O. Amini, F. Huc, and S. Pérennes, On the pathwidth of planar graphs, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00082035

H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer Science, vol.209, issue.1-2, pp.1-45, 1998.
DOI : 10.1016/S0304-3975(97)00228-4

H. L. Bodlaender and F. V. Fomin, Approximation of pathwidth of outerplanar graphs, Journal of Algorithms, vol.43, issue.2, pp.190-200, 2002.
DOI : 10.1016/S0196-6774(02)00001-9

H. L. Bodlaender and T. Kloks, Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs, Journal of Algorithms, vol.21, issue.2, pp.358-402, 1996.
DOI : 10.1006/jagm.1996.0049

V. Bouchitté, F. Mazoit, and I. Todinca, Chordal embeddings of planar graphs, Discrete Mathematics, vol.273, issue.1-3, pp.85-10201, 2003.
DOI : 10.1016/S0012-365X(03)00230-9

J. Díaz, J. Petit, and M. Serna, A survey of graph layout problems, ACM Computing Surveys, vol.34, issue.3, pp.313-356, 2002.
DOI : 10.1145/568522.568523

J. Ellis and M. Markov, Computing the vertex separation of unicyclic graphs, Information and Computation, vol.192, issue.2, pp.123-161, 2004.
DOI : 10.1016/j.ic.2004.03.005

J. A. Ellis, I. H. Sudborough, and J. S. Turner, The Vertex Separation and Search Number of a Graph, Information and Computation, vol.113, issue.1, pp.50-79, 1994.
DOI : 10.1006/inco.1994.1064

F. Fomin and D. M. Thilikos, On self duality of pathwidth in polyhedral graph embeddings, Journal of Graph Theory, vol.14, issue.1, 2006.
DOI : 10.1002/jgt.20219

F. V. Fomin, Pathwidth of Planar and Line Graphs, Graphs and Combinatorics, vol.19, issue.1, pp.91-99, 2003.
DOI : 10.1007/s00373-002-0490-z

R. Govindan, M. A. Langston, and X. Yan, Approximating the pathwidth of outerplanar graphs, Information Processing Letters, vol.68, issue.1, pp.17-23, 1998.
DOI : 10.1016/S0020-0190(98)00139-2

N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Information Processing Letters, vol.42, issue.6, pp.345-350, 1992.
DOI : 10.1016/0020-0190(92)90234-M

D. Lapoire, Structuration des graphes planaires, 1999.

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, The complexity of searching a graph, Journal of the ACM, vol.35, issue.1, pp.18-44, 1988.
DOI : 10.1145/42267.42268

S. L. Mitchell, Linear algorithms to recognize outerplanar and maximal outerplanar graphs, Information Processing Letters, vol.9, issue.5, pp.229-232, 1979.
DOI : 10.1016/0020-0190(79)90075-9

B. Reed, Treewidth and tangles: an new connectivity measure and some applications, Surveys in Combinatorics, pp.87-162, 1997.
DOI : 10.1017/cbo9780511662119.006

N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest, Journal of Combinatorial Theory, Series B, vol.35, issue.1, pp.39-61, 1983.
DOI : 10.1016/0095-8956(83)90079-5

URL : http://doi.org/10.1006/jctb.1999.1919

N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, Journal of Combinatorial Theory, Series B, vol.36, issue.1, pp.49-64, 1984.
DOI : 10.1016/0095-8956(84)90013-3

URL : http://doi.org/10.1006/jctb.1999.1919

P. Scheffler, A Linear Algorithm for the Pathwidth of Trees, Topics in Combinatorics and Graph Theory, pp.613-620, 1990.
DOI : 10.1007/978-3-642-46908-4_70

K. Skodinis, Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time, Journal of Algorithms, vol.47, issue.1, pp.40-59, 2003.
DOI : 10.1016/S0196-6774(02)00225-0

M. M. Sys?o, Characterizations of outerplanar graphs, Discrete Mathematics, vol.26, issue.1, pp.47-53, 1979.
DOI : 10.1016/0012-365X(79)90060-8

M. Yannakakis, A polynomial algorithm for the min-cut linear arrangement of trees, Journal of the ACM, vol.32, issue.4, pp.950-988, 1985.
DOI : 10.1145/4221.4228