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Abstract

Traffic grooming in a WDM network consists of assigning to each request (lightpath) a wave-
length with the constraint that a given wavelength can carry at most C requests or equivalently
a request uses 1/C of the bandwidth. C is known as the grooming ratio. A request (lightpath)
needs two SONET add-drop multiplexers (ADMs) at each end node; using grooming, different
requests can share the same ADM. The so called traffic grooming problem consists of minimizing
the total number of ADMs to be used (in order to reduce the overall cost of the network). Here
we consider the traffic grooming problem in WDM unidirectional rings which has been recently
shown to be APX-hard and for which no constant approximations are known. We furthermore
suppose an all to all uniform unitary traffic. This problem has been optimally solved for specific
values of the grooming ratio, namely C = 2, 3, 4, 5, 6. In this paper we present various simple
constructions for the grooming problem providing approximation of the total number of ADMs
with a small constant ratio. For that we use the fact that the problem corresponds to a partition
of the edges of the complete graph into subgraphs, where each subgraph has at most C edges
and where the total number of vertices has to be minimized.

Keywords: Traffic Grooming, WDM Networks, ADM, Unidirectional Rings, Approxima-
tion, Designs, Partition of graphs.
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1 Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed streams (see
the surveys [7, 14, 22, 24, 30, 21]). By using traffic grooming, one can bypass the electronics in
the nodes for which there is no traffic sourced or destinated to it and therefore reduce the cost of
the network. Typically, in a WDM (Wavelength Division Multiplexing) network, instead of having
one SONET Add Drop Multiplexer (ADM) on every wavelength at every node, it may be possible
to have ADMs only for the wavelength used at that node (the other wavelengths being optically
routed without electronic switching).

In SONET/WDM networks, we assign to each request {i, j} a fraction of the bandwidth offered
by a wavelength along a path from node i to node j. If a given wavelength can carry at most C
requests, we can assign to each request at most 1

C
of the bandwidth. C is known as the grooming

ratio. In the particular case of unidirectional rings, the routing is unique. Furthermore, if the
traffic is symmetric, it can be easily shown (by exchanging wavelengths) that there always exists
an optimal solution in which the same wavelength is given to a pair of symmetric requests. Then,
without loss of generality, we will assign to each pair of symmetric requests, called a circle, a fraction
of the bandwidth in the whole ring. In both cases, we need one ADM at node i and one at node
j. Also, two requests with a common extremity and assigned to the same wavelength will share an
ADM. For example, if requests {1, 2} and {2, 3} are assigned to two different wavelengths, then we
need 4 ADMs, while if they are assigned to the same wavelength we will need only 3 ADMs.

The so called traffic grooming problem consists of minimizing the total number of ADMs to
be used (in order to reduce the overall cost of the network). Here we study the problem for an
unidirectional SONET ring with N nodes, a grooming ratio C, and an all-to-all uniform unitary
traffic. This problem has been modeled as a graph partition problem in both [6] and [18]. The set
of requests is modeled by a graph I, where I = KN in the all-to-all case. To a wavelength w is
associated a subgraph Bw in which each edge corresponds to a request and each node to an ADM.
The grooming constraint, that a wavelength can carry at most C requests, corresponds to the fact
that the number of edges |E(Bw)| of each subgraph Bw is at most C. The objective is therefore to
minimize the total number of vertices used in the subgraphs.

Problem 1 (Grooming on unidirectional cycle [6])

Given a number of nodes N and a grooming ratio C find a partition of the edges of the undirected
graph I = KN into subgraphs Bw, w = 1, . . . ,W with |E(Bw)| ≤ C such that

∑

1≤w≤W |V (Bw)| is
minimum.(This minimum will be denoted A(C,N)).

The traffic grooming problem has recently been extensively studied on unidirectional WDM
rings, primarily in the context of variable traffic requirements [10, 13, 18, 25, 28], but the case of
fixed traffic requirements has served as an important special case [3, 4, 5, 6, 7, 8, 14, 16, 17, 19, 20,
22, 26, 29]. The problem has also been studied on the path [2].

With a general set of requests, I 6= KN , the grooming problem has been proved NP-Complete
in unidirectional ring with grooming factor C ≥ 1 [10, 23]. Then a first approximation algorithm

for computing the total number of ADMs with approximation factor
C

“

1+ 1

⌈C/2⌉

”

l

1+
√

1+8C
2

m , i.e. ∼
√

C, has

been given in [18], and in [15] a log(C)-approximation algorithm has been obtained. More recently,
the grooming problem has been proved APX-Hard in [1] (i.e. there exists a constant c, such that
Problem 1 can not be approximate within a factor c).
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C 8 9 12 15 16 28 32 48 64 192

ρmax(C) 8
5

9
5 2 5

2
5
2

7
2

32
9

9
2

16
3

19
2

γ for Cons. 11 1.6 1.2 1.33 1.67 1.25 1.4 1.42 1.5 1.33 1.46

γ for Cons. 18 1.2 1.2 1.17 1.33 1.25 1.37 1.3 1.31 1.33 1.39

γ for Cons. 21 1.6 1.8 1 1.25 1.25 1.17 1.19 1.13 1.33 1.19

Table 1: Approximation factor of the different constructions.

