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Résumé : Guarded Active XML (GAXML) a été proposé par Abiteboul, Segoufin,
and Vianu comme langage de spécification pour des web-services
dynamiques et orientés données. GAXML consiste en un ensemble de documents
XML dans lesquels sont intégrés des appels de services gardés. Cette extension de
XML permet de définir des flots de controle dans des documents structurés.

Ce rapport propose une extension de GAXML a l’aide de concepts nécessaires
aux exigences des architectures orientées services. Nous proposons un modele plus
riche pour la définition des services externes & un site, sous la forme d’ interfaces.
Spécifier une interface consiste a décrire, a I’aide de patterns: 1/ ’aspect des documents
qui seront utilisés comme parametres d’un appel & un service externe, 2/ les resultats
possibles renvoyés par le service externe. Notre notion d’interface est bien sur liée
a celle d’implémentation —un service implémente une interface — qui s’appuie sur
le concept bien étudié de containment de requétes.

Nous proposons ensuite Distributed Active AXML (DAXML) comme modele
pour la distribution de services en AXML gardé sur une architecture composée
d’un ensemble d’agents. Les agents transformed des documents AXML en réponse
a des appels de service provenant de leur propre localité, ou envoyés de maniere
asynchrone par d’autres agents. Les systemes DAXMLainsi construits se composent,
en remplacant la description (par une interface) d’un services distant par un appel
& une implémentation distante offerte par un autre agent. Les systemes DAXMLse
raffinent également par remplacement de services externes par une implémentation
locale rendant le méme service. Une opération symétrique
d’abstraction est également possible. L’abstraction de services réels par des interfaces
est un outil efficace pour simplifier 'analyse de systemes DAXML. Nous illustrons
ces concepts sur un exemple représentatif combinant données et flot de controle, la
chaine de production Dell.
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Distributed Active XML and Service Interfaces

Abstract: Guarded Active XML (GAXML) was proposed by Abiteboul,
Segoufin, and Vianu, as a high-level specification language tailored for data-intensive,
distributed, dynamic Web services. GAXML consists in XML documents with em-
bedded guarded service calls, thus allowing for the definition of control flows in
documents. In this paper we enhance GAXML with the concepts needed to satisfy
the requirements of “Service Computing” and “Service Oriented Architectures”. We
provide a richer model for external services in the form of interfaces. Specifying
an interface consists in describing, using patterns: 1/ the shape of documents that
can serve as parameters to a call, and 2/ the possible returns of a call. Our notion
of interface comes with a notion of implementation — a service implements an in-
terface — that builds upon the known concept of containment and a new concept
of satisfaction. Then, we propose Distributed Active AXML (DAXML) as a model
of guarded active XML systems distributed over a set of peers. Peers transform
distributed documents in response to service calls from their own or other peers
in an asynchronous way. DAXML systems compose, thus capturing the mechanism
of replacing an external service call by a distant call to an implementation of it,
offered by another peer. DAXML systems and documents can be refined by re-
placing, in documents, external service calls by respective implementations thereof;
the symmetric operation is service abstraction. Abstracting services as interfaces is
an efficient tool in simplifying analyses of DAXML documents. We illustrate our
approach on a representative example combining data and workflow management,
namely the Dell supply chain.

Key-words: AXML, web services, Interfaces
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4 Hélouét € Benveniste

1 Introduction

Service-oriented architectures (SOA) have become very popular since the 90’s,
and are seen as a way to speed up development processes, but also to build more
adaptable software. The main concepts in SOA are services and interfaces. A service
is a software unit that provides a set of operations. The way to use these operations
is published as an interface. One of the major assumptions is that when a service
is used as specified in its interface, it should act as promised (usually return a cor-
rect value). A Service Oriented Architecture consists in a collection of interacting
services, that are composed. Several technical solutions have been proposed to im-
plement SOA over dedicated middlewares (usually called a service bus) or over the
web (the term web services is then used), but so far very few formal models exist
to reason about data-driven distributed applications.

Active XML (AXML) was proposed by Abiteboul, Benjelloun, and Milo [I], as
a high-level specification language tailored for data-intensive, distributed, dynamic
Web services. Active XML mainly consists in XML documents [25] with embedded
service calls. AXML offers mechanisms to store and query structured data dis-
tributed over entities called peers. A peer owns several services that can be called
either locally or by other peers. One of the main original concepts of AXML is to
allow lazy evaluation, that is services are allowed to return structured data that
contain references to services that have to be called to continue the evaluation of
the returned values if needed.

