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Traffic Grooming in Unidirectional WDM Ring
Networks using Design Theory

Jean-Claude Bermond, David CoudéBEE Member
MASCOTTEproject, I3S-GIRS/INRIA/Universi€é de Nice-Sophia Antipolis,
B.P. 93, F-06902 Sophia Antipolis Cedexg ANCE.

Abstract

We address the problem of traffic grooming in WDM rings with all-to-all uniform unitary traffic. We want to
minimize the total number of SONET add-drop multiplexers (ADMs) required. We show that this problem corresponds
to a partition of the edges of the complete graph into subgraphs, where each subgraph hag'atagest (wheré’
is the grooming ratio) and where the total number of vertices has to be minimized. Using tools of graph and design
theory, we optimally solve the problem for practical values and infinite congruence classes of values fol(3 givén
thus improve and unify all the preceding results. We disprove a conjecture of [7] saying that the minimum number of
ADMs cannot be achieved with the minimum number of wavelengths, and also another conjecture of [17].

Keywords:Traffic grooming, graph, design theory, WDM rings.

I. INTRODUCTION

The WDM (Wavelength Division Multiplexing) has significantly increased the available capacity transmission of
networks, therefore the bottleneck is now in the nodes (routers) where all the information has to be processed. In order
to reduce the cost of the network, it becomes important to reduce the traffic processed at the node. Traffic grooming is
the generic term for packing low rate signals into higher speed streams (see the surveys [14, 19, 20]). By using traffic
grooming, one can bypass the electronics in the nodes for which there is no traffic sourced or destinated to it. Typically,
in a WDM network, instead of having one SONET Add Drop Multiplexer (shortly ADM) on every wavelength at every
node, it may be possible to have ADMs only for the wavelength used at that node (the other wavelengths being optically
routed without electronic switching).

In the past many papers on WDM networks had for objective to minimize the transmission cost and in particular the
number of wavelengths to be used [1, 11, 12], recent research has focused on reducing the total number of ADMs used
in the network, trying to minimize it.

It is known that even for the simpler network which is the unidirectional ring, the number of wavelengths and the
number of ADMs cannot be simultaneously minimized (see [15], or [7] for uniform traffic). Furthermore, given a
traffic matrix expressed in some units of a bandwidth (for example OC-3) whetits have to be transmitted from
i to j, the solution will depend on the routing used and how connections are assigned to wavelengths. Hence, the
general problem is very difficult.

Here, we consider the particular case of unidirectional rings (the routing is unique) with static uniform symmetric
all-to-all traffic (that isr; ; = 1 for all couples(i, j)) and with no possible wavelength conversion.

In that case, for each paft, j}, we associate a circle (or circuit) which contains both the request frmm) and
from j toi. If each circle requires onl% of the bandwidth of a wavelength, we can “groofi’circles on the same
wavelengthC is called thegrooming ratio(or grooming factor). For example, if the request froto j (and fromj to
1) is one OC-12 and a wavelength can carry an OC-48, the grooming factor is 4. Given the groomiagaatidhe
size N of the ring, the objective is to minimize the total number of (SONET) ADMs used, dentt€dN), and so
reducing the network cost by eliminating as many ADMs as possible from the “no grooming case”. For example, let
N = 4 ; we have 6 circles corresponding to the 6 pgirsl}, {0,2},{0,3},{1,2},{1,3},{2,3}. If we don't use
grooming, that is if we assign one wavelength per circle, we need 2 ADMs per circle, and thus a total of 12. Suppose
now thatC' = 4, that is we can groom 4 circles on one wavelength. One can groom on wavelength 1 the circles
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TABLE |
A(C,N) FORN < 16 AND C = 3,4,12,16,48, 64

| | N=3] N=4] N=5| N=6| N=7| N=8| N=9| N=10| N=11] N=12N=13/N=14] N=15 | N=16 |
C=3[2][ 3|7 [12]17[21[31[36| 48[ 57 [ 69 78| 95 | 105 | 124
Cc=4 3|7 [10[15]/21[28[ 36| 45| 55| 66 | 78 [ 91 | 105 | 120
C=12 [ 3|4 |5|9[12]16|18| 24 | 30 | 35 | 39 | 47 [5556| 60

