N
N

N

HAL

open science

Traffic Grooming in Unidirectional WDM Ring
Networks: the all-to-all unitary case

Jean-Claude Bermond, David Coudert, Xavier Munoz

» To cite this version:

Jean-Claude Bermond, David Coudert, Xavier Munoz. Traffic Grooming in Unidirectional WDM Ring
Networks: the all-to-all unitary case. 7th IFIP Working Conference on Optical Network Design &

Modelling (ONDM), 2003, Budapest, Hungary. pp.1135-1153. inria-00429175

HAL 1d: inria-00429175
https://inria.hal.science/inria-00429175
Submitted on 1 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00429175
https://hal.archives-ouvertes.fr

Traffic Grooming in Unidirectional WDM Ring Networks: the
all-to-all unitary case

J-C. Bermond & D. Coudert*

MASCOTTE project, |13S-CNRS/INRIA/Universigé de Nice-Sophia Antipolis
2004, route des Lucioles, B.P. 93

F-06902 Sophia Antipolis Cedez, FRANCE

{ Jean—CIaude.Bermond,David.Coudert} @sophia.inria.fr

X. Munoz

DMAT - UPC

Mod C-3. Campus Nord, ¢/ Jordi Girona, 1-8
08034 Barcelona, Catalonia, SPAIN

xml@mat.upc.es

Abstract We address the problem of traffic grooming in WDM rings with all-to-all uniform unitary traffic. We want to
minimize the total number of SONET add-drop multiplexers (ADMs) required. This problem corresponds to a
partition of the edges of the complete graph into subgraphs, where each subgraph hagaedyes (wher€' is
the grooming ratio) and where the total number of vertices has to be minimized. Using tools of graph and design
theory, we optimally solve the problem for practical values and infinite congruence classes of values for@ given
Among others, we give optimal constructions wh@n> N (N — 1)/6 and results whe@ = 12. We also show
how to improve lower bounds by using refined counting techniques, and how to use efficiently an ILP program by
restricting the search space.

Keywords:  Traffic grooming, graph, design theory, WDM rings.

1. Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed streams (see the
surveys Dutta and Rouskas, 2002b; Modiano and Lin, 2001; Somani, 2001). By using traffic grooming, one
can bypass the electronics in the nodes for which there is no traffic sourced or destinated to it and therefore
reduce the cost of the network. Typically, in a WDM (Wavelength Division Multiplexing) network, instead
of having one SONET Add Drop Multiplexer (ADM) on every wavelength at every node, it may be possible
to have ADMs only for the wavelength used at that node (the other wavelengths being optically routed
without electronic switching).

This problem is different from that of minimizing the transmission cost and in particular the number
of wavelengths to be used considered by many authors (see the surveys Beauquier et al., 1997; Dutta and
Rouskas, 2000). Indeed, it is known that even for the simpler network which is the unidirectional ring, the
number of wavelengths and the number of ADMs cannot be simultaneously minimized (see Gerstel et al.,
1998, or Chiu and Modiano, 2000 for uniform traffic).
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Here, we consider the particular case of unidirectional rings (the routing is unique) with static uniform
symmetric all-to-all traffic (there is exactly one request of a given size irtay for each coupléi, j)) and
with no possible wavelength conversion.

In that case, for each paji, j}, we associate a circle (or circuit) which contains both the request{rom
to 7 and fromj to 4. If each circle requires onI% of the bandwidth of a wavelength, we can “groofi”
circles on the same wavelengt®’ is called thegrooming ratio(or grooming factor). For example, if the
request from to j (and fromj to7) is one OC-12 and a wavelength can carry an OC-48, the grooming factor
is 4. Given the grooming rati6é’ and the sizéV of the ring, the objective is to minimize the total number of
(SONET) ADMs used, denoted(C, N), and so reducing the network cost by eliminating as many ADMs
as possible from the “no grooming case”.

For example, leflV = 4; we have 6 circles corresponding to the 6 pairst } , {0, 2}, {0,3},{1,2},{1,3},{2, 3}.
If we don’t use grooming, that is if we assign one wavelength per circle, we need 2 ADMs per circle, and
thus a total of 12. Suppose now th@t= 4, that is we can groom 4 circles on one wavelength. One can
groom on wavelength 1 the circles associated Witht } , {1,2},{2,3}, {3, 0} requiring 4 ADMs and on
wavelength 2 the circles associated wjth 2} and{1, 3} requiring 4 ADMs and so a total of 8. A better
way is to groom the circles associated wfth 1}, {0, 2}, {0, 3} using 4 ADMs and those associated with
{1,2},{1,3},{2, 3} using 3 ADMs for a total of 7 ADMs.