The concepts of Peers and services can be seen as offering the needed features to
implement SOA architectures. However, in SOA, services do not only search data or
compute results to answer a call, but may also orchestrate the execution of several
services. However, in its initial version, AXML did not allow for the definition
of control flows, which are a central need for the definition of business processes
and workflow management. A first attempt to support workflow management in
Active XML was proposed by Abiteboul, Segoufin, and Vianu [3], with Guarded
Active XML (GAXML). Guarded AXML adds guards to services, which allows for
the definition of control flows. In addition to this guarding mechanism, [3] studies
decidability and complexity of model checking for Tree-LTL (a linear tree-pattern
based temporal logic) on runs of Guarded AXML systems.

However, GAXML does not yet deal with the distribution, which is a central
concept in SOA. In SOA, applications are composed of several services, that must
work on any architecture, and communicate only through messages. Services know
each other only through contracts (that describe the needs of a service that another
service must fulfill) and interfaces (that describe the functionalities provided by
a service). In Service Computing and Service Oriented Architectures, services are
exposed through interfaces that abstract away implementation details. Interfaces
specify how a service must be called and what it is expected to return. In rich
interface theories [8], [14], interfaces can even be used to specify the composition of
services. In its 2008 form, GAXML provides most of the features to allow AXML
based SOAs, but still does not take distribution into account as GAXML guards
apply to the whole modeled system, without taking into account the fact that data
is distributed over a compartmentalized architecture.

In GAXML, the two notions of service and interface correspond to the concepts
of internal and external functions, respectively. Internal functions describe some
operations on documents, and external ones are simply a constraint on the outputs
returned by an external implementation, expressed as the conjunction of a DTD
and a combination of tree patterns. Distribution is only reflected by the localization
of a service on a peer, and GAXML systems compose by summing up both systems,
and replacing some external services by internal ones.

INRIA
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As a first contribution of this paper, we equip GAXML with a richer notion of
interface, based on an enhanced notion of pattern. The patterns we use are finite
sets of classical tree patterns [4] extended with variables and constraints over these
variables. An interface consists of a call pattern and a finite set of return patterns.
The call pattern describes what the input to any service implementing the given
interface should look like. The return patterns describe the possible shape of the
expected output provided by any service implementing this interface, with a disjunc-
tive semantics, that is the returned answer must satisfy at least one of the return
patterns.

Our second contribution consists in proposing a notion of implementation rela-
tion, relating a functionality needed at a peer and specified as an interface to an
internal service provided by another peer. Roughly speaking, a service implements
a given interface if, when called from a document for which the call pattern of the
interface holds, its return (if any) satisfies one of the return patterns of the interface.
Conformance of calls builds on the existing notion of query containment. Query con-
tainment was already studied for fragments of XPath [19, 17, 24, 2I]. Conformance
of returns relies on a close notion of satisfaction relation between patterns : pattern
P satisfies Q if Q holds in any document that is a possible return described by
pattern P. We show that, provided that call and return patterns of an interface are
defined over disjoint sets of variables with finite domains, implementation is decid-
able and we study its complexity. Using this notion of implementation, we define a
notion of refinement for a DAXML system, which consists in replacing some of its
interfaces by corresponding services implementing them.

Our third contribution consists in a notion of Distributed AXML (DAXML)
system that takes distribution over peers into account. DAXML systems are akin to
GAXML systems in many respect : they possess a finite set of peers on which disjoint
sets of internal services and disjoint parts of the AXML document are located ;
However, all guards and query evaluations are performed locally to a peer, hence
enforcing compartmentalization. We also introduce the notion of external service
call, for calls to services that are owned by another peer. A external call to a service
f that implements an interface consists in sending to the peer owning f a “request to
execute f”, that is a document containing a call to f. DAXML systems compose by
doing the union of document and services, and by connecting some interfaces with a
distant service implementing them via th definition of a map. With this mechanism,
a peer only needs to know a distant service through the implementation map.

