instance (G, σ).
Let S = {1, 6, 3, 9, 5, 11, 7} ⊆ X, and let S = {2, 8, 4, 10} (see Fig. 5(a)). Note that there are 12
edges outgoing from G[S] to the rest of the grid.

Claim 1 C contains exactly 1 internal path in S.

Proof: Suppose first that there is no internal path in S. Therefore, each path originating
from S uses at least 2 edges outgoing from G[S]. Since |S| = 7, there must be 14 edges in C
outgoing from G[S] to the rest of the grid, but there are only 12. Therefore, C contains at least
1 internal path in S.

Suppose now that C contains at least 2 internal paths in S. Let S′ = {3, 9} (see Fig. 5(a)),
and note that there are 6 edges outgoing from G[S′]. Note also that the only possible internal
paths in S are 5 → 6, 6 → 7, and 11 → 1, so any internal path in S must cross S′. Therefore,
there can be at most 2 such internal paths, and those 2 paths use 4 edges outgoing from G[S′].
Thus, only 6 − 4 = 2 outgoing edges from G[S′] are left, which are not enough to route the 4
subpaths in C containing the vertices of S′. Therefore, C contains exactly 1 internal path in S.
�

Claim 1 implies all the edges outgoing from G[S] are used by C to route paths originating
at S. Let S1 = {1, 3, 5} and S3 = {2, 4} (see Fig. 5(b)).

Claim 2 C contains at least 2 internal paths from S1 to S3.

Proof: Note that subgraph G[S3] has 6 outgoing edges. Since all the edges outgoing from G[S]
are used by C, exactly 3 paths go from S to S in C. Clearly, the 4 subpaths in C containing
the vertices of S3 use 4 outgoing edges from G[S3]. Note that all paths from S to S3 are from
S1.

If there is no path in C from S1 to S3, then the 3 paths from S to S cross S3, so no
edge outgoing from G[S3] would be left to route the paths originating from S3, which is a
contradiction.

If there is 1 path in C from S1 to S3, then 2 paths from S to S cross S3, so altogether the 3
paths from S to S use 5 out of the 6 outgoing edges from G[S3]. However, 3 additional outgoing
edges from G[S3] would be needed to route the 3 remaining paths originating from S3, which is
a contradiction. �

Consider now S2 = {6, 9, 11} (see Fig. 5(b)). The subgraph G[S2] has 8 outgoing edges, and
6 of them are required in C to route the paths originating at S2, so only 2 edges outgoing from
G[S2] are still available in C. But, by Claim 2, C contains at least 2 internal paths from S1 to
S3 (which cross S2), hence using 4 outgoing edges from G[S2]. The proposition follows. �

6 Lower Bound: k ≥ 10

To show that k ≥ 10, one has a priori to test all the configurations with 10 vertices on the
grid are feasible. But, the number of such configurations is prohibitively big, as testing a
single configuration may take a non-negligible (see discussion below). Hence we introduce a
methodology, based on the notion of core graph (see the results of Section 4), to reduce the
number of configurations to be tested.

A näıve strategy to generate all configurations is to consider all the possibilities of placing 10
points in the square grid. However, we showed in Proposition 4.1 that we only need to consider
core graphs with 10 vertices (Definition 4). In addition, these core graphs can be considered
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modulo isomorphism (Lemma 4.3). It is clear that the smallest integer i such that an i-core on
10 vertices exists is 4, and in that case the non-edgeless connected component of the 4-core is a
4-cycle. Such a core is always feasible due to Lemma 4.1, because all the vertices have external
degree at least 2. It is also easy to check that, due to the topology of the grid, a 5-core cannot
exist. One can also verify that the only 6-core in which not all vertices have external degree
at least 2 is a 2 × 3-grid. Therefore, it is enough to test this 6-core plus all the ℓ-cores on 10
vertices, for ℓ = 7, 8, 9, 10. The procedure to generate the core graphs to be tested is detailed
in Algorithm 1. The complete code and some examples as well can be found at [cod].

Algorithm 1 Test configurations on 10 vertices

1: for ℓ = 6 to 10 do
2: generate a list Tℓ of all the internal graphs on ℓ vertices in an (

⌊

ℓ
2

⌋

×
⌊

ℓ
2

⌋

)-grid
(modulo translations, symmetries, and compression of empty rows or columns)

3: // INTERNAL DEGREE 1:

4: for all G ∈ Tℓ such that G has some vertex of internal degree 1 do
5: remove G from Tℓ {Lemma 4.5}
6: // EXTERNAL DEGREE AT LEAST 2:

7: for all G ∈ Tℓ such that all the vertices of G have external degree at least 2 do
8: remove G from Tℓ {Lemma 4.1}
9: // ISOMORPHIC GRAPHS:

10: partition Tℓ into classes G1, . . . ,Gn of isomorphic graphs
11: for i = 1 to n do
12: if there exists G ∈ Gi without at least two vertices per row and column then
13: remove from Tℓ all the graphs in Gi {Lemma 4.3 and Proposition 4.1}
14: else
15: remove from Tℓ all the graphs in Gi except one {Lemma 4.3}
16: // SUBDIVISION OF TRIPLE EDGE:

