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Rerouting requests in WDM networks†
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We model a problem related to routing reconfiguration in WDM networks. We establish some similarities and differ-

ences with two other known problems: the pathwidth and the pursuit problem. We then present a distributed linear-time

algorithm to solve the problem on trees. Last we give the solutions for some classes of graphs, in particular complete

d-ary trees and grids.
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1 Introduction
Usually, when connexion requests are added or removed from a network, for instance a WDM network, the

routing of older connexions is not modified. Hence it is likely that after some additions and removings, the

overall use of resources is far from optimal. In particular, a new request may be rejected, even if it could be

added up to a whole rerouting of older requests. So operators have to reorganise regularly the routing of all

requests so as to make better use of the resources. Here we are interested in the problem of going from one

routing to another without loss of services.

Given a network, a set of requests I and two different routings for it in the network, R1 and R2, we want

to switch from routing R1 to routing R2. Let u and v be two requests. We denote by Ri(u) (resp. Ri(v))
the routing of request u (resp. v) in Ri,1 ≤ i ≤ 2. If R2(u)∩R1(v) 6= /0, i.e. the routing of request u in

R2 uses resources already used by the routing of request v in R1, then obviously the request v has to be

rerouted before we can reroute request u. However, a request might be switched to an intermediate route,

that uses available resources. For instance, the operator may reserve a dedicated wavelength in the network

for temporary routes. We assume that each request cannot be switched to more than one temporary route,

that is the next routing of a request routed on a temporary route has to be its final routing. When a request

that was previously switched to a temporary route reaches its final routing, then the freed resources can be

used again, for another request. While independent switching of requests can be made simultaneously, we

will consider, for matter of exposition, that only one request is switched per unit of time.

The problem is modelled as follows: we construct a directed graph D = (V,A), where each vertex u

corresponds to one request, and there is an arc from vertex u to vertex v if and only if R2(u)∩R1(v) 6= /0.

A vertex is said to be processed as soon as its corresponding request has been rerouted. We introduce the

notion of Temporary Memory Unit (TMU): routing the request u on an intermediate route corresponds to

putting the vertex u in a TMU. So a vertex can be processed if and only if all its outneighbours are either

processed or in TMU’s. Note that a vertex without any outneighbour can be processed at any time. There

are two basic operations: process a vertex according to the preceding rule ; put a vertex in a temporary

memory unit. Figure 1 shows the processing steps of a graph using one TMU.

We underline the fact that once placed in a TMU, a vertex cannot recover its original state: it has to be

processed. Nevertheless, it can occupy its TMU as long as desired. Processing a vertex which occupies

a TMU frees the TMU, so that it can immediately be used by another vertex. The digraph is said to be

processed when all its vertices have been processed. The problem is hence to find a suitable order to
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Fig. 1: Processing of a graph: processed vertices are in grey and vertices in TMU are in black.

process all the vertices. If we don’t want to use any TMU, then it is clear that such a vertex ordering exists

if and only if the digraph is acyclic; and in this case a processing order can be found in linear time. On the

contrary, if we can use an arbitrary large number of TMU’s, then we can first put all vertices in TMU’s and

then process them in any order. We aim at minimising the number of TMU’s simultaneously in use. Notice

that the problem is upper bounded by the minimum forward vertex set number, that is the smallest number

of vertices which intersect all directed cycles.

The process number of D is the minimum number of temporary memory units for which there exits a

process strategy for D. We denote it by p(D). A process strategy which uses p (resp. at most p, resp. at

least p) TMU’s is called a p-process strategy (resp. (≤ p)-process strategy, resp. (≥ p)-process strategy).

Remark that the digraphs we are dealing with can have loops. This may increase the process number by at

most one, and it is straightforward to construct a loopless digraph D′ such that p(D) = p(D′). When D is

symmetric, we will work for convenience on the underlying undirected graph G = (V,E).
This problem recalls the pursuit problem, introduced by Breisch [Bre67] and Parsons [Par78a, Par78b].

It has been well studied since, see for instance [MHG+88, BS91, LaP93, KP86, BFFS02]. Given a graph

G = (V,E), the goal is to clear the graph using the minimal number of searchers. The basic operations are

the following: place a searcher on a vertex ; remove a searcher from a vertex ; and move a searcher along

an edge. An edge is said to be contaminated if it is capable of harbouring a fugitive. An edge is cleared by

placing a searcher at one end (as a guard) and moving a second searcher along the edge. If all the other edges

incident to the guarded endpoint are already clear, then the guard can clear the contaminated edge alone by

moving along it. Once cleared, an edge remains clear as long as every path from it to a contaminated edge

is blocked by at least one guard. If it is not the case, the edge is recontaminated. The graph is cleared as

soon as all the edges are simultaneously clear. A search strategy is a sequence of pebbling operations that

will clear the graph. The search number s(G) of a graph is the minimum number of searchers for which a

search strategy exists. The following result of Turner (which is proved in [EST94] and was first mentioned

as a personal communication of Turner in [KP86]), establishes a link between the pursuit problem and the

vertex separator (also known as the pathwidth problem, see for instance [DPS02]):

Proposition 1 ([EST94]) For any graph G, vs(G) ≤ s(G) ≤ vs(G) + 2, where vs(G) denotes the vertex

separator of G.