9-9 | 11-12/ 15-16 18-18 23-24| 28-30| 33-36| 39-39| 46-49| 53-57 | 60-64
C=16 | 3|4 |5 |6 [11[14|18| 20 | 26 | 32| 36 | 41 | 45 |53-54
10-11) 12-14) 16-18 18-20| 23-26| 28-33| 33-37| 37-42| 42-46 | 48-57
C=48 [ 3|4 |5|6 |7 8|9 |10[16] 19| 22|24 30 | 32

15-16| 17-19| 19-22| 21-24| 26-31 | 29-34
cC=64 [ 3|4|5|6|7 8|9 |10[11]15]| 19| 22| 25 | 28

15-15| 18-19| 20-22| 22-25 | 24-28

associated t§0, 1}, {1,2},{2,3},{3,0} requiring 4 ADMs and on wavelength 2 the circles associatd@1d} and
{1, 3} requiring 4 ADMs and so a total of 8. A better way is to groom the circles associafgd 1y, {0,2}, {0, 3}
using 4 ADMs and those associated wfth 2} , {1, 3}, {2, 3} using 3 ADMs and a total of 7 ADMs.

The case we consider has been considered by many authors [7,13,15-17, 21, 22, 24-26] and numerical results,
heuristics and tables have been given (see for example that in [22]). It presents the advantage of concentrating on the
grooming phase (excluding the routing). It can also be applied to groom components of more general connections than
two opposite pairs into wavelengths or more general classes. These components are called circles [7, 26] or circuits
[22] or primitive rings [9, 10].

Here we show that the problem of minimizing the number of ADMs for the unidirectional¥jagvith a grooming
factorC can be expressed as follows: partition the edges of the complete graptvertices () into W subgraphs
By, A =1,2,...,W, having|E(B,)| edges andV (B,)| vertices with| E(B,)| < C and where>_\_ |V(B,)| has
to be minimized (the edges d&f 5 correspond to the circles, the subgraghscorrespond to the wavelengths and a
node of By corresponds to an ADM).

We show the importance of choosing graghsin the partition with the best ratiﬁ%. Indeed, if we denote
by pmax(C) the maximum ratio among all graphs with at mésedges, we have the following lower bound on the
minimum numbet4d(C, N') of ADMs: A(C,N) > (Nfl))

For some values af' the best ratio is obtained t%r subgraphs witledges, but it is not the case for other values of
C, namely if kk-1) 3 Vo< (’““)2& where the best ratio is attained for the complete gr&ph For these values
of C, design theory enables us to give counterexamples to the conjecture of [7] saying that “the minimum number
of ADMs, A(C, N), for unidirectional rings with uniform unitary traffic is obtained using the minimum number of
wavelengths” is false, the smallest case béihg 7. That also give counterexamples for= 16 and to the conjecture
of [17].

We show furthermore that the techniquesdekign theorycan be used to obtain optimal or quasi-optimal results
that improve all the preceding results of the literature and unify them. Thus, it is possible to use the vast effort and the
numerical results obtained in the last century in design theory [8], without reinventing them. Note that design theory
was also used in [9, 10] far' = 8.

Among the results we have obtained.4(C, N) are the following.

« GivenC, whenN is large enough4(C, N) = p(N (1)

» Exactresults for” = 3, C' = 4 (already obtained in [17]) and for various congruence classes, for other values of
C.

« Table | with the same entries as in [22] but with optimal values. Table | show the valuggbfV) for N < 16
andC = 3,4, 12, 16,48, 64. We have indicated in the line below the best known values from Table Il of [22] in
the form{(C, N) — u(C, N) wherel(C, N) is the lower bound of [22] and(C, N) the best result obtained by
heuristics.




II. NOTATION AND REFORMULATION OF THE PROBLEM

We precise here our notations and show how the problem can be formulated in terms of graph partitioning. Although
we restrict ourselves to the case of unidirectional rings with uniform static unit traffic, the ideas can be applied to other
situations.