With the all-to-all set of requests, I = KN , the extremal problem of finding the exact value
of A(C,N) is open and there is not even a conjecture for the extremal constructions. Optimal
constructions for given grooming ratio C were obtained using tools of graph and design theory [7,
11, 12], in particular for grooming ratio C = 3 [3], C = 4 [19, 8], C = 5 [5], C = 6 [4] and
C ≥ N(N−1)/6 [8]. However it will be a very long and intractable task to find optimal constructions
for all grooming ratio. Existing heuristic algorithms [17, 26, 29] as well as the approximation
algorithm proposed in [15, 18] are not satisfactory for the all-to-all case. Therefore, it is important
to show that in this case we have approximation algorithms with a small approximation ratio.

In this paper, we will first present an asymptotical 1 + 4C
N

+ o
(

1
N

)

-approximation algorithm;
unfortunately the construction is valid only for large N . Then we present a very simple construction
using bipartite graphs which provides a γ(C,N)-approximation for the total number of ADMs,

where γ(C,N) is at most
√

2
√

C

⌊√C⌋ and in many cases better (for example, for C = 16: γ(16, N) = 5
4 ,

and for C = 64: γ(64, N) = 4
3). Then we show several improvements of this construction by using

other bipartite graphs or tripartite graphs (in that case γ(C,N) is of order
√

3
2) or multipartite

graphs. Values of the approximation factor obtained with different constructions are given in
Table 1 for realistic values of C.

2 Lower bound

A tight lower bound for Problem 1 has been given in [6, 8] and is recalled in Theorem 2. The
idea consists in using in the partition subgraphs which, for a given number of edges (less than
C), have the minimum number of vertices. So let us denote by ρ(G) the ratio of a subgraph G,

ρ(G) = |E(G)|
|V (G)| , and by ρ(m) the maximum ratio of a subgraph with m edges. Let finally ρmax(C)

denote the maximum possible ratio among all the subgraphs with m ≤ C edges, that is:

ρmax(C) = max {ρ(G) | |E(G)| ≤ C} = max
m≤C

ρ(m)

Recall that A(C,N) is the minimum number of ADM’s needed in an unidirectional ring with
the all-to-all set of request (I = KN ) and with a grooming ratio C. A(C,N) =

∑

1≤w≤W |V (Bw)|;
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so using ρmax(C)|V (Bw)| ≥ |E(Bw)| and
∑

1≤w≤W |E(Bw)| = N(N−1)
2 we get the following lower

bound:

Theorem 2 (Lower Bound [6]) A(C,N) ≥ N(N−1)
2ρmax(C) .

The value of ρmax(C) has been evaluated in [6] and is recalled in Proposition 3.

Proposition 3 ([6])

• If x(x−1)
2 ≤ C ≤ (x+1)(x−1)

2 , then ρmax(C) = x−1
2 and the value is attained for Kx.

• If (x+1)(x−1)
2 < C < (x+1)x

2 , then ρmax(C) = C
x+1 and the value is attained for any graph with

C edges and x + 1 vertices.

Values of ρmax(C) are given in Table 1 for realistic values of C. The following corollary gives
also a lower bound easier to manipulate.

Corollary 4 ρmax(C) ≤
√

C
2 and so A(C,N) ≥ N(N−1)√

2C
.

Proof : From Proposition 3, we know that ρmax(C) = x−1
2 (case 1) or C

x+1 (case 2), and we can

observe that x =
⌊

1+
√

1+8C
2

⌋

. Thus we have

• case 1 : 2ρmax(C) =
⌊

1+
√

1+8C
2

⌋

− 1 ≤
⌊√

1+8C−1
2

⌋

≤
√

8C
2 ≤

√
2C and so ρmax(C) ≤

√

C
2

• case 2 : ρmax(C) = C
j

1+
√

1+8C
2

k

+1
≤ C

1+
√

1+8C
2

≤
√

C
2

So A(C,N) ≥ N(N−1)√
2C

. �

3 Asymptotic construction

It has been shown in [6] that design theory can help to solve the grooming problem. In particular,
a G-design of order N (see [11] VI.24 or [9]) is nothing else than a partition of the edges of KN into
subgraphs isomorphic to a given graph G. The interest of the existence of a G-design is shown by
the following immediate proposition.

Proposition 5 ([6]) If there exists a G-design of order N , where G is a graph with at most C

edges and with ratio ρmax(C), then A(C,N) = N(N−1)
2ρmax(C) .