With this model of distribution, we show that replacing interfaces by correspond-
ing implementations provided by new peers essentially restricts the set of possible
runs of a DAXML system. Symmetrically, by replacing a service by an interface
of it, we obtain a valid over-approximation of the sets of runs of a DAXML docu-
ment. This gives a technique to simplify analysis of DAXML documents. Regarding
analysis, we study decidability and complexity of Tree-LTL, for both global or local
properties, i.e., properties that are evaluated over the successive configurations of
the whole system or of the system as seen from a chosen set of peers. We show
in particular that our interface theory does not add any further undecidability nor
complexity to the Tree-LTL analysis of GAXML in [3]. We furthermore show that
some properties of DAXML systems are preserved by composition. We also use some
undecidability result for reachability to show that our notion of inmplementation is
a reasonable compromise to remain decidable.

The usefulness of our DAXML model with its richer notion of interface is demon-
strated on a complete example, which is a simplified model of the Dell supply
chain [I5]. The Dell supply chain is a very interesting example as it combines as-
pects of Web stored data management — the Dell Web portal — and complex
distributed supplier chain involving logistics, data, and complex management. As
frequently encountered in logistics applications, stocks of parts are buffered in stores
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— called here the revolvers. The revolvers are passive peers exposing their stocks to
the plant and the suppliers while not offering any service. In our DAXML modeling
of the Dell supply chain, we found it very convenient to allow for shared peers and
subdocument when composing DAXML systems. Direct Tree-LTL analysis of the
Dell example is difficult, due to the richness of the underlying workflow and data.
We illustrate the usefulness of our interface theory by showing how analysis can
be simplified by using interfaces, implementations, and refinement. The Dell sup-
ply chain was already used as an example in [2], to illustrate monitoring of AXML
systems, but without emphasizing the distributed nature of the example.

Several works have addressed the theme of formalisms for web services and their
verification. Genest et al propose another XML-based formalism for Web services
called Tree Pattern Rewriting Systems [12]. One of the main remarkable features of
TPRS is that upon the assumption that all documents recorded by services are of
bounded depth (i.e. they are maintained as XML trees of depth at most k, where k
is given) then reachability of a given tree pattern (and consequently several other
properties) is decidable. This work however does not consider the distributed nature
of services, and does not deal with data.

Deutsch et al. [10] have proposed a mix of logic and model checking techniques
to reason about data-intensive Web applications equipped with workflows, and have
studied their composition in [I1]]. In this latter work, services communicate via FIFO
queues. Unsurprisingly, this results in undecidability of verification in the general
case. However, [I1] also show decidability results under a set of restrictions allowing
recursion.

This paper is organized as follows : section [2] introduces the formal background
used throughout the paper. Section Bl introduces our extension of guarded AXML,
and shows how this extension can be decomposed into modules and distributed.
Section [ highlights the properties of this new model. Section [l illustrates the use
of DAXML on an example, and section [6] concludes this work.

2 Background on Documents, Patterns, and Queries

In this paper, documents will be represented by trees and forests and services
will be represented by queries over documents and functions transforming them.
In this section we recall the corresponding basic material. Corresponding concepts
are directly borrowed from the work on Guarded AXML [3], except that we do not
consider continuous functions here (i.e. remanent services that can be subscribed
and continuously compute values and return them to their subscribers on a push
mode).

2.1 Trees, Forests, and Patterns

The material in this section reuses the usual definitions of tree, forests and pat-
terns already introduced in [3]. Readers that are already familiar with GAXML can
simply skip this part of the document. The first differences between the models ap-
pear from section 2221 Throughout this paper, we consider unranked and unordered
trees. A tree is simply a tuple T' = (N, E, Ay) of nodes, edges and a labelling func-
tion, and a forest is a set of trees. Trees and forests are generically denoted by
the symbols T" and F', respectively. The notions of node, child, parent, descendant,
and ancestor relations are defined in an usual way. The two relations of child and
descendant are denoted by / and J/, respectively. A subtree of a tree T is the tree
induced by T on the set of all descendants of a particular node.

We assume the following disjoint infinite sets : nodes N (denoted by n,m,...),
tags ¥ (denoted by a,b,c,...), data values D (denoted by «, 8,...), data variables

INRIA



Distributed Active XML and Service Interfaces 7

V (denoted by X,Y, Z,...), and service names F (denoted by f,g,... or I, J,...),
possibly with subscripts. We partition the set F of service names as F = Fipe W Feoxt,
where Finy and Feyy denote respectively internal and external service names. We
also assume a special symbol denoted by %, which intuitively refers to an arbitrary
label. We will denote by N7 the nodes of a tree T. Services can be marked with
the special symbols! and? : F' = {!f | f € F} and similarly for F*, and we write
F=FUFur.