« N will denote the number of nodes of the unidirectional rﬁgf

« For the unidirectional ring with symmetric traffiCi; ;, will denote acircle associated to the pa{ti, j}, that is

containing both an unitary request frarto j and fromj toi. SoCy; ;, uses all the arcs (E’)N.

» R the total number of circles. In the case of unidirectional rings, with uniform unitary traffic, eackipajris
associated to a unique cirdlg; ;, and thusk = w

« C'the grooming ratio (or grooming factor). In the example of [Z]indicates the number of circles a wavelength
can contain. Similarlyé indicates the part of the bandwidth of a wavelength that can be used by a circle. For
example, if a wavelength is running at the line rate of @Cit can carryC = % low speed OCA/. Typical
values ofC areC = 3,4, 8,12, 16, 48, 64.

» Let Ky be the complete graph a¥ vertices where there is an edfe j} for each pair of vertice$i, j} ; let Cn
be the undirected cycle wit nodes.

« B, will denote a subgraph oK. V' (B, ) (respE(B,)) denote its vertex (resp edge) set. In the example of the
introduction, B, corresponds to a wavelength ; an edgej} of B correspond to a circlé’y; ;,. So a subgraph
can be viewed as the set of circles packed in the wavelength. The grooming factor impligs(Bg}| < C.
V(B,) corresponds to the number of (SONET) ADMs used in the wavelengthdeed we have to use an ADM
in all the vertices appearing in a ciralg; ;, packed in the wavelength

So, the original problem of minimizing the total numb&fC, N) of ADMs in a grooming with grooming rati¢’,

in the unidirectional rian with unitary static uniform traffic, can be stated as follows.

Problem II.1—ADM:
Inputs :  anumber of node¥ and a grooming ratio

Output : % partition of the edges @ into sub-
graphs By, A = 1,...,W, such that
[Ex[<C

Objective minimized >, -y .y |VA|

Remark: As we said in the introduction, most interest has focused on a different objective function which was
to minimize the numbelV of subgraphs (wavelengths) of the partition. This is in this context an easy problem as

Woin = [£] = [ 55

I1l. L OWER BOUND

Let p(B,) denote the ratio of a subgragBy, p(B)) = Egégigi and p(m) the maximum ratio of a subgraph

with m edges. Letnax(C) denote the maximum ratio of subgraphs with < C edges. We haven..(C) =
max {p(By) | |E(By)| < C} = maxyu<c p(m).

Theorem Il1.1: Any grooming ofR circles with a grooming factaf’ needs at Ieasp% ADMs.

Proof: We haveR = >\, |E(By)| < pmax(C) S5, [V (By)]- |
In particular, we get the following lower bound

Theorem Ill.2—Lower BoundA(C, N) > ;ngf(é))_

We will now computep,ax(C). Letp(m) = min{k‘ [l m} that isg(m) = {”7 V;“”ﬂ and note that

any subgraph withn edges has at leag{m) vertices.

Proposition I11.3: If @ <C< W thenpmax(C) = % and the value is attained faéf,..
If HUEZD < ¢ < BHDE thenpn.(C) = ;55 and the value is attained for any graph wittedges and: + 1

2
vertices.



TABLE Il
VALUES OF pmax(C) FOR SMALL C

C 112|345 |6 |7]8]9/|10

Pmax(C) % % e % % % % % 2

C 11112 13|14 | 15|16 |24 | 32 |48 | 64

3| 14 5 5 32 9 64

pmax(C) [ 2|2 | BT | 5[5 [3|F |3 |0

Proof:

Case 1:Let "0 < ¢ < %. If m < 2E2D theng(m) < andp( ) < EsLoaf AL oo <
o(m) =k+1 andp(m) = 4 < 155 AsC < w, p(m) < E51. So, we always have(m) < %51, the

equality being attained fak;, (wherem = k(k k(k—1) andp(m) = %).

Case 2'Letw <(C< W If m g w , we have seen tha(m) < k 1 < kil If W <
m<C< (k“)k ,p(m) =k+1landp(m) = ;75 < k+1 The valuem is attained for any graph witt' edges and
k+1 vertlces ; such a graph can be obtained by delegt‘iﬁ# — C edges fromiK 4. |

For the sake of illustration, Table Il give the valuesgf.«(C) for small values of”.