Necessary conditions 6 (Existence of a G-design) If there exists a G-design, then

(i) N(N−1)
2 should be a multiple of E(G)

(ii) N − 1 should be a multiple of the greatest common divisor of the degrees of the vertices of G.
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It has been shown that these conditions are sufficient for C = 3, 6, 10: G being the complete
graph K3, K4, or K5 (in that case we have a “classical design”, see [11] chapter II.3), and also for
C = 15 (N ≥ 802): G being K6. They are also sufficient for C = 4, 5, 8 (N 6= 48), 9 (N ≥ 235)
(see [11] chapter VI.24). More generally, Wilson [27] has shown that these necessary conditions are
sufficient for any C when N is large enough. So we have the following Theorem:

Theorem 7 (see [6]) We have

• A(3, N) = N(N−1)
2 when N ≡ 1 or 3 mod 6

• A(4, N) = N(N−1)
2 when N ≡ 0 or 1 mod 8

• A(5, N) = 2N(N−1)
5 when N ≡ 0 or 1 mod 5

• A(6, N) = A(7, N) = N(N−1)
3 when N ≡ 1 or 4 mod 12

• A(8, N) = 5N(N−1)
16 when N ≡ 0 or 1 mod 16, and N 6= 48

• A(9, N) = 5N(N−1)
18 when N ≡ 0 or 1 mod 9, and N ≥ 235

• A(10, N) = N(N−1)
4 when N ≡ 1 or 5 mod 20

• A(15, N) = A(16, N) = N(N−1)
5 when N ≡ 1 or 6 mod 15, and N ≥ 802

Construction 8 For a given C, let N2 ≥ N be the smallest integer such that there exists a G-
design where G has at most C edges and a ratio ρmax(C). We obtain a valid construction for N by
removing N2 − N nodes and the corresponding edges from the optimal construction for N2.

In order to get an approximation factor of this solution, we need to know a lower bound for
A(C,N). A trivial lower bound is given by A(C,N1), where N1 ≤ N is the biggest integer such
that there exists a G-design.

The following lemma allows to find values of N1 and N2 that are near to each other.

Lemma 9 Let α(C) be defined as follows :

• If x(x−1)
2 ≤ C ≤ (x+1)(x−1)

2 , then α(C) = x(x − 1).

• If (x+1)(x−1)
2 ≤ C < (x+1)x

2 , then α(C) = 2C

Let N1 = α(C)t + 1 and N2 = α(C)(t + 1) + 1 be such that N1 ≤ N ≤ N2.
There always exists a graph G with at most C edges and ratio ρmax(C) which satisfies Condi-

tions 6 for N1 and N2.

Proof : When x(x−1)
2 ≤ C ≤ (x+1)(x−1)

2 , then ρmax(C) is attained for Kx, and so let G = Kx. Both
N1 − 1 and N2 − 1 are multiple of α(C) = x(x − 1); and so the number of edges of KN1

(resp.

KN2
) N1(N1−1)

2 (resp. N2(N2−1)
2 ) is a multiple of E(G) = x(x−1)

2 . Condition (ii) is also satisfied as
the degree of a vertex of KN1

(resp. KN2
) N1 − 1 (resp. N2 − 1) is a multiple of x − 1 the degree

of Kx.
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When (x+1)(x−1)
2 ≤ C < (x+1)x

2 , then ρmax(C) is attained for any graph with C edges and

x + 1 vertices. Let r = (x+1)x
2 − C. So 0 < r < x. Let G be the graph obtained from Kx+1

by removing the edges of a path of length r. G has C edges and so Condition (i) is satisfied

as N1(N1−1)
2 = (2Ct + 1)Ct and N2(N2−1)

2 = (2C(t + 1) + 1)C(t + 1) are multiples of E(G). As
0 < r ≤ x − 1, G has a vertex which is not in the path that have been removed; this vertex has
degree x, and the extremities of the path have degree x− 1, so the greatest common divisor of the
degrees of the vertices of G is 1. Condition (ii) is trivially satisfied. �

Proposition 10 When N is large enough to satisfy Wilson’s Theorem, Construction 8 has an
approximation factor γ(C,N) ≤ 1 + 4C

N
+ o

(

1
N

)

.

Proof : Let f(C,N) denotes the number of ADMs obtained by Construction 8 and let γ(C,N) =
f(C,N)
A(C,N) be its approximation factor. Let also N1 and N2, with N1 ≤ N ≤ N2, be given by Lemma 9.

We have A(C,N1) ≤ A(C,N) ≤ f(C,N) ≤ A(C,N2) and γ(C,N) = f(C,N)
A(C,N) ≤

A(C,N2)
A(C,N1) = N2(N2−1)

N1(N1−1) .