In the sequel, we will only consider trees whose internal nodes are labeled with
tags in ¥ and whose leaves are labeled by either tags, labels from F, variables or
data values. The labeling function will be generically denoted by A, or A7 to refer
to a particular tree. We will also consider that trees are reduced, that is no node has
isomorphic subtrees (two trees T1 and Ty are isomorphic iff there exists a bijection
from the nodes of T} to the nodes of T5 that preserves the child relation and the
labeling of nodes). However, forests may contain several isomorphic trees. Labeled
forests come up with a natural notion of disjoint union, denoted by W and we can,
by abuse of notation, identify a forest with the disjoint union of its trees, seen as
singleton forests : F' = [f. T. Such labelled trees or forests will be sometimes
called (AXML) documents.

Definition 1 (tree pattern) A tree pattern is a tuple P = (M, G, A\, A\g), where :
(M, G, \yr) is a tree over an alphabet A =X UFUDUV U {x} such that \pr(n) €
S U {*} for every internal node n, and Aq : G — {/, J/}. Every variable X €V is
defined over a (not necessarily finite) domain denoted by Dom(X).

Tree patterns specify the shape a trees and will be used to query a document. Let
P be a tree pattern. A node n of P such that Ay;(n) = a designates a node tagged
by a. When Ajs(n) = , then the node can take any value or tag in XU FUDUV.
For an edge (z,y) of P, if Ag(z,y) = /, then y must be a child of z. If A¢(z,y) = /,
then y must be a descendant of z.

*

7aN
g
/\

Y 10

HA—

F1G. 1 — An example of tree pattern

Figure [l shows an example of tree pattern. This pattern describes trees that
contain a node tagged by a. This node must have a child that is a leaf, and the
value attached to this leaf is associated to variable X. In addition to this first
constraint, the root of every tree satisfying this pattern has a child tagged by b.
This child must have a descendant tagged by ¢ which has a child which is a leave
with value 10, and a child which value is associated to variable Y. Note that nothing
forces these latter leaves to be distinct nodes. This definition differs slightly from
the usual definition of tree patterns (see [24] 211 [I7] for example), in the sense that
it allows some nodes to be labelled by variables. It has been shown [I7] that tree
patterns are equivalent to a fragment of XPath allowing the use of labels o € X,
child relation, descendant relation, filtering, and *. Note that the full XPath contains
more concepts such as nodeset equality or even arithmetic operators, that will not
be considered in this paper. Tree patterns are used to describe the general shape of
a tree, and the property whether a tree conforms to this shape is captured by the
notion of matching.

RR n°® 7082



8 Hélouét € Benveniste

Definition 2 (matching) Let P = (Mp,Gp, A, Aa) be a tree pattern and T =
(N, /,Ar) a tree. A matching of P into T is a mapping pu from the nodes of P to
the nodes of T such that :

1. the root of P is mapped to the root of T,

2. the descendant and child relations of the tree pattern are respected by u, that
is for every edge (n,m) of P, if A\a(n,m) = /, then u(m) is a child of u(m)
in T, and if A\g(n,m) = /|, then p(m) is a descendant of u(n) in T

3. p preserves the labels, that is for every node n of P such that Ay;(n) € SUFU
D, A(p(n)) = Ay (n). Note that this does not apply to nodes of P labelled
by *, which can be mapped by i to nodes labelled by any symbol or value ;

4. Nodes labeled with variables are mapped to data values. In particular, this
enforces nodes tagged by variable names to be mapped to leaves of T. The
image of variable nodes must belong to the domain of variables, that is if
Av(n) = X €V then Ar(u(z)) € Dom(X). Furthermore, if two nodes are
labelled by the same variables, then p sends them onto nodes of T with the
same values. We will frequently denote by u(X) the unique symbol or data
value associated by i to nodes labelled by variable X .

We will say that a tree pattern P holds in a tree T, written T |= P, when there is
at least one matching from P to T.

Let X be a set of variables. A wvaluation of X' is a function v : X — D that
associates a value to each variable in A'. For a given boolean combination cond of
expressions on variables of X', we will say that v is consistent with cond if and
only if predicate cond holds for values provided by v. For a given tree pattern P,
we will denote by Xp the set of its variables, and by P, the pattern obtained by
replacing each node labeled by a variable X € Xp by its valuation v(X). A mapping
1 from a tree pattern P to a tree 1" defines a valuation v, : Xp — D that associates
to each variable X € Xp located on a node n the value A(u(n)). Mapping u is
consistent with a boolean condition cond if and only if v, is consistent with cond.
These definitions extend to sets of tree patterns.