In view of Theorem IIl.2, we have interest to chose if possible subgraphs with a ratio equali@'). Note that
according to Proposition 111.3, these subgraphs do not have necessarily exaetlges and so the minimum is not
necessarily attained fof’ = Wiy,in.

For example, leC = 7. If a subgraph has 7 edges, its ratio is at mgost 1.4. But a subgraph with 6 edges can
have a ratio?I = 1.5 (and this is attained fakK4). Any other subgraph has a ratio at méstSo, in an optimal solution
for the number of ADMs, we have to use as subgraphsand not subgraphs with 7 edges and 5 vertices. Butin a
solution minimizing the number of wavelengths, we have in contrary to use these last ones. We are now able to give
counterexamples to a conjecture of [7].

Proposition 111.4: The conjecture of [7] that the minimum number of ADM§,C, N ), for unidirectional rinng
with uniform unitary traffic is obtained fo’ = Wy, = [N(;VC_I)], is false.

Proof: LetC = 7andN = 13. There is a decomposition @3 into 13 subgraph#’, (namely the subgraphs
B, ={i,i+1,i+4,i+6}fori=0,1,...,12, the numbers being taken modulo 13). For this solutibr; 52 and
it is an optimal one. However, we haVE = 13 and Wy, = [2] = 12.

Consider now a grooming with 12 subgraphs andiifetoe the number of subgraphs with 7 edges. The W, other
subgraphs have at most 6 edges each. To groom the 78 circles, we shoutiiifavé(12 — W) > 78, which implies
Wz > 6. But each subgraph with 7 edges needs 5 ADMs. So, therglHyesertices to covef W7 circles. To cover
the remaining’8 — 71 circles, we need by Theorem I11.1 at Ie%s(t?S — 7W7) vertices (as the ratio of any subgraph
is at most6) So altogether we have a total number of vertides 5W; + = (78 TWr) > 52 + ( ) W+. As
Wz > 6, we obtainA > 54. So, conjecture of [7] is false far' = 7 and N = 13.

For C = 7 we can easily build infinite families of counterexamples using known decompositididg anto /4 if
N = 12t + 1 or 12t + 4 (see Theorem IV.4). Such a decomposition will ilBe= % subgraphs and = % ADMs.
On the other hand, a solution willV,,;, = [g] subgraphs will need aroun@@ ADMs as all the subgraphs have
exactly 7 edges and a ratio é)f For example ifN = 85 a solution withiW,,,;, = 510 subgraphs will nee@550 ADMs
and a solution usingl’ = 595 subgraphs will only need 2380 ADMs, thus we can save 170 ADMs by using 85 more
wavelengths So, usm@ more wavelength allows a saving %‘ ADMs (in fact we can use any number of subgraphs
betweem andE increasing the number of subgraphs by 1 decreases the number of ADMs of 2). |
Other counterexamples to the conjecture of [7] are obtained for all valuésoth tha{@ <C< W
for exampleC' = 11,16,17. WhenC' = 16, pnax(16) = % and is attained for subgrapli& which have only 15

edges.

That confirms the intuition of [17]. However, it was also conjectured in [17] th@dt, N) > . But, as
we will see in Theorem V.4, this conjecture is false, since there exists an infinite number of valiNefoofvhich
A(16, N) = ML,

7TN(N—1)
32



IV. UPPER BOUND AND OPTIMAL RESULTS

Our problem looks similar to design theory. Indeed & k, 1)-design is nothing else than a partition of the edges
of K into subgraphs isomorphic t&, called blocks in this theory. That corresponds to impose in our partitioning
problem that all the subgrapli3, are isomorphic td<;,. Note that the classical equivalent definition is : given a set of
N elements, find a set of blocks such that each block conta@dements and each pair of elements appears in exactly
one block (see the handbook [8]).

More generally, a5-design of orderV (see [8] chap. 22 or [5] or [6]) consists on partition of the edge& qf
into subgraphs isomorphic to a given gra@h The interest of the existence ofadesign is shown by the following
immediate proposition.