Since N2 = α(C)(t + 1) + 1 = N1 + α(C), we have γ(C,N) ≤ 1 + 2α(C)
N1

+ α(C)(α(C)+1)
N1(N1−1) .

Finally, as in both cases α(C) ≤ 2C and N −N1 ≤ α(C), we obtain γ(C,N) ≤ 1 + 4C
N

+ o
(

1
N

)

.
�

Unfortunately, except for the small values of C given in Theorem 7, the values of N for which
Wilson’s Theorem and so Proposition 10 applies are very large. Furthermore, it is not known how
to implement Construction 8 in polynomial time. So there is a need to find simpler and general
constructions.

4 Construction using bipartite graphs

In this section, we first present a simple construction which gives an upper bound on the number
of ADM’s and we analyze it’s approximation factor. Then, we present some improvements of this
construction.

Basically our construction consists of partitioning the edges of KN into a maximum number of
bipartite graphs, with at most C edges, plus some small complete graphs. A complete-bipartite
graph with 2 sets of p nodes each has p2 edges and a ratio of p

2 . Therefore choosing p2 to be C

or almost C we get a ratio near to
√

C
2 . As we will see in the proof of Proposition 12, the number

of ADMs due to bipartite graphs dominates the total cost of the construction, and so the number
of ADMs will be around N(N−1)√

C
. From Theorem 2 we know that the lower bound is larger than

N(N−1)
2ρmax(C) . So our construction gives an approximation factor close to 2ρmax(C)√

C
≤

√
2 by Corollary 4.

Several constructions are possible. We first present a basic construction (Construction 11) and
then some improvements (Constructions 14 and 16) in order to have a precise approximation factor.
We also give a variant in which C is the product of two numbers.

4.1 Basic construction

Construction 11 Let C = p2 + p′, 0 ≤ p′ ≤ 2p (p = ⌊
√

C⌋); let N = qp + r, 0 ≤ r < p, and let
the vertices of KN be V = ∪q

i=1Vi ∪ Vq+1 with |Vi| = p and |Vq+1| = r.
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We partition the edges of KN into q(q−1)
2 Kp,p on Vi ∪ Vj , 1 ≤ i < j ≤ q, plus q Kp,r on

Vi ∪ Vq+1, 1 ≤ i ≤ q, plus q Kp on Vi and one Kr on Vq+1 .

Proposition 12 Construction 11 is valid and uses (q + 1)N ADMs.

Proof : First all the subgraphs of the decomposition have at most p2 ≤ C edges. Since a bipartite
graph Kx,y has x+y vertices and a complete graph Kx has x vertices, the number of ADMs involved

in the construction is: 2p q(q−1)
2 + (p + r)q + qp + r = (q + 1)(qp + r) = (q + 1)N ADMs. �

Corollary 13 When C = p2 + p′, 0 ≤ p′ ≤ 2p, and N = qp + r, 0 ≤ r < p, Construction 11
provides a

2ρmax(C)

⌊√C⌋ + O
(

1
N

)

<
√

2
√

C

⌊√C⌋ + O
(

1
N

)

-approximation of the number of ADMs.

Proof : Let γ(C,N) be the approximation factor that is the ratio between the upper bound
construction and the lower bound for a given grooming factor C. We know from Theorem 2 that
A(C,N) ≥ N(N−1)

2ρmax(C) . So

γ(C,N) = (q + 1)N
2ρmax(C)

N(N − 1)
= 2ρmax(C)

q + 1

N − 1

Since C = p2 + p′, we have p =
⌊√

C
⌋

and q = N−r
p

= N−r

⌊√C⌋ . Thus we obtain

γ(C,N) =
2ρmax(C)

⌊√
C

⌋



1 +

⌊√
C

⌋

− r + 1

N − 1





�

4.2 Improvements

The above construction is very simple and provides a better approximation factor than [15]. The
values of the approximation factor for some values of C are indicated in Table 1. A first improvement
can be obtained by noting that some bipartite subgraphs of the decomposition have strictly less
than C edges and therefore we can add to them some edges of the Kp’s and of the Kr. That is
always the case for the Kp,r as pr < p2 ≤ C and also for the Kp,p when C > p2. Doing so we can
get rid of the O

(

1
N

)

in Corollary 13.

Construction 14 Let C = p2 and N = qp + r, 0 < r < p.
The construction consists of partitioning the edges of KN into q(q−1)

2 Kp,p on Vi ∪ Vj , 1 ≤ i <
j ≤ q, plus q subgraphs on Vi ∪ Vq+1, 1 ≤ i ≤ q containing the pr edges of the Kp,r between Vi and

Vq+1 plus the p(p−1)
2 of the Kp on Vi and some edges of the Kr on Vq+1.