Another interesting example is witN = 9. We haveR = 36 circles. Without grooming, we need
A(1,9) = 72 ADM’s and for grooming factors” = 3,12,36 we need respectivelyd(3,9) = 36,

A(12,9) = 18, and A(36,9) = 9 ADM’s. For C = 36, we groom all the circles on one wavelength.
For C' = 12, let the vertex set bel; U Ay U A3 with [4;] = 3. A; = {a], j = 1,2,3}. We can groom
on wavelength, i = 1,2,3, the 3 circles{al,a] "'} and the 6 circlega?, a¥, , } where all the indices are
taken modulo 3. So wavelengituse only 6 ADMs. FolC' = 3, we groom the circles in 12 wavelengths
each containing 3 circles of typg, j}, {j,k} and{i,k}. Thus, by increasing the grooming factor, we
significantly reduce the total amount of ADM’s in the network.

The case we consider has been considered by many authors (Chiu and Modiano, 2000; Dutta and Rouskas,
2002a; Gerstel et al., 1998; Gerstel et al., 2000; Hu, 2002; Wan et al., 2000; Wang et al., 2001; Yuan and
Fulay, 2002; Zhang and Qiao, 1996; Zhang and Qiao, 2000) and numerical results, heuristics and tables
have been given (see for example those in Wang et al., 2001). It presents the advantage of concentrating on
the grooming phase (excluding the routing). It can also be applied to groom components of more general
connections than two opposite pairs into wavelengths or more general classes. These components are called
circles (Chiu and Modiano, 2000; Zhang and Qiao, 2000) or circuits (Wang et al., 2001) or primitive rings (
Colbourn and Ling, ; Colbourn and Wan, 2001).

In Bermond and Coudert, we have shown that the problem of minimizing the number of ADMs for the
unidirectional ringC'y with a grooming factoiC' can be expressed as follows: partition the edges of the
complete graph oV vertices ) into W subgraphsB,, A = 1,2,..., W, having|E(B,)| edges and
|V (B,)| vertices with| E(By)| < C and where>_\" | |V(B,)| has to be minimized (the edges &fy
correspond to the circles, the subgraghscorrespond to the wavelengths and a verteBgfcorresponds
to an ADM).

In Bermond and Coudert, we have also shown the importance of choosing gsgphghe partition
with the best raticﬂ%i%} (see section 1.3). Indeed, if we denotehy,«(C) the maximum ratio among
all graphs with at most’ edges, we have the following lower bound on the minimum numtjér, N) of
ADMs: A(C,N) > y &2,

We have also shown using tools of design theory that this lower bound is attained for a’givhan
N is large enough. That enables to show that the minimum number of ARMS, V), for unidirectional
rings with uniform unitary traffic is not necessarily obtained using the minimum number of wavelengths,
disproving conjectures of Chiu and Modiano, 2000 for many valu&s (the first one being' = 7) and of
Hu, 2002 forC' = 16. For the sake of completeness, these results are recalled in section 1.3.
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Here we concentrate our efforts on small values\ofjiving the exact values ofi(C, N) whenC >

N(]\é_l). We also show how to improve lower bounds by using refined counting techniques. For upper

bounds we show how to use efficiently design tools to determifie V) (= w for N > 5), aresult
also obtained in Hu, 2002 but our proof is much shorter. We also give resulisfoil 2. Table 1 gives the
values ofA(C, N) for N < 16 and some values @ as the table in Wang et al., 2001.

C\N|3|4|5|6|7]8]|9|10(11|12| 13| 14| 15 16
3 31712172131 |36 |48| 57|69 | 78| 95| 105 | 124
4 3|7(110|15| 21| 28|36 |45| 55|66 | 78| 91| 105 | 120
12 34| 5|9 |12|16|18| 24| 30| 35| 39| 47 | 55-56 60
16 3/4| 5|6 |11]14]18|20|26|32|36| 41| 45 |53-54
48 3|45 |6 |78 9|10|16|19|22|24| 30 32
64 34| 5|6 7|89 |10|11|15]19| 22| 25 28

Table 1. A(C,N)for N < 16 andC = 3,4, 12, 16, 48, 64

2. Notation and reformulation of the problem

We precise here our notation and show how the problem can be formulated in terms of graph partitioning.
Although we restrict ourselves to the case of unidirectional rings with uniform static unit traffic, the ideas
can be applied to other situations.

= N will denote the number of node of the unidirectional rﬁgv

= For the unidirectional ring with symmetric traffici;; ;, will denote acircle associated to the pair
{i,7}, that is containing both an unitary request froto j and fromj toi. SoCy; ; uses all the arcs

i
of Cy.

= R the total number of circles. In the case of unidirectional rings, with uniform unitary traffic, each

pair {7, j} is associated to a unique ciralg; ;, and thusk = N(]\;_l).

= (' the grooming ratio (or grooming factor). In Chiu and Modiano, 2000ndicates the number of
circles a wavelength can contain. Similar%',indicates the part of the bandwidth of a wavelength
that can be used by a circle. For example, if a wavelength is running at the line rate &% @Can
carryC = % low speed OCA/. Typical values of” areC = 3,4, 8,12, 16, 48, 64.