Proposition 1V.1: If there exists & -design of ordeV, whereG is a graph with at most' edges and ratip,,.x(C),
thenA(C, N) = Y=1)

2PmaX(C)
Necessary conditions 1V.2—EXxistence @f-aesign: If there exists & -design, then
i & NIV=1 should be a multiple oF(G)

(i) N — 1 should be a multiple of the greatest common divisor of the degrees of the vertiGes of

Wilson [23] has shown that these necessary conditions are also sufficient foMaFgem that, we obtain
N(N-1)
2pmax(C) "

Unfortunately, the values oW for which Wilson’s Theorem applies are very large. However, for small values of
C, we can use exact results of design theory (see [8] chap. 22). For example, from the existeteedign for
G = K3, K3 +e, Ky —e, K4, K5 — 3e, K5 — 2e, K5 — e, K5 and K, whereK,, — ae (resp. K, + ae) denotes the
graph obtained froni, by deleting (resp. adding) edges, we obtain

Theorem IV.3:GivenC, for an infinite number of values @¥, A(C, N) =

Theorem IV.4:;

e A(3,N) = w whenN =1 or3 (mod6)

e A(4,N) =YD whenN =0 or 1 (mods8)

e A(5,N) = 2D whenN =0or1 (mod10)

e A(6,N) = (7 N) = NV=D whenN =1 or4 (mod12)
o A(8,N) = NUIZD whenN =0or1 (mod16)

e A(9,N) =D whenN = 0 or 1 (mod18)

e A(10,N) = Y&=L whenN = 1 or 5 (mod20)

e A(16,N) = Y=L whenN = 1 (mod30)

Therefore, as we said before, it disproves the conjecture of [174 b6, V).

Note that, if design theory can be used, the problem is slightly different. Indeed, in design theory, one looks for a

partition of the edges into isomorphic subgraphs. Such partition exist only for some valiyesFkafr example, for
C =3andN # 1 or3 (mod6), one can think that the best solution is obtained by taking as mars/as possible,
but it does not necessarily lead to an optimal solution (see [2]).

Consider for exampl&(. It can be partitioned into the 4 trianglé¢8, 1,2}, {0,3,4},{1,3,5},{2,4,5} plus the 3
edges{0,5},{1,4},{2,3}. So, all together we have 5 subgraphs and 18 ADMs. However, we can also pdkijtion
into the 3K3's {0,1,2},{1,3,4},{2,4,5}, the starK; 3 {0|3,4, 5}, and the pattP; (1, 5,3,2). This solution use 5
subgraphs and 17 ADMs.

In [2], we determined exactly the value d{3, V), proving the following theorem.

Theorem IV.5—[2]:

() WhenN is odd,A(3, N) = Y&=U 4 ¢ wheree = 0if N = 1 0r3 (mod6), ande = 2if N =5 (mod6) ;
(i) When N iseven,A(3,N) = N(N D [Z] + ¢, wheree = 1if N =8 (mod12), ande = 0 elsewhere.

The proof uses technics inspired of design theory. In the even case, the optimal solutions usds@'toanfl some
K, 3 or P. For example, if. = 0 or 4 (mod12), the optimal solution consists &% — % K3'’s and% Ki3. An
other difference with design theory is that we can use in our decomposition a mixture of graphs with, satio).

For example, ifC’' = 4, we can use either@, or K3 + e (or also aK(3), all these graphs having ratig,,x(4) = 1.
It becomes easy (see [4]) to show thatfér> 4, Ky can be partitioned int6’j s and K3 + e, giving the result of [17]

that A(4, N) = Y=L with the minimum number of wavelengths.



An other example is given with' = 12, where we can use as subgraphs of the partitioR gfeither K5 or any
graph with 6 vertices and 12 edges (obtained by deleting 3 edgesKgntSuch a decomposition exists for example
if n =1 (mod4) in which caseA(12, N) = W (see [4]).

In [3] we also determined exactly the value4f5, V).

Note that forC' = 3,4, 5 there always exist solutions minimizing both the number of ADMs and the number of
subgraphs (wavelengths) so conjecture of [7] is true’fer 3,4, 5.