Proposition 15 Let C = p2 and N = qp + r, 0 < r < p. If r(r−1)
2 ≤ q

(

C − pr − p(p−1)
2

)

,

Construction 14 is valid and provides a 2ρmax(C)√
C

≤
√

2-approximation of the total number of ADMs.
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Proof : The subgraphs Kp,p have p2 = C edges. Each other subgraph contains the pr edges of the

Kp,r between Vi and Vq+1 plus the p(p−1)
2 of the Kp on Vi. So we can still use C−pr− p(p−1)

2 > 0 edges

of the Kr on Vq+1; and altogether we can use all the edges of Kr as r(r−1)
2 ≤ q

(

C − pr − p(p−1)
2

)

.

Construction 14 uses q(q − 1)p + q(p + r) = q(qp + r) = qN ADMs. So it has an approximation
factor

γ(C,N) = qN 2ρmax(C)
N(N−1) = 2ρmax(C)

p
N−r
N−1 . Since C = p2, we have γ(C,N) = 2ρmax(C)√

C

(

1 − r−1
N−1

)

,

and since 0 < r, we obtain γ(C,N) ≤ 2ρmax(C)√
C

≤
√

2. �

This strategy allows us to win a small amount of ADMs (at most N). For example, when
C = 16, p = 4, and q = 4, conditions of Construction 14 are satisfied for r = 1 and 2, so N = 17
and N = 18. For N = 17 (resp. N = 18), Construction 11 uses 5 × 17 = 85 (resp. 5 × 18 = 90)
ADMs and Construction 14 uses 68 (resp. 72) ADMs, that is a saving of 17 (resp. 18) ADMs.

When C = p2 + p′, it is possible to improve Construction 14 by adding some edges of Kr and
of the Kp’s to the subgraphs containing the bipartite graphs, thus reducing the total number of
ADMs. In some cases, the subgraphs based on Kp or Kr may be completely absorbed as explained
in the Construction 16 and Proposition 17.

Construction 16 Let C = p2 + p′, 0 < p′ ≤ 2p and N = qp + r, 0 ≤ r < p.
The construction consists of partitioning the edges of KN into q(q−1)

2 subgraphs on Vi ∪ Vj , 1 ≤
i < j ≤ q containing the p2 edges of the Kp,p between Vi and Vj plus some edges of one of the Kp,
plus q subgraphs on Vi ∪ Vq+1, 1 ≤ i ≤ q containing the pr edges of the Kp,r between Vi and Vq+1

plus some edges of the Kr on Vq+1.

Proposition 17 Let C = p2 + p′, 0 < p′ ≤ 2p and N = qp + r, 0 ≤ r < p. If (q − 1)p′ ≥ p(p − 1),

then Construction 16 is valid and provides a 2ρmax(C)

⌊√C⌋ ≤
√

2
√

C

⌊√C⌋ -approximation of the total number

of ADMs.

Proof : The subgraphs on Vi ∪ Vj , 1 ≤ i < j ≤ q use the p2 edges of Kp,p and p′ edges of one of

the Kp. Altogether we can use all the edges of the Kp as by the condition q(q−1)
2 p′ ≥ p(p−1)

2 q. In
each Kp,r we can use p2 + p′ − pr = p(p − r) + p′ edges of the Kr. Since we have q Kp,r and that

qp′ > (q − 1)p′ > p(p − 1) > r(r−1)
2 , all edges of Kr are used.

Construction 16 uses q(q − 1)p + q(p + r) = q(qp + r) = qN ADMs. So it has the desired
approximation factor. �

Note that condition of Proposition 17 is satisfied as soon as q ≥ p(p− 1), that is N ≥ p2(p− 1).
Remark that in some cases the approximation factor can be strictly larger than

√
2 due to the

integer part of
√

C. For example if C = 8, ⌊
√

C⌋ = 2 but ρmax(C) = 8
5 and the approximation

factor is 8
5 = 1.6 >

√
2. For C = 15, ⌊

√
C⌋ = 3, ρmax(C) = 5

2 and the approximation factor is 5
3 .

4.3 Case C = p1p2

The next construction helps to deal with these cases where C = p1p2.

Construction 18 Let C = p1p2 + p′, p1 ≤ p2; let also N = qp1p2 + r, 0 ≤ r < p1p2. Let the
vertices of KN be V = ∪q

i=1Vi ∪ Vq+1 with |Vi| = p1p2 and |Vq+1| = r.
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We partition the edges of KN into q(q−1)
2 Kp1p2,p1p2

on Vi ∪ Vj , 1 ≤ i < j ≤ q, plus q Kp1p2,r on
Vi ∪ Vq+1, 1 ≤ i ≤ q, plus q Kp1p2

on Vi and one Kr on Vq+1.
Then we partition each Kp1p2,p1p2

into p1p2 Kp1,p2
and each Kp1p2,r, where r = α1p1 + β1,

0 ≤ β1 < p1, into p1α1 Kp1,p2
plus p1 Kβ1,p2

.