To provide some basic examples, let us mention that for any path P, vs(P) = s(P) = 1 while p(P) = 2

except if P is of length at most 3 in which case p(P) = 1. If S is any star, then vs(S) = 1 = p(S) while

s(S) = 2.

2 Relation to known problems
Proposition 2 For any digraph D, vs(D) ≤ p(D) ≤ vs(D)+1.

Proof. Consider a p-process strategy for D, and let L be the order in which vertices are processed. Notice

that if we stop the strategy just after the ith vertex has been processed, then any non-processed vertex having

a processed neighbour must be in a TMU. As this is true for all 1≤ i < |V |, this exactly means that the vertex

separator of (D,L) is p, so vs(D) ≤ p(D).
Let L be an ordering of the vertices of D, and say the vertex separator of (D,L) is vs. We consider a process

strategy for D which consists of processing the vertices in the increasing order induced by L. The first vertex

can be processed by putting its at most vs neighbours in temporary memory units by definition. Suppose

i ≤ 1 vertices have been processed. We denote by P the set of processed vertices, M the set of vertices
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in TMU’s and v the next vertex to be processed. If v /∈ M, then as the vertex separator of (D,L) is vs,

|M∪(N+(v)\P)| ≤ vs, so we can put all the outneighbours of v which are not in M∪S in TMU’s and process

v. This will use at most vs TMU’s simultaneously. If v ∈ M, then we have |M \{v}∪ (N+(v)\P)| ≤ vs, so

putting all the neighbours of v not in M∪S in TMU’s will use at most (and possibly) vs+1 TMU’s. 2

As the vertex separator problem is APX [DKL87], the preceding result shows that the process number

problem also is. The following proposition induces a construction which enforces that each parameter

grows by 1.

Proposition 3 Let G1,G2 and G3 be three connected graphs such that vs(Gi) = vs,s(Gi) = s and p(Gi) =
p,1 ≤ i ≤ 3. We construct the graph G by putting one copy of each of the Gi, and we add one vertex v that

has exactly one neighbour in each of the Gi,1 ≤ i ≤ 3. Then vs(G) = vs+1,s(G) = s+1 and p(G) = p+1.

Proof. We only show the proof for the process number. It is evident how to process G with p+1 TMU’s.

Consider a k-process strategy for G. Without loss of generality, we can assume that Gi is the ith graph of

G1,G2 and G3 to have p of its vertices simultaneously in temporary memory units. Remark that once a

vertex of Gi has been put in a TMU, then there is always at least one vertex of Gi in a TMU until Gi is

processed. So the first time p vertices of G2 occupy TMU’s, G1 must have been totally processed and no

vertex of G3 has been either processed or put in a TMU. Thus the vertex v must be in a TMU. This gives

that k ≥ p+1. 2

Using Proposition 3, one can show:

Theorem 1 Let vs ≥ 3, s ∈ {vs,vs + 1,vs + 2} and p ∈ {vs,vs + 1}. There exists a graph Gvs such that

vs(Gvs) = vs,s(Gvs) = s and p(Gvs) = p.

So all the cases covered by Propositions 1 and 2 occur. These differences are created by reflecting an

initial difference on a small graph. However, if we focus on structural properties of graphs that can be

searched or processed with a fixed number of searchers or TMU’s, we actually get important differences.

In [MHG+88], all graphs with search number at most 3 are characterised. In particular, it is shown that

a biconnected graph has search number at most 3 if and only if it is outerplanar and bipolar. On the

opposite, the complete bipartite graph K3,3 can be 3-processed. Until now, we obtained a minor-excluded

characterisation for all graphs that can be 2-processed. We now pay more attention to the case of graphs

that can be 3-processed.

3 Optimal algorithm on trees
Both the vertex separator and the search number problem can be solved in linear time on trees [Sko03,

BFFS02]. We present here a distributed linear-time algorithm which computes the process number of trees

and gives an optimal strategy. Let us first introduce some parameters and make a basic observation on

them: let T be a tree, and v a vertex of T . If u1, . . . ,uk are neighbours of v, we denote by Tv(u1, . . . ,uk)
the maximum subtree of T rooted at v such that the neighbours of v are precisely u1, . . . ,uk. We denote by

pF
v (T ) (resp. pL

v (T )) the minimum number of TMU’s needed to process the tree T under the constraint that

the first (resp. last) step of the strategy must be to put v in a TMU (resp. to process v). It is clear from

the definition that for any vertex v of any tree T , we have p(T ) ≤ pF
v (T ), pL

v (T ) ≤ p(T )+1. The following

lemma plays a key role in our algorithm.