Although the problem is asymptotically solved, for small valued/dicorresponding to the practical ones) we have
to refine both lower and upper bounds to obtain the exact valug@f V).

For upper bounds, we have to construct decompositions. If the grappwitiC) is K, we can use the known
results of design theory, and in any case we can use the ideas of this theory in particular all the recursive constructions.
This methodology is that used in [9] fé¥ = 8. The ideas of partitioning into classes of [7] or others appears as a
particular case of this design techniques. For example, in [7] they use mainly subgraphs of tﬁévfgy%. If for
C = 4, their use is good becau$é, » = Cy andpmax(4) = 1, in all other cases it gives result far from the optimal.
ForC = 16, K4 4 has aratio 2 to be compared wikf; which has ratic3. So their solution can have only at most 80%
of ADMs compared to the optimal solution. Using a partition into 3 classes, we have shown

Theorem IV.6—[4]:WhenC > R/3, A(C,N) < 2N, except whenV = 4 andC = 2, and whenN = 7 and
C=r.

If exact optimal solutions might be difficult to obtain (in particular to prove the non existence of a solution), solution
differing by a small constant can be easily found as there exist a lot of them. That explains why the results obtained
by simulated annealingR?] are relatively good. Furthermore, as we know by the theory the structure of the optimal
or quasi-optimal solutions, we can use programming by imposing constraints and looking only to particular solutions.
More details will be found in forthcoming papers and the values reported in Table | where obtained in that way.

For lower bounds, ifV is small, we have to take into account the fact that subgraphs should have large intersections
and so edges are covered many times.

Proposition IV.7: WhenC' > N(]\;_l), A(C,N) = N.

Proof: There should be at least one ADM in each vertexA$G', N) > N. A solution is obtained by taking a
unique subgraph. In that case the traffic is carried on one wavelength (it correspond to the shaded data in [l2]).

Proposition IV.8: When Y=L < ¢ < YD (0 N) = N + ¢ (NUVT—U _ C’).

Proof: Recall thatp(m) is the smallest integér such that’@ > m, and letky = ¢ (w — C). If each

vertices belongs to at least 2 subgraphs théfi, N) > 2N > N + ky. So one vertex belongs to exactly one subgraph
which should contains th& — 1 other vertices and at moét edges. To cover thw — C remaining edges, we
need a subgraph with at ledstvertices. Therefored(C, N) > N + k.

A solution with N 4+ kg ADMs is obtained by taking two subgraphs, one withvertices coverind“’(’“QLl) edges,
where folbo=1) > NWZ1) _ ¢ py definition ofky. The second subgraphs contains all the vertices and cover the
remaining edges in number less than or equél'to [ |

Applying Proposition 1V.8, we obtained the results of Table 166~ 64 and12 < N < 16, and forC' = 48 and
11 < N < 14. For other values of' and N, we have to use more sophisticated arguments (see [4]).

V. CONCLUSION

In this article, we have shown how the problem of traffic grooming in unidirectional WDM ring with uniform unitary
traffic can be modelized as a problem of partition of the edges of a complete graph. The use of graph theory and design
tools has enabled us to solve optimally the problem for practical values and infinite congruence classes of values for
a givenC. This modelization and the tools can easily extended to uniform but non unitary traffic. Indeed, if the
requests satisfy; ; = r, it suffices to consider decomposition of the edges of the complete multipartite gfaph
(here again, this has been done in design theory for partitiorfiptonder the name df\V, k, r)-design). We can also
extend the ideas to the case of an arbitrary traffic, but it requires to partition general graphs and this is known to be a
difficult problem in graph theory. However, our tools provide insight for finding approximate and heuristic solutions
for arbitrary traffic. We can also consider networks different from the unidirectional ring, if we are first able to groups
the requests into circles (that is the way used in [9, 10] for bidirectional rings). Finally, the tools can also be used to



groom traffic in a slightly different context, for example , in the RNRT project PORTO our team developed with France
Telecom and Alcatel, the traffic was expressed in terms of STM-1 (each one needed one wavelength) and we group
them into bands or fibers, typically a fiber containing 8 bands of 4 wavelengths [18].
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