Finally, we partition each Kp1p2
into p2(p2−1)

2 Kp1,p1
plus p2 Kp1

, and each Kr into α1(α1−1)
2

Kp1,p1
plus α1 Kp1,β1

and α1 Kp1
and 1 Kβ1

.

Proposition 19 Let C = p1p2 + p′, and N = qp1p2 + r, 0 ≤ r < p1p2, Construction 18 is valid
and provides a ρmax(C)(p1+p2)

p1p2
+ O( 1

N
)-approximation of the total number of ADMs.

Proof : As β1 < p1 < p2, all the subgraphs of the decomposition, i.e. Kp1,p2
, Kβ1,p2

, Kp1,p1
, Kp1

,
Kp1,β1

, Kβ1
, have at most p1p2 ≤ C edges, and so the construction is valid.

The total number of ADMs is q(q−1)
2 p1p2(p1 + p2) + q(α1p1(p1 + p2) + p1(β1 + p2)) + qp1p

2
2 +

α1(α1 − 1)p1 + α1(2p1 + β1) + β1. Using N = qp1p2 + r we get N(N−1)(p1+p2)
2p1p2

+ O(N) ADMs and
so the approximation factor. �

Remark : We can also modify the construction like we did before to include the edges of the
Kp1p2

or Kr in the bipartite subgraphs, and therefore get rid in many cases of the O
(

1
N

)

in the
approximation factor.

Note that when p1 = p2, Construction 18 is exactly Construction 11. However, we have more
possible choices for p1, p2, and p′, and so for many values Construction 18 is better than Construc-
tion 11. Of course we have interest to choose p′ as small as possible, but also to choose p1 and p2

in order to minimize p1+p2

p1p2
; that can be achieved by choosing p1 and p2 near to each other but not

necessarily equals.
For example, let C = 32. We can write 32 = 5 × 5 + 7, or 32 = 4 × 8, or 32 = 5 × 6 + 2. For

C = 5× 5 + 7, Construction 18 or 11 give approximation factor 2
5ρmax(C); if we choose 32 = 4× 8

in Construction 18 we get an approximation factor 12
32ρmax(C) which is better since 12

32 < 2
5 . But

we can do better using 32 = 5× 6 + 2 in Construction 18 getting approximation factor 11
30ρmax(C).

Let now C = 8 = 2 × 4, ρmax(C) = 8
5 . With Construction 18 we get approximation factor is

8
5

6
8 = 1.2 to be compared with 8

5 = 1.6 from Construction 11. Similarly, when C = 15 = 3 × 5,
ρmax(C) = 5

2 and Construction 18 gives approximation factor 5
2 × 8

15 = 4
3 to be compared with 5

3
from Construction 11.

5 Construction with multipartite graphs

In the previous section we have shown that using a partition of KN into small bipartite graphs, it
is possible to obtain a 2ρmax(C)

⌊√C⌋ + O
(

1
N

)

-approximation of the total number of ADMs. We will now

show that using small multipartite graphs it is possible to drastically improve the approximation
factor.

5.1 Construction with tripartite graphs

We will first use the optimal decomposition of KN obtained in [3] for a grooming factor C = 3, and

reported here in Theorem 20, to obtain a ρmax(C)
—

q

C
3

� + O
(

1
N

)

-approximation algorithm.
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Theorem 20 (Theorem 4 of [3]) Let n ≥ 2. There exists a partition of Kn using

• if n ≡ 1, 3 mod 6, n(n−1)
6 K3

• if n ≡ 5 mod 6, n(n−1)−8
6 K3 and 2 P3

• if n ≡ 0, 4 mod 12, n(n−1)
6 − n

4 K3 and n
4 K1,3

• if n ≡ 2 mod 6, n(n−1)−2
6 −

⌈

n−2
4

⌉

K3,
⌈

n−2
4

⌉

K1,3 and 1 edge

• if n ≡ 6, 10 mod 12, n(n−1)
6 − n+2

4 K3,
n−2

4 K1,3 and 1 P4

where P3 is a path with 3 vertices, P4 a path with 4 vertices and K1,3 a complete bipartite graph
between a set of size 1 and a set of size 3 (also call a claw or a 3-star).

Construction 21 Let C = 3p2 + p′, 0 ≤ p′ < 6p + 3 and N = qp + r, 1 ≤ r ≤ p, and let the
vertices of KN be ∪q

i=1Vi ∪ Vq+1, with |Vi| = p and |Vq+1| = r.
Consider Kq+1; replace each node i of Kq+1 by the set of nodes Vi, 1 ≤ i ≤ q + 1, and each

edge {i, j} by the corresponding Kp,p or Kp,r constructed on Vi ∪ Vj. Now consider the partition of
Kq+1 given by Theorem 20. To each subgraph of the partition we associate in KN a multipartite
subgraph of KN ; for example to a K3 (i, j, k) will correspond a tripartite Kp,p,p built on Vi∪Vj ∪Vk.
All these subgraphs plus the q Kp built on Vi, 1 ≤ i ≤ q and the Kr built on Vq+1 form a partition
of KN .