= Let Ky be the complete graph aN vertices where there is an ed@g j} for each pair of vertices
{i,j} ; let Cx be the undirected cycle witlV nodes.

= B, will denote a subgraph oK. V(B,) (resp. E(B,)) denote its vertex (resp. edge) set. In the
example of the introduction3, corresponds to a wavelength ; an edgej} of B) corresponds to
a circleC'y; ;3. So a subgraph can be viewed as the set of circles packed in the wavelength. The
grooming factor implies thatF'(B,)| < C. V(B,) corresponds to the number of (SONET) ADMs
used in the wavelength ; indeed we have to use an ADM in all the vertices appearing in a circle
Cy;,;y packed in the wavelength

So, the original problem of minimizing the total numb&iC, N') of ADMs in a grooming with grooming
—
ratio C, in the unidirectional ringC ; with unitary static uniform traffic, can be stated as follows.

ProBLEM 1 (ADM)



Table 2. Values Ofpmax(C) for smallC'

C 112|345 |6 |7|8]9]|10
PGEIEE AFEIHIE
C 11112 13|14 | 15|16 |24 | 32 | 48 | 64
puelO) |22 [T T3 ]3]0
Inputs : a number of node#’ and a grooming ratia”
Output : a partition of the edges oK n into subgraphsB,, A = 1,..., W, such
that|Ex| < C

Objective :  minimize} ", ., .y [Val

Remark:As we said in the introduction, most interest has focused on a different objective function which
was to minimize the numbé#” of subgraphs (wavelengths) of the partition. This is an easy problem in this

context sincéV,;, = [%1 = {N(;Vc_l)]

3. General bounds
3.1 Maximum ratio pma.x(C)

Let p(B,) denote the ratio of a subgrapby, p(B)) = }‘E/Egiﬂ and p(m) the maximum ratio of a
subgraph withn edges. Lepnax(C) denote the maximum ratio of subgraphs with< C' edges. We have

pmax(C) = max {p(By) | |[E(B,)| < C} = maxp<c p(m).
pmax(C) is given by the following proposition (see Bermond and Coudert, for a proof).

PROPOSITION 2 (BERMOND AND COUDERT, ) If @ <C< W thenpax (C) = % and

the value is attained fokj.
If W <C< W thenppax(C) = k%l and the value is attained for any graph withedges
andk + 1 vertices.

For the sake of illustration, Table 2 gives the valuep.gf;(C') for small values of”.

3.2 Lower bound
THEOREM 3 Any grooming ofR circles with a grooming facto€' needs at Ieasl% ADMs.

Proof: We haveR = 3"\, |E(B))] < pmax(C) W, [V(By). 0

In particular, we get the following lower bound

THEOREM 4 (LOWER BounDp) A(C,N) > QJZIE]]:Z:(é'))'

Because of Theorem 4, subgraphs with a ratio equal.te (C') should be chosen when possible. Note
that according to Proposition 2, these subgraphs do not have necessarily €x@djgs and so the minimum
is not necessarily attained foV = Wii,.

For example, leC = 7. If a subgraph has 7 edges, its ratio is at mgost 1.4. But a subgraph with 6
edges can have a ratgaz 1.5 (and this is attained foK ). Any other subgraph has a ratio at méstSo,
in an optimal solution for the number of ADMs, we have to UdSgs as subgraphs of the partition and not
subgraphs with 7 edges and 5 vertices. But in a solution minimizing the number of wavelengths, we have in
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contrary to use these last ones. Using that, we were able in Bermond and Coudert, to give counterexamples
to a conjecture of Chiu and Modiano, 2000.

PROPOSITION 5 (BERMOND AND COUDERT, ) The conjecture of Chiu and Modiano, 2000 that the
—

minimum number of ADMsA(C, N), for unidirectional ringsC' 5 with uniform unitary traffic is obtained

for W = Wiy, = [N(NC_I)W, is false.

2

3.3 Upper bound and optimal results

Our problem looks similar to design theory. Indeed ah k, 1)-design is nothing else than a partition of
the edges of{  into subgraphs isomorphic ;. called blocks in this theory. That corresponds to impose
in our partitioning problem that all the subgrapBg are isomorphic td<;,. Note that the classical equivalent
definition is : given a set o elements, find a set of blocks such that each block contagilements and
each pair of elements appears in exactly one block (see the handbook Colbourn and Dinitz, 1996).

More generally, &'-design of orderV (see Colbourn and Dinitz, 1996 chap. 22 or Bermond et al., 1980
or Bermond and Sotteau, 1975) consists on a partition of the edg€s; dfto subgraphs isomorphic to a
given graphG. The interest of the existence ofadesign is shown by the following immediate proposition.