Definition 3 (pattern and pattern matching) A pattern is a pair
P = (P, cond) (1)

where P is a finite set of tree patterns and cond is a Boolean combination of expres-
sions of the form X ~ «, where X € V, a« € VUD, and ~€ {=,#,<}. We thus
assume that the domain of all variables that appear in an expression of the form
X <aorY < X is ordered. As for forests, sets of tree patterns come up with a
disjoint union, denoted by & and we can write, by abuse of notation, P = | pp P.

Let P = (P, cond) be a pattern, and let F' be a forest. A matching of P into F'
is a mapping i that is a matching of each P € P into some tree of F', and for which
cond is satisfied. Formally,

t:Wper Np = Wrep Nr

satisfies cond, and for each P € P, the restriction of p to any P € P is a matching
of P into some T € F. Say that a pattern P holds in a forest F, written F | P,
iff either F' = () or there exists at least one matching of P into F.

This definition of matching relies on the usual notion of tree pattern homomorphism,
but also considers that empty forests satisfy any pattern. The reason for this is
that patterns will be compared to the values (forests) returned by a function, and
that we will need to consider functions returning empty forests. Note that nothing

INRIA



Distributed Active XML and Service Interfaces 9

forces a matching to be an injective mapping. Hence, the same node of a tree (and
as a consequence the same paths) can be used as an image of different nodes in
the pattern. Similarly, when considering matchings on forests, two patterns can be
mapped to nodes of the same tree. Consider for example the pattern of Figure[ll A
node with value 10 in a tree can be the image of the two children of node with tag
c¢. Consider a pattern P = (P, cond) where P is the tree pattern of Figure [Il and
cond = {X <Y} Figure Rlillustrates a matching that maps nodes of P onto nodes

K =100t
SN AT
| e N |
X c a a = ¢
N Rl N
v 10“ 20 30 10 "John

Fic. 2 — An example of matching

of a tree and satisfies cond. The matching relation p is figured by dotted arrows.
Note that on this example, due to the constraint, Y cannot be mapped to a node
with value 10.

The definition of matching extends to boolean combinations of patterns as fol-
lows. Write

FEPAP ifandonlyif FEPAFEP
FEPVP ifandonlyif FEPVFEP
FE=-P if and only if  there exists no matching from P to F

(2)

In particular, we have that any negated pattern —P holds on the empty forest F' = ().
Hence, the empty forest satisfies any boolean combination of patterns. This choice
will be justified later by the fact that functions are allowed to return empty forests.
Note that for boolean combinations of patterns Py,..., Py, F E P; is evaluated
separately for each i € 1..k. In particular, this means that when a variable X
appears both in P and P’ in a boolean combination, it should be considered as two
different, variables Xp and Xp/. We can nevertheless enforce equality of variables
with an additional constraint of the form X = Y. Note also that conjunction of tree
patterns can be seen as syntactic sugar, as P; A P, holds in a forest F' if and only
if the pattern P = (P; W Py, cond; A conds) holds for F.

In some cases we will use patterns that are evaluated relatively to a specified
node in a tree. More precisely, a relative pattern is a pair

(P, self) (3)

where P is a pattern and self is a node of P. A relative pattern (P, self) is evaluated
on a pair (F,n) where F is a forest and n is a node of F'. The evaluation of a pattern
(P, self ) on (F,n) for candidate matchings forces the node self in the pattern to be
mapped to n. If such matchings exist, we say that (P, self) holds in (F,n), written

(F,n) |= (P, self).

In contrast to the matching of patterns into forests, the case F' = () is not considered
as it makes no sense as soon as a node n of F' is selected.

RR n°® 7082



10 Hélouét € Benveniste

Notation: For convenience, we shall sometimes simply write P instead of (P, self)
for a relative pattern, if no confusion can result.

Theorem 1 Let T be a tree, and P = (P, cond) be a tree pattern. Testing if T = P
is NP-complete.