Proposition 22 Construction 21 is valid and provides a ρmax(C)
—

q

C
3

� + O
(

1
N

)

-approximation of the

total number of ADMs.

Proof : All the subgraphs of the partition of Kq+1 contains at most 3 edges and so the corresponding

subgraphs in KN have at most 3p2 ≤ C edges. The Kp and Kr have at most p(p−1)
2 < C edges. So

Construction 21 is valid.
We can count exactly the number of ADMs.

• When q + 1 ≡ 1, 3 mod 6, each node of Kq+1 appears in q
2 K3. So each node of KN appears

in q
2 + 1 subgraphs (the +1 coming from the Kp or Kr to which it belongs) and so we have

q+2
2 N ADMs.

• When q + 1 ≡ 5 mod 6 and according to the proof of Theorem 20 of [3], the two P3 of the
partition of Kq+1 contain the edges x− u, u− y and x− v, v − y. Nodes different from x and
y appear in q

2 subgraphs of the partition and node x and y in q
2 + 1 subgraphs. As nodes x

and y are replaced by at most p vertices, all nodes of KN appear in q
2 subgraphs except at

most 2p of them which appear in one more. So altogether we have at most q+2
2 N +2p ADMs.

• When q + 1 ≡ 0, 4 mod 12, q+1
4 nodes of Kq+1 appears in q−3

2 K3 and one K1,3 (namely the

central vertices of the K1,3) and 3(q+1)
4 appear in q−1

2 K3 and one K1,3. As the nodes are

replaced by at most p vertices, each node of KN appear in q+1
2 subgraphs and at most 3p(q+1)

4

in one more subgraph. So altogether we have q+1
2 N + p3p(q+1)

4 ADMs.

10



• When q + 1 ≡ 2 mod 6, a similar analysis gives that we have at most q+1
2 N + 3p

⌈

q−1
4

⌉

+ 2p

ADMs.

• When q + 1 ≡ 6, 10 mod 12, we have at most q+1
2 N + 3p q−1

4 + 2p ADMs.

In all the cases the total number of ADMs is N(N−1)
2p

+O (N) giving the proposition as p =

⌊

√

C
3

⌋

�

Note that we can in some cases get rid of the O( 1
N

) like we did in Constructions 14 or 16 and
in particular if C = 3p2 + p′, 0 < p′ < 6p + 3 for all values of N large enough.

5.2 Alternative constructions with tripartite graphs

We could have also used instead of the partition of Kq+1 of Theorem 20, a covering of the edges
of Kq+1 with K3’s. Indeed it is known that the edges of Kn can be covered by

⌈

n
3

⌈

n−1
2

⌉⌉

K3’s
(see [11] chapter VI.11). So we obtain the following construction.

Construction 23 Let C = 3p2 + p′, 0 ≤ p′ < 6p + 3 and N = qp + r, 1 ≤ r ≤ p, and let the
vertices of KN be ∪q

i=1Vi ∪ Vq+1, with |Vi| = p and |Vq+1| = r.
Replace each vertex of Kq+1 by the set of nodes Vi, 1 ≤ i ≤ q + 1 and each edge by the

corresponding Kp,p or Kp,r. From a covering of the edges of Kq+1 with K3’s we obtain a covering
of the edges of KN with Kp,p,p or Kp,p,r plus the Kp on the Vi, 1 ≤ i ≤ q, and the Kr on Vq+1.

Proposition 24 Construction 23 is valid and gives a ρmax(C)
—

q

C
3

� +O( 1
N

)-approximation of the number

of ADMs.

Proof : The subgraphs in the covering have at most 3p2 edges and so the construction is valid. Each
node of KN belongs to at most

⌈

q
2

⌉

+ 1 subgraphs and so the partition of KN uses N(N−1)
2p

+ O(N)
ADMs. �

In some cases we can also use other partitions based on partitions in tripartite graphs.

Construction 25 Let C = 3p2 and N = 3ap, a ≥ 1.
From the existence of 3-GDD of type u3 (see [11] chapter IV.4), that is a partition of the

tripartite graph Ku,u,u into K3, u ≥ 1, we know that Kup,up,up can be partition into u2 Kp,p,p.
Thus, we partition the edges of KN as follows

1. If N = 3p (i.e. a = 1), partition K3p into one Kp,p,p and 3 Kp.

2. Otherwise

(a) Partition the edges of KN into 3 K3a−1p and one K3a−1p,3a−1p,3a−1p

(b) Partition K3a−1p,3a−1p,3a−1p into (3a−1)2 Kp,p,p

(c) Repeat the process on each K3a−1p

One can check that we have partitioned KN into
∑a−1

i=0 3i(3a−i−1)2 = 3a(3a−1)
6 = N(N−p)

6p2 Kp,p,p

and 3a = N
p

Kp.