ProrosITION 6 If there exists a7-design of orderV, whereG is a graph with at most’ edges and ratio
pmax(C), thenA(C, N) = U4
NECESSARY CONDITIONS 7 (EXISTENCE OF A G-DESIGN) If there exists & -design, then
(i) Y=L should be a multiple of(G)
(i) NV — 1 should be a multiple of the greatest common divisor of the degrees of the vertges of
Wilson, 1976 has shown that these necessary conditions are also sufficient favlafgem that, we
obtain

_ NWN-D)

THEOREM 8 GivenC, for an infinite number of values &f, A(C, N) = S ()

Unfortunately, the values aV for which Wilson’s Theorem applies are very large. However, for small
values ofC', we can use exact results of design theory. For example, from the existencedésign for
G=K3,Ks+e Ky—e, Ky, K5 —3e, K5 — 2e, K5 — e, K5 and Kg, Wherer — ae (resp.Kp + ae)
denotes the graph obtained frdif), by deleting (resp. adding) edges, we obtain

THEOREM 9
m A(3,N) = w whenN = 1 or 3 (mod6)
m A(4,N) = w whenN = 0 or 1 (mod8)
m A(5,N) = % whenN = 0 or 1 (mod10)
= A(6,N) = A(7,N) = Y=L whenN = 1 or 4 (mod12)
= A8, N) = YD) whenN = 0 or 1 (mod16)
m A9, N) = %Aé_l) whenN = 0or 1 (mod18)
= A(10,N) = W whenN = 1 or 5 (mod20)
= A(16,N) = YD whenN = 1 (mod30)
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4. Determination of A(C,N) for R/3 < C

LeMMA 10 Forall N > 2, we haveA(C,N) > A(C + 1, N). FurthermoreA(1,N) = N(N — 1) and

A (Y N) = N

Proof: WhenC = 1, each subgraph contains 1 circle and 2 ADMs, and tH§$, N) = N(N — 1). On

the other hand, whe@' = Y=1) aji circles fit in the same subgraph aﬁ(w, N) = N. Finally,

it is clear thatA(C, N) is an upper bound faA(C + 1, N). 0O
We will now show that except two particular casé&”, N) < 2N whenC > R/3. To prove that, we

first need to treat in Lemmas 11 and 12 the particular caé ef 7, before proving with Theorem 13 the
general result.

LEMMA 11 A(7,7) = 15.

Proof: By Theorem 4A(7,7) > %2 = 14 and the equality could be attained only if there exists a decompo-
sition of K7 into subgraphs with ratig/2 (that isK’4). Such decomposition does not exist. @, 7) > 14.
The following assignment of circles into three subgraphs showAlat7) = 15.

Here, we denote byu;, us, ..., u,} the set of edges of the complete gralgh form on these vertices,
and by{u,ug, ..., uplv1, v, ..., 4} the set of edges of a complete bipartite gréfy}), between the nodes
u1, ug, . . ., up ON oNne side and the nodes vy, . . ., v, On the other side.

B | Vi \4 E; | Eil
By [ {0,1,2,3,4} 5 {0,1,4Y+{0,1[2,3} 7
B |{0,1,4,5,6} 5 {4,5,6}+{0,1|5,6} 7
By | {2,3,4,5,6} 5 {2,3}+{2,3/14,5,6} 7

LEMMA 12 A(8,7) = 14.

Proof: By Theorem 4A4(8,7) > [2%2] > 13, and the following assignment of circles into three sub-
graphs show that (8,7) = 14.

B | Vi \4 E; | Ei
Bo|10,1,2,3,4 5 K5 — {112,3) 8
By | {0,456} 4 Ky —{0,4} 5
Bs|{1,2,3,5,6) 5 {112,3} +{1,2,3/5,6} 8

O

THEOREM 13 WhenC > R/3, A(C,N) < 2N, except wheV = 4 andC = 2, and whenN = 7 and
Cc=r.

Proof: 1

Let N = 3t + h, whereh = 0,1 or 2 ; partition the vertex set into 3 sel§, V, V5 such thatV;| = ¢,
Va| =t + [ 2], and|V3| =t + [£].

Let the covering be done with 3 subgrapBs i = 1,2, 3, such thal’'(B;) = V; U V;44 (indices modulo
3). So, the total number of verticesaa/.

Each subgrapl®; will contain all the edges betweédr andV;_; plus extra edges as follows.

5 — W1 42 4 M1) The subgraptB; contains also

Case 1:N = 3t. In that case( > {N(N_ﬂ — H3t-)

all the edges between the verticesptand so, altogether + @ < C edges.
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Case 2:N = 3t + 1. Inthat case|Vi| = |Va| = ¢, [Va| = t +1; C > LD — 44 4 1) 4 W21
The subgraptB; (resp. Bs) contalnst(t +1)+ (t L) < C edges, namely thf{t + 1) edges betweel,
andVs (resp.V; andVs) plus ) extra edges chosen as follows. The eiﬁgﬁ edges ofB, are chosen
among the edges between vertlcesV@.f The t(t2 U extra edges oBj are the remaining edges between

the vertices ol plus t(t;?’) edges between the verticeslaf That is possible only if > 3.