17: if ℓ = 10 then
18: for all G ∈ Tℓ such that G can be obtained from a triple edge by subdividing edges

do
19: remove G from Tℓ {Lemma 4.6}
20: // SUBGRAPHS:

21: for each pair of graphs G, H ∈ Tℓ such that H is a subgraph of G do
22: remove H from Tℓ {Lemma 4.2}
23: bℓ ← 1
24: for each G ∈ Tℓ do
25: G′ ← G + (10− ℓ) isolated vertices
26: for each permutation σ of the vertices of G′ do
27: test if (G′, σ) is feasible using an LP solver
28: if (G′, σ) is not feasible then
29: bℓ ← 0
30: if (b6 · b7 · b8 · b9 · b10) == 1 then
31: k = 10
32: else
33: k < 10

8



Graphs \ ℓ 6 7 8 9 10 Total

Initial number of internal graphs 1 7 53 485 4166 4714
Number of isomorphisms 0 3 42 453 4051 4581

Number of subgraphs 0 0 5 10 58 73
Number of single graphs 0 2 6 22 74 104

Final number of internal graphs 1 2 4 10 35 52

Table 1: Number of ℓ-core graphs on 10 vertices in Algorithm 1. A single graph is a graph with
a line or column with only one vertex.

Proposition 6.1 The feasibility of any configuration on 10 vertices follows from Algorithm 1.

The proof can be found in [CGS09].

Remark 6.1 In step 12 of Algorithm 1, we partition Tℓ into isomorphism classes. This step
could take a non-negligible time if we just test if each pair of graphs are isomorphic. To deal with
this problem, we first carry out a sieve according to the sorted degree sequence of the vertices
and the sorted degree sequences of the neighbours of each vertex. That is, if two graphs do not
have the same sequence of degrees and degrees of the neighbours of each vertex, we infer directly
that these two graphs are not isomorphic. This sieve reduces the computation time considerably.

Remark 6.2 Observe that, due to Lemma 4.4, the internal graphs without at least 2 vertices
per row and column could have been already removed from Tℓ after step 2. The reason why we
kept those graphs until step 15 is that some graphs that do have at least 2 vertices per row and
column are isomorphic to graphs without at least 2 vertices per row and column, so we can also
remove them from Tℓ.

Table 1 summarizes the number of ℓ-cores obtained while running Algorithm 1, for ℓ ∈ {6, 7, 8, 9, 10}.
The numbers given in the first row (initial number of internal graphs) follow from the introduc-
tion of internal graphs; without it, we would have a much greater number of configurations to
test. Note that the results of Section 4 induce an overall reduction from 4714 to 52 graphs.

Testing the feasibility of core graphs. Recall that for each core graph G on 10 vertices, G is
feasible if for any ordering of V (G) there is an edge-simple circuit visiting V (G) in the prescribed
order. W.l.o.g. we can assign to one of the vertices of G the number 1 of the permutation
(modulo cyclic permutations), and then for each core graph one has to test 9! = 362.880
possibilities.

For each core graph G and permutation σ, the problem we study can be easily formulated
as an integer multicommodity flow problem in a graph with unitary capacity on the edges and
so as an integer linear program (ILP). Indeed, the existence of an edge-simple circuit Cσ in a
core graphs G is equivalent to the existence of k edge-disjoint paths in G between the pairs
of vertices (or commodities) {σ(1), σ(2)}, . . . , {σ(k − 1), σ(k)}, {σ(k), σ(1)}. Thus, a feasible
solution of the ILP implies the existence of an edge simple circuit, and this feasibility can be
quickly checked using an ILP solver (for instance, CPLEX).

In average, testing the 9! permutations for each internal graph takes around 40 minutes on
a PC with an Intel Core 2 Duo CPU 2.33GHz running Fedora 8 (see [cod]), so testing the 4714
internal graphs would take around 4 months and a half. Testing the 52 remaining graphs has
taken just 35 hours and 37 minutes [cod].
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Running the ILP solver on the configurations given by Algorithm 1, we obtained that all
ℓ-cores are feasible for each ℓ ∈ {6, 7, 8, 9, 10}. Therefore, combining Propositions 5.1 and 6.1
yields that

Theorem 6.1 There exists an edge-simple circuit through any set of 10 ordered vertices of an
infinite square grid.

7 Concluding Remarks

In this article we showed that given any subset of 10 ordered vertices of an infinite square grid,
there exists an edge-simple circuit visiting the 10 vertices in the prescribed order, and that the
number 10 cannot be replaced by 11. To do so, we introduced a methodology to reduce the
problem to a small number of configurations, which were then exhaustively tested using an ILP

solver. The details about the implementation of our algorithm are available at [cod]. Finding a
purely combinatorial proof of this result remains open.

Another avenue for further research could be to impose a bound on the size of the grid or
torus, namely to consider an (n1 × n2)-torus and to find the largest integer k(n1, n2) such that
given any subset of k(n1, n2) ordered vertices in an (n1× n2)-torus, there exists an edge-simple
circuit visiting the k(n1, n2) vertices in the prescribed order.

Another direction is to consider another graphs instead of the square grid, like triangular
and hexagonal grids and, more generally, general planar graphs or graphs of bounded treewidth.

Finally, adding the constraint of the prescribed order to the classical problems concerning
the existence of circuits (see related work in Section 2), creates a whole family of new problems
to consider.
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