11



Proposition 26 Construction 25 uses N(N+p)
2p

ADMs and provide a ρmax(C)
q

C
3

+O
(

1
N

)

-approximation

of the total number of ADMs.

Proof : Construction 25 uses 3pN(N−p)
6p2 + pN

p
= N(N+p)

2p
ADMs. Thus it has approximation factor

γ(C,N) = N(N+p)
p

ρmax(C)
N(N−1) = ρmax(C)

q

C
3

(

1 + p+1
N−1

)

. �

Remark that Construction 25 gives the same approximation ratio than Construction 21, but
it can be better for some particular values of C and N . For example, when C = 12 and N = 18
Construction 25 uses 90 ADMs, while Construction 21 uses 106 ADMs.

5.3 Construction with multipartite graphs

Finally, we can use partitions with 4 partite (resp. 5 partite) graphs using partitions or coverings
of Kq+1 with K4 (resp. K5). For example it is known that the edges of Kq+1 can be covered

with
⌈

q+1
4

⌈

q
3

⌉

⌉

K4’s for q + 1 > 19 or
⌈

q+1
5

⌈

q
4

⌉

⌉

K5’s for q + 1 > 429 (see [11] chapter VI.11.4).

Replacing each vertex i of Kq+1 by the set Vi and the edges by the corresponding Kp,p or Kp,r, we get
respectively a covering of the edges of KN with 4-partite subgraphs Kp,p,p,p or Kp,p,p,r (or 5-partite

subgraphs). We obtain respectively a total number of N(N−1)
3p

+ O(N) ADMs, or N(N−1)
4p

+ O(N)
ADMs. We summarize the results in the next proposition.

Proposition 27 Let C = 6p2 + p′, 0 ≤ p′ < 12p + 6, and N = qp + r, 1 ≤ r ≤ p. We have a
ρmax(C)
—

q

3C
8

� + O( 1
N

) approximation.

Let C = 10p2 + p′, 0 ≤ p′ < 20p + 10, and N = qp + r, 1 ≤ r ≤ p. We have a ρmax(C)
—

q

2C
5

� + O( 1
N

)

approximation.

Using ρmax(C) ≤
√

C
2 , we have a

√

4
3 +O

(

1
N

)

-approximation or a
√

5
4 +O

(

1
N

)

-approximation.

We can also give a construction analogous to Construction 21 using the optimal construction
for a grooming factor C = 6 presented in [4]. The results are a little better but give the same order
of approximation.

We can also generalize Construction 25 when C = 6p2 and N = 4ap, using a partition of

Kup,up,up,up into u2 Kp,p,p,p. We will obtain a
√

4
3 +O

(

1
N

)

-approximation. Similarly, when C = 10p2

and N = 5ap we will obtain a
√

5
4 +O

(

1
N

)

-approximation, and more generally, when C = α(α−1)
2 p2

and N = αap we will obtain a
√

α
α−1 + O

(

1
N

)

-approximation. Unfortunately, such constructions

apply only for a few values of N . Also, the constructions that we have presented in Section 4
and 5.1 or 5.2 are more interesting in practice.

6 Comparison between constructions

We have presented various constructions, but none of them is always better than the others. Ac-
cording to the values of C and N , one has to choose the most efficient construction. To illustrate
that, we have written a program that computes for any C and N the values of all constructions,

12



and we have reported some results in Figure 1. The results of the program show that for small
values of C and N there is no absolute winner. For given C and large value of N , Figure 1 confirms
the asymptotic results of Table 1. For example, when C = 16, Figure 1(b) shows that all the
constructions are equivalent with a slight advantage for Construction 14. However, we know from
Theorem 7 that starting from N = 802, Construction 8 will always be better. For C = 12, 32, Con-
struction 21 is the best (except for spare values where Constructions 8 and 25 apply). For given
N , Figure 1(d) shows again that there is no absolute winner and the importance of divisibility
condition on C like C near to p2 (see the isolated point of Construction 14 for C = 64) or 3p2 or
6p2.
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Figure 1: Approximation ratio for given C (a, b, c) or given N (d).
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7 Conclusion

In this paper, using tools of design theory, we have given different constructions with a small ap-
proximation factor for all-to-all traffic grooming in unidirectional ring. These simple constructions
might also be used to compute good solutions for very dense set of requests, i.e. instances that
are almost all-to-all, for which only O(log C)-approximation algorithms are known so far. The
traffic grooming problem being APX-Hard [1], this work represents an important step toward the
conception of tight approximation algorithms for practical instances.
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