B, contains the remaining edges between the verticd§ ahd all the edges between the vertice¥gf
thatis 1) — H28) | (-1 _ M) eqges, so altogethet + {31 < ¢ edges.

Whent = 1, A(2 4) =9 > 8andA(C 4) < 8for C > 3; Whent =2, A(7,7) = 15 > 14 and
A(C,7) =14 for C > 8 (Lemmas 11, 12 and 10).

Case 3:N = 3t+2. Inthatcase|V;| = ¢, |Vo| = |V3| =t+1;C > 3t2+3t+1 tt+1)+ (t“) +1.
The subgraph$, (resp. Bs) contains the (¢ 4 1) edges betweel; andV; (resp.V; andVs) plus t“)
extra edges chosen as follows. Hey we choset(t—l) edges between vertices Bf plust edges between
vertices ofl3. For B; we chose thé@ edges between vertices B5. B, contains thet + 1)? edges
betweerl, andVz plus the remaining edges between the verticdgothat is(t 4 1) + @ < C edges.

O

Let ¢(m) = min {k: | @ > m} that isp(m) = [@W and note that any subgraph with
edges has at leag{m) vertices.
THEOREM 14 LetR = w WhenC' > R/3, we have

= WhenC > R, A(C,N) = N.

» WhenR/2<C < R,A(C,N)=N+¢(R-C).

= WhenR/3 < C < R/2, exceptwhedlV = 4 andC = 2, and whenV = 7andC =7,

2N,
Y1) (p(C)—2
N+g0(C’)—1+<p<R—C’—“’ e )

Proof:
Case 1:C' > R. See Lemma 10.

Case 2:R/2 < C < R.
Recall thatp(m) is the smallest integet such that@ > m, and leta. = ¢ (R — C). If each vertex
belongs to at least 2 subgraphs thé(C, N) > 2N > N + «. So one vertex belongs to exactly one
subgraph which should contain the— 1 other vertices and at mo&tedges. To cover thB — C remaining
edges, we need a subgraph with at leasertices. Therefored(C, N) > N + «.

A solution with N + o ADMs is obtained by taking two subgraphs. The first one hasrtices and
covers@ edges, Wher@ > R — C by definition ofa. The second subgraph contains all the
vertices and covers the remaining edges in number less than or edqual to

Case 3:R/3 < (C < R/2.
a) If each vertex belongs to at least 2 subgraphs thgn N) > 2N.

b) Otherwise one vertex belongs to an unique subgfpkvhich contains at most’ edges. To cover
the remaining edges in number at le&st ', we need the following lemma.



LEMMA 15 Letky = ¢(C). WhenC < m < 2C, we need at leasinin {ky + ¢(m — C),
ko—14¢ (m - w> } vertices to cover the: edges.

Proof: Let By, Bo, ..., By be the subgraphs needed to coveedges and leB; be the subgraph
having the maximum number of edges. We consider 3 different cases (the third one using an induction
on m).

1) |V(B1)| = ko. We have E(By)| < C. To cover the remaining edges, in numbern — C, we
need a subgraph with at legstim —C) vertices. Thus, altogether we need at légstp(m—C)

vertices.
2) |V(B1)| = ko — 1, then|E(B,)| < %e=1ko=2) 't remains to cover at least — Fo—1)(Fo=2)
edges. Ifn—Fo=1k=2) < ¢ the remaining edges are covered using at I@a(sh — (’“Ofléﬁ)

vertices ; otherwise, at leag{C') + 2 vertices are required, bét — 1 + ko +2 = 2ko + 1 >
2kg > ko + cp(m - C)

3) |V(B1)| = k1 < ko — 2. It remains to cover the: — w remaining edges

@) If m — 2D < o we needkﬁup(m—%) < ko—1+¢(m—w>
vertices by convexity of;

(b) Otherwise, ifm — w > C, by induction the best covering use a subgraph with at least
»(C) — 1 vertices and s@; is not of maximum size< contradiction).

O

Now we apply the lemma to cover the edges not inBy. Recall thatn > R — C andR > 2C, so
m > C. If m < 2C, the lower bound follows from the lemma with = R — C. If m > 2C, we need at
least2p(C') > ¢(C) + ¢(R — C) vertices.