Proof sketch: The complete proof is provided in Appendix A. One can chose a
mapping from variables to leaves and verify the condition in polynomial time. Then,
checking the rest of the pattern can be done with classical algorithms for patterns
without variables ([I3]). The hardness part can be shown by a reduction from 3SAT.
d

This NP-completeness result extends to forests, and to conjunction or disjunction
of patterns. Of course, checking =P will be co-NP complete. So far, we made no
hypotheses on the shape of patterns or on their variables. However, we can consider
several hypotheses to reduce complexity of pattern satisfaction or to allow deciding
the compatibility of a service and an interface.

1. child-only hypothesis : P satisfies this criterion if it does not use descendant
edges.

2. Finite-domain hypothesis : P satisfies this criterion if all its variables range
over a finite domain. We will show in the sequel that the finite domain hypoth-
esis is needed to define an effective notion of interface and implementation.

For a given variable X with finite domain, we will denote by || X|| the number
of bits needed to encode a valuation of X. Note that the number of consistent
valuations for a set of variables and constraints can be exponential in the number
of variables. Fortunately, we do not need to consider all possible valuations if the
objective is to check whether T' |= P. Define the size of variable sets of tree patterns
and patterns as :

||P|| = Z || X|| for a tree pattern P, and (4)
XeXp

|P]| = Z [|P|| for a pattern P = (P, cond). (5)
PeP

2.2 Queries

Patterns are used to ensure that a forest has a certain shape, but cannot be used
to produce new documents as the result returned by the evaluation of a pattern is
only true (there exists a mapping from P to F') or false (there is no consistent map-
ping from P to F). To propose more powerful services, we need a query mechanism
to build structured answers and produce a new document out of an existing one.
Queries are non-deterministic mechanisms returning a forest from an input docu-
ment. They will constitute the main mechanism used to implement services in our
framework.

Definition 4 (queries) A (non-deterministic) query is an expression
Q = Body — Head, (6)

where Body = (Pg,condg) and Head = (Pg, condg) are patterns defined respec-
tively over sets of variables Xg and Xy, and such that for each tree of Head :
— internal nodes have labels in ¥ and leaves have labels in XU F UV UD ;
— all edges are labeled “child”,
— there is one designated node c, called the constructor node, such that the sub-
tree rooted at ¢ contains all variables of this tree.

INRIA
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The variables of Head that do not occur in Body, are called free variables, the other
variables are designated as bound variables. When Head does not contain free vari-
ables, Q) is called a deterministic query. When Head only involves a trivial condition,
QQ is said to be unconstrained.

We furthermore require consistency of constraints condp and condy : for every
consistent valuation of variables in Xp there is a possible consistent valuation of
variables in X :

Yo:v Econdg = ' Vo€ XpNXg,v(r) =0v'(z) and v’ |E condy (7)

As for patterns, we can consider queries evaluated relatively to a specified node in
the input tree. A relative query is defined like a query, except that its body is a
relative pattern.

*
Il users Sold
Order
Q1= | ™ } {client} {Product}
name Object Price | / \
| | | X Y Boffer
X Y Z
Bl H1

Fic¢. 3 — An example of nondeterministic query

a) CMD
Order /Orlier \ Order
PN PRI 1O

Name Object Price Name Object Price Name Object Price

John Mouse 15 Robert Screen 150 John Keyboard 9

b) Users Sold
Client Client P7duct P7d<ct P;)d<t
John Robert Mouse \yes Screen no Keyboard no

Fi1G. 4 — a) An example document T, and b) a result of query Q1(T")

Constructor nodes will be used during query evaluation to group different answers
to a query in a single subtree. We will frequently represent queries as in Figure Bl
The body and head parts (in the example By and H;) of the query are represented
as trees, and separated by an arrow. The constructor nodes in the Head part are
distinguished by brackets (on the example of figure Bl there are two constructors,
labeled by {client} and {Product}). The range of variables X and Y is the set of
strings of at most 15 characters, and the domain of free variable Boge, is {yes, no}.
The query depicted in figure Bl can be used to recover client names and ordered
products from a store. When applied to a document containing orders, such as the
tree of figure @ta), this query returns the set of all clients, and the set of all sold
products (represented as trees), as shown in figure @lb). The free variable Boger
states whether or not an offer is made on the considered product.
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Querying a document :

Let us now explain how queries operate on documents. Intuitively, the Body is
used to select the values of bound variables from an input document, and the Head
defines the structure of the answer, where bound variable values are those selected
by the Body, and free variables are replaced by nondeterministically chosen values.