Lemma 1 Consider a tree T which is not a star. Let v be a vertex of T , and u1, . . . ,uk,k ≥ 2 be neighbours

of v in T . For any i ∈ {1, . . . ,k}, we denote by pi (resp. pF
i , resp. pL

i ) the number p(Tui
(N(ui) \ {v}))

(resp. p(T F
ui

(N(ui)\{v})), resp. p(T L
ui
(N(ui)\{v}))). We assume that the vector (p1, pF

1 , pL
1 , . . . , pk, pF

k , pL
k )

is maximum for the lexicographic order among all the numberings of the neighbours. If pF
1 ≥ pL

1 , then

p(Tv(u1, . . . ,uk)) = max(2, pL
1 , pF

2 , p3 + 1) else p(Tv(u1, . . . ,uk)) = max(2, pF
1 , pL

2 , p3 + 1). Furthermore,

we have pF
v (Tv(u1, . . . ,uk)) = max(2, pL

1 , p2 +1) and pL
v (Tv(u1, . . . ,uk)) = max(2, pF

1 , p2 +1).

Here is how the algorithm goes. Each vertex v has a list L(v) of 4 values, and is uniquely identified. At

the beginning, all the leaves are in the state active. All other vertices are in the state ready. Every leaf

has its values initialised to [0,0,0,0], values of the other vertices being nil. Each vertex having all
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its neighbours but one active computes its own values. Let u1, . . . ,uk be the neighbours of v which are

active. Then L(v)[1] = p(Tv(u1, . . . ,uk)),L(v)[2] = pF
v (Tv(u1, . . . ,uk)) and L(v)[3] = pL

v (Tv(u1, . . . ,uk)).
So we compute them using Lemma 1, and some simple init rules (that may use L(v)[4]). So as to record

an optimal strategy, the vertex also records the order of its neighbours when computing its values. A vertex

which is ready stays ready until it has received information from all its neighbours but one. Then it

computes its values, sends them and becomes active. If an active vertex receives information from

its last neighbour, then if the identifier of the neighbour is lower than its own identifier it just ignores it.

Otherwise it computes again its values, using all the information it has collected now, becomes done and

sends a special message so that any active vertex becomes done. Eventually, either there will be a step

at which exactly one vertex has not computed its values yet, or exactly two vertices compute their values at

the last step, and the updating process ensures only one will compute its values using the information from

all its neighbours. In any case, if v is the last vertex to compute its values, we will have L(v)[1] = p(T ).

Theorem 2 The preceding algorithm computes all the values and records the strategy in sequential time

O(n), and distributively with O(n) messages.

We note that this result induces an upper bound (along with a corresponding strategy) for processing

outerplanar graphs, since the dual graph of an outerplanar graph is a tree.

4 Exact process number for some classes of graphs.
Theorem 3 (i) The process number of the complete bipartite graph Km,n is min(m,n).
(ii) The process number of the complete binary tree of height h is h−1, except if h ∈ {1,2} in which case

it is h.

(iii) For any d ≥ 3, the process number of the complete d-ary tree of height h is h.

(iv) The process number of the grid of size m×n is min(m,n)+1, except if n = m = 2 in which case it is 2.

(v) The process number of the pyramid of size n is d n
2
e+1, except if n ∈ {2,3} in which case it is n−1.

(vi) Any triangulated outerplanar graph whose dual graph is a caterpillar of maximum degree 3 can be

3-processed.

References
[BFFS02] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile agents. In 14th

ACM Symp. on Parallel Algorithms and Architectures, 2002.

[Bre67] R. L. Breisch. An intuitive approach to speleotopology. Southwestern Cavers, 6:72–78, 1967.

[BS91] D. Bienstock and P. Seymour. Monotonicity in graph searching. J. Algorithms, 12(2):239–245, 1991.

[DKL87] N. Deo, S. Krishnamoorthy, and M. A. Langston. Exact and approximate solutions for the gate matrix

layout problem. IEEE Transactions on Computer-Aided Design, 6:79–84, 1987.

[DPS02] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing Surveys, 34(3):313–

356, 2002.

[EST94] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search number of a graph. Inform.

and Comput., 113(1):50–79, 1994.

[KP86] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoret. Comput. Sci., 47(2):205–218,

1986.

[LaP93] A. S. LaPaugh. Recontamination does not help to search a graph. J. Assoc. Comput. Mach., 40(2):224–245,

1993.

[MHG+88] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. The complexity of

searching a graph. J. Assoc. Comput. Mach., 35(1):18–44, 1988.

[Par78a] T. D. Parsons. Pursuit-evasion in a graph. In Theory and applications of graphs (Proc. Internat.

Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), pages 426–441. Lecture Notes in Math., Vol. 642.

Springer, Berlin, 1978.

[Par78b] T. D. Parsons. The search number of a connected graph. In Proceedings of the Ninth Southeastern

Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla.,

1978), Congress. Numer., XXI, pages 549–554, Winnipeg, Man., 1978. Utilitas Math.

[Sko03] Konstantin Skodinis. Construction of linear tree-layouts which are optimal with respect to vertex separa-

tion in linear time. J. Algorithms, 47(1):40–59, 2003.