There exists a solution attaining the minimum. Indeed either the minimWignd we have seen
such solution foiC' = [£]. Either, the minimum is attained fa¥ + ¢(C) + (R — 2C) < 2N and so
©(C) + ¢(R —2C) < N. In that case we take two subgraphs on disjoint set of vertices, onepidih
vertices covering”’ edges and one with(R — 2C') vertices covering? — 2C edges. The last’ edges are
covered by a subgraph containing all tNevertices. Finally, if the minimum is attained fo¥ + ¢(C) —

1+ (R —C - (¢(0)71)2(¢(0)72)> < 2N, we can take two subgraphs on disjoint sets of vertices, one with
¢(C) — 1 vertices covering2=1(€)=2) eqges and one with (R —C- (“"(0)71)2(“”(0)*2)) vertices

coveringR — C — (“”(0)71)2(“"(0)*2) edges. Th&' remaining edges are covered by a subgraph containing
the NV vertices. 0

Applying Theorem 14, we obtained the results of Table 1(for 48 or 64 and N < 16, and forC = 12
andN < 9. More precisely, whe®’ = 64 we have forN < 11, R < C and thusA(64, N) = N and for
12 < N <16, R < 2C and soA(64, N) = N + p(R — 64). For example, folvV = 16 we haveN = 120,
R —C =56,¢p(R—C)=12and soA(64,16) = 16 + 12 = 28.

WhenC' = 48, we have forN < 10, R < C' and s0A(48, N) = N, and for11 < N < 14, R < 2C and
A(48, N) = N + p(R — 48). For14 < N < 16, we haveA(48, N) < 2N and the minimum is attained
for this value. For example faF = 16 we haveR = 120, p(48) = 11, (120 — 2 x 48) = p(24) = 8 and
N+¢(C)+p(R—-2C) =16+11+8 = 35 > 32 ; furthermorep(C) —1 = 10, p(R—C — (10x9)/2) =
©(27) = 8 and the value i84 > 32.

In the preceding cases, the minimum ®f3 < C' < R/2 was2N. But the other values of Theorem 14
can be attained. For example foyr = 14, R = 91, C' = 45, p(45) = 10, (R — 2C) = ¢(1) = 2 and so
N 4 ¢(C) + o(R — 2C) = 26 < 28 = 2N.
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Another interesting example is the computatiorddf3, 20). We haveN = 20, R = 190, ¢(93) = 15,
©(190 — 2 x 93) = p(4) = 4 and thus20 + 15 + 4 = 39 < 40, but we also have(93) — 1 = 14,
©(190 — 93 — (14 x 13)/2) = ¢(6) = 4 and sc20 + 14 + 4 = 38 < 39 (the minimum is attained for the
third case).

For lower bounds, ifV is small, we have also to take into account the fact that subgraphs should have
large intersections and so edges are covered many times.

5. Lower bounds

For other values of’ and N, we have to use more sophisticated arguments.

PROPOSITION 16 Leta; denotes the number of subgraphsif containingi nodes. In any covering of
Ky by subgraphs3;, |E(B;)| < C, the following equations are satisfied :

R:N(NQ_D < ;ai.min{a 1(2;1)} (1)
A(C,N) = iza 2)

i>2
Pras(C)AC,N) =R > Yy <i.pmax(0)—min{c,i(i;”}) @3)

i>2
Proof: Equation 1 means that all edges are covered at least once and Equation 2 that the total number of
nodes is equal to the sum of the number of nodes of the subgraphs. Equation 3 follows straightforward from
equations 1 and 2. 0

This proposition help us to prove lower bounds. We will see an example in Proposition 17 to prove that
A(12,10) > 23.
PROPOSITION 17 A(12,10) = 24.

Proof: We haveR = N(]\;”) = 45, pmax(12) = 2 and thusA(12,10) > [45/pmax(12)] = 23. From

Proposition 16, we have :

N(N -1
R= (2) < ) 12a; + 12a6 + 10a5 + 6as + 3as + a (4)
i>7
A(C, N) = Z i.a; + 6ag + Has + 4aq + 3as + 2as (5)
i>7
2.AC,N)—R > > 2(i - 6)a; + 2a4 + 3ag + 3az (6)
1>7

Note thatag and as are not concerned by Equation 6 as b&h and Ky — 3¢ satisfyp = 2. Let
us first prove that the value 23 cannot be attainedA(If2,10) = 23, then from Equation 6, we have
46 —45=12>>"...2(i — 6)a; + 2a4 + 3az + 3az. Thereforen; = 0 for i # 5,6, and a solution consists
only of K5's andKg's. Since23 = 6ag + 5as, we have necessarity; = 3 andas = 1.

Note that at least one node (in fact 6) belongs to only 2 subgraphs, othéAySeN)| > 3 x 10 = 30.
Let node 0 belong to 2 subgraphs. We have to investigate the two following cases :

= [f node O belongs to subgrapli% and B;, one with 6 vertices and one with 5 vertices, then w.l.0.g.
V(By) = {0,1,2,3,4,5} andV (By) = {0,6,7,8,9}. Then the two remaining subgraphs, (i =
2,3) satisfy|V (B;) N (V(Bo) UV (B1))| = 6 and| E(B;) N (E(Bo) U E(B1))| > 6.
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Sinceag = 3 andas = 1, we have a total 08 x 15 + 10 = 55 edges in all the subgraphs, but for
the subgraph®, and B3 at least2 x 6 = 12 edges are already covered. Thus, the number of edges
covered is at mosis — 12 = 43 < 45 a contradiction.

