A 3-Component Inverse Depth Parameterization for Particle Filter SLAM

Evren Imre Marie-Odile Berger 1
1 MAGRIT - Visual Augmentation of Complex Environments
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : The non-Gaussianity of the depth estimate uncertainty degrades the performance of monocular extended Kalman filter SLAM (EKF-SLAM) systems employing a 3-component Cartesian landmark parameterization, especially in low-parallax configurations. Even particle filter SLAM (PF-SLAM) approaches are affected, as they utilize EKF for estimating the map. The inverse depth parameterization (IDP) alleviates this problem through a redundant representation, but at the price of increased computational complexity. The authors show that such a redundancy does not exist in PF-SLAM, hence the performance advantage of the IDP comes almost without an increase in the computational cost.
Type de document :
Communication dans un congrès
31st annual pattern recognition symposium of the German Association for Pattern Recognition - DAGM 2009, Sep 2009, Jena, Germany. Springer Berlin / Heidelberg, 5748, pp.1--10, 2009, Lecture Notes in Computer Science - LNCS. 〈10.1007/978-3-642-03798-6_1〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00429327
Contributeur : Marie-Odile Berger <>
Soumis le : lundi 2 novembre 2009 - 15:23:47
Dernière modification le : jeudi 11 janvier 2018 - 06:20:14

Identifiants

Collections

Citation

Evren Imre, Marie-Odile Berger. A 3-Component Inverse Depth Parameterization for Particle Filter SLAM. 31st annual pattern recognition symposium of the German Association for Pattern Recognition - DAGM 2009, Sep 2009, Jena, Germany. Springer Berlin / Heidelberg, 5748, pp.1--10, 2009, Lecture Notes in Computer Science - LNCS. 〈10.1007/978-3-642-03798-6_1〉. 〈inria-00429327〉

Partager

Métriques

Consultations de la notice

219