= Ifnode 0 belongs to the subgrapBs andB;, each with 6 vertices, then w.l.0o.§.(By) = {0, 1,2, 3,4, 5},
V(B1) ={0,1,6,7,8,9} and|E(By) N E(By)| = 1. Then the two remaining subgrapBs and Bs
are such thaf’ (B2) N (V(By)UV (B1))| =6, |V (B3)N(V(By) UV (B1))| = 5, |E(B2) N (E(By) U
E(B1))| > 6, and|E(Bs) N (E(Bo) U E(B1))| > 4.

Sinceas = 3 andas = 1, we have a total o8 x 15 + 10 = 55 edges in all the subgraphs, but for the
subgraphs3;, B; and B3 at leastt + 4 + 1 = 11 edges are already covered. Thus, we have at most
55 — 11 = 44 < 45 edges covered, a contradiction.

Thus,A(12,10) > 24. The following covering into 4 subgraphs gives thtl 2, 10) = 24.

Bo | {0,1,2,3,4,5] 6 (0,1} +{0,12,3,4,5) + {2,3,4] 12
Bi|{0,1,6,7,8,91 6 {0,1/6,7,8,9} + {6,7]8,9} 12
Bo | {2,3,4,5,6,7} 6 (2,3,45,6,7} + {5,6,7} 12
Bs | {2,3,4,5,8,91 6 (2,3,4,5(8,9} + {8,9} 9

O

The other lower bounds faf' = 12 and N < 16 are obtained in the same way. For constructions, we
need to use designs tools as we will see in the next section.

6. Constructions

For small values of” it is possible to give the exact values 4{C, N) for all N. WhenC = 3 it has
been done in Bermond and Ceroi, .

THEOREM 18 (BERMOND AND CEROI, )

(i) WhenN is odd, A3, N) = YX=U | ¢ wheree = 0if N = 1 or 3 (mod6), ande = 2 if
N =5 (mod6) ;

(i) When N is even,A(3, N) = Y21 | [N 4 ¢ wheree = 1if N = 8 (mod12), ande = 0
otherwise.

The proof uses techniques inspired of design theory. In the even case, the optimal solutions use a lot of

K3's and somek; 3 or P4. Indeed, the degree @y being odd, one has to use subgraphs with odd degree.
For example, ifn = 0 or 4 (mod12), the optimal solution consists d}f% - % K3's and% Ki 3.
Note that there always exist solutions minimizing both the number of ADMs and the number of subgraphs

(wavelengths) so conjecture of Chiu and Modiano, 2000 is trué€’fer 3.
For C = 4, the following theorem was given in Hu, 2002. We give here a shorter proof to show how
simple partitions can be used.

THEOREM 19 (Hu, 2002) A(4,2) =2, A(4,4) = 7 and otherwiseA(4, N) = w Furthermore,
the number of subgraphs is the minim\Pr%(]\é—_ﬂ .

We first need the following lemma (a particular case of Sotteau, 1981) for which we recall the proof.

LeEMMA 20 Whenp andq are evens,, , can be decomposed in#§ Cj’s.
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Proof: Letp = 2r andg = 2s and let the vertices ok, , be on one side,, d}, a2, d),. .., a,,a, and
on the other sidéy, b}, b2,b5,...,bs, 0. Then, thers = B Cy's of the decomposition of(, », are
(ai,bj,a;,b;),fori =1,2,...,randj =1,2,...,s. 0

We can now give a short proof to Theorem 19.

Proof: [Theorem 19]

For N < 5, the results follows form Theorem 14.(4,2) = 2, A(4,3) = 3, A(4,4) = 7, andA(4,5) =
10. For N > 6, the lower bound follows from Theorem 4 ag,x(4) = 1.

Now, we can prove the Theorem by induction. Maore precisely, we can prov&thaan be decomposed

into {WW — a Cy's and K3 + e (the graph obtained by adding an edge and a nodés;)plusa K3s,
wherea = 0if N =0or1 (mod8),« =1if N =3 o0r6 (mod8), « =2if N =4 or5 (mod8), and
a=3if N =2or7(mod8). So the total number of subgraphdis,;, = {ww

The construction can be easily done o< N < 12.

Now suppose that the Theorem is true fér then it is true forV + 8. Indeed if NV is even,K g can
be partitioned into &', a Kg and aKy g. By induction hypothesisiy, can be decomposed int@,’s,
K3+ eanda K3's ; Kg can be decomposed infd,’s and K3 + e ; Ky g into Cy's by Lemma 20. Sd{ 5
can be decomposed infd,’s, K3 + e anda K3's.

If Vis odd, we partition the edge set Afy s into a Ky and aKgy having one vertex in common and a
Kn_1,. By induction hypothesisi{;y can be decomposed in,’s, K3 + e anda K3's ; Kg andKy_1 g
into Cy’s. SoK s can be decomposed in€,’s, K35 + e anda K3's. 0

For other values of’, more sophisticated tools of design theory have to be used. We give an example for
C = 12 where we can solve completely the caée= 1 (mod4).

PROPOSITION 21 WhenN = 4h + 1, A(12,4h + 1) = (4h + 1)h.

Proof: AS pmax(12) =2, A(C,N) > N(N — 1), thatis(4h + 1)h for N = 4h + 1.

Letvy,ve, ..., v; be some nonnegative integers; doenplete multipartite graph with class sizgsw,, . . . , vy,
denotedK,, ... », is defined to be the graph with vertex 8¢tU 1, U ... U V; where|V;| = v;, and two
verticesz € V; andy € V; are adjacent if and only if # j. Fort > 0, we denoteK . (resp. Kgx:.u)
Kgg,..q(resp.Ky . . 44) Whereg occurst times.

Note thatK - - is a graph with 6 vertices and 12 edges (so with'z 2 2) = 2).

By Theorem 1.2.4 pages 189-190 of Colbourn and Dinitz, 1996, we know thatthehor 1 (mod3),
K5 can be decomposed inl?é(g_—l)Kg, and that whert = 0 (mod3), K;x24 can be decomposed into
HU_DFEE e, 1t follows that whent = 0 or 1 (mod3), K;4 can be decomposed it K5 5 5, and
that whent = 0 (mod3), K45 can be decomposed infg=P+8 — 21LH5) f, )

We are now able to prove the proposition.

= Forh=0o0r1(mod3),letV = Z?:1 V;U{0} with |V;| = 4. Thus,K  can be partitioned inth K
corresponding to the subgrapBsconstructed ofv;U{0} and theK, 4 with classed/;. Furthermore,
K}« 4 can be partitioned int@’l(g—_l) Ks29’s. So altogether (12, N) = 5h+4h(h — 1) = 4h? + h.

= Forh =2 (mod3), letV = "2 V,uv;,_ u{0} with |Vi| = 4fori = 1,2,..., h—2and|V},_,| =
8. So, Ky can be decomposed inté — 2) K5 (constructed orV; U {0} fori = 1,2,...,h — 2),
a Ko onV,_1 U {0} and ak;_s)x4,s Which can be decomposed in%éﬁ*%)(ﬂ K> 52, and thus
A(12,N) =5(h —2) + 18 + 4(h — 2)(h + 1) = 4h? + h (using the fact thati(12,9) = 18).
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7. ILP formulation

We can easily formulate our problem in terms of integer linear programming (ILP) which may be solved
using CPLEX.
Lete! ; = 1 if subgraphB,; contains edgéi, j}, and 0 otherwise, and lef = 1if i € V(B;). We have

V{’L,j} € Va Zl 65-7]- > 1
Vi, eé,j < ni
l l
Vs Vil(1Vil=1)
Minimize S ont

We may add some other constraints to reduce the research spade= L€}, min {C, W} - R;

it corresponds to the number of edges which may appear in more than one subgraph. lréy alsd

if > e eﬁj > 1 and 0 otherwise, meaning that edge;} is contained by at least one of the subgraphs
Bi, Bs, ..., B;. We have

l
L j
l

irj

d

Vi V{i,j} eV, e,

k l
Spaev (Terel; —aty)

With these general conditions, we can find solution onlyfor< 8. However, we can again limit the
research space. For example we can use Proposition 16 to know for a given possible y&itie/é) what
are the sizes of the subgraphs, fix already some subgraphs, etc ... Doing so, we can quickly eliminate some
values ofA(C, N). We can also know if a given partition is valid or not.

VAN VANVAN

8. Conclusion

In this article, we have solved the problem of traffic grooming in unidirectional WDM rings with uniform
unitary traffic for various values oV andC. We have shown how to use graph theory and design tools to
either solve the problem or help an ILP program ; that has enabled us to solve optimally the problem for
practical values and infinite congruence classes of values for a giverhe tools can be easily extended
to uniform but non unitary traffic. Indeed, if we have a request of sirtem i to j, it suffices to consider
decomposition of the edges of the complete multipartite grdgk. We can also extend the ideas to the
case of arbitrary traffic, but it requires to partition general graphs and this is known to be a difficult problem
in graph theory. However, our tools can be used in an ILP formulation. We can also consider networks
different from the unidirectional ring, if we are first able to group the requests into circles (that is the way
used in Colbourn and Ling, ; Colbourn and Wan, 2001 for bidirectional rings). Finally, the tools can also
be used to groom traffic in a slightly different context, for example , in the RNRT project PORTO our
team developed with France Telecom and Alcatel, the traffic was expressed in terms of STM-1 (each one
needed one wavelength) and we grouped them into bands or fibers, typically a fiber containing 8 bands of 4
wavelengths (see Huiban et al., 2002).
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