Formally, let F' be a forest and () = Body — Head. Let M be the (finite) set of
matchings of Body into F.

1. For each tree H of Head, let ¢ be the constructor node of H and H. be
the subtree of H rooted at c¢. For each matching u € M, let u(H.) be an
isomorphic copy of H. with new nodes, in which every bound variable X
occurring in H is replaced by u(X).

2. The forest {u(H.) | H € Head} still contains free variables, namely in X \
Xp; a valuation v € I x¢x,\ x, Dom(X) for them is selected subject to con-
dition condp of pattern Head (that is such that pUv |= condp), free variables
are replaced by their valuation, and the trees of the resulting forest are all
reduced. Call {i(H.) | H € Head} the resulting forest consisting of reduced,
fully valued, trees.

3. For each tree H of Head, replace the constructor node ¢ (and hence the whole
subtree rooted at ¢) by {a(H.) | n € M} and call Qi (F) the resulting forest.
The result Q(F) of applying query @ to F is then

Q(F) = HHGHead QH(F)

For @ a relative query, the Body is evaluated for its possible matchings on a pair
(F,n) where F is a forest and n is a node of F. Corresponding (nondeterministic)
returns are denoted by

Q(F,n)

3 The Distributed Guarded AXML Model

As suggested by its name, Active XML [1I] consists in XML documents aug-
mented by actions. The philosophy behind AXML is that services or queries on
documents may have an eager interpretation, and return trees with the required
data, or have a lazy intentional interpretation, and return trees containing references
to services that will help completing the answer to the asked question. Consider for
instances a service CityDescription that returns structured information (geograph-
ical location, weather,...) for a given city passed as a parameter of a call. An eager
interpretation of such service is a mechanism that returns a structured document
with data on leaves, as for instance in the leftmost tree of Figure Bl Another pos-
sibility is to return a tree with the address of a service providing the geographical
information, and a pointer to a weather forecast service, as in the rightmost tree of
Figure Bl

Guarded Active XML [3] control flows in AXML via guarded services. DAXML
aims at modeling distributed systems, where agents (called peers) manage data, but
also provide and require services to one another. In a service oriented architecture,
when a peer must use a service, it may either own this service or borrow it from
another peer. For this reason, we will distinguish internal and external services for
each peer. The overall description of a DAXML system is formalized through the
concept, of DAXML Schema, which lists peers, external and internal services, and
the relations among them.

In guarded AXML [3], internal services are captured by the concept of “internal
function”, whereas external services are captured by the notion of “external func-
tion”, and specified by means of DTDs that depict the shape of returned forests. In
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City
City
name Coordinates Weather /
| / \ / \ name Coordinates Weather
Rennes Lat Long Temp  Sky

| | | Rennes !Wikipedia !MeteoFrance
48°6'53"" N 1°40'46"’0O 28  Sunny

eager lazy

Fia. 5 — Eager and lazy interpretation of a service

DAXML internal services are also represented by functions, but the notion of exter-
nal function is defined using an interface rather than DTDs. An interface specifies
the allowed parameters and the possible returns of a call. As usually in service ori-
ented architectures, it must be possible to relate an interface depicting an external
service to its implementation by the peer offering that service. We propose such a
notion of implementation based on the known concept of query containment [24].

The distributed nature of DAXML is highlighted by the possibility of associating,
to an external service specified as an interface, an implementation for it offered by
another peer. A peer calling an external service can compose with the peer offering
that service by associating, to the service interface, its offered implementation. This
natural mechanism is formalized as a new notion of composition of DAXML schemas.

One advantage of this approach is the flexibility it offers regarding analysis.
When performing analyses of how a (distributed) schema can transform a given
(distributed) document — also called an instance —, services can be represented at
will by their implementations, or by more abstract interfaces. This allows exchanging
simplicity for power in a tunable way when performing such analyses.

3.1 Services as Functions and Interfaces

In this section we introduce basic notions to represent services, namely via
functions and interfaces. Following [3], the concept of “internal service” is formal-
ized through the notion of function. Roughly speaking, a function is a mechanism
that takes a tree as input, performs some computation, and returns a forest of
AXML documents. Our functions slightly extend those of [3] by allowing some non-
determinism in the shape of returned values, and in the valuations of some free
variables that appear in patterns. Note that using free variables in patterns was al-
ready proposed in [3], but that the role of these variables was to allow for existential
quantifiers 3X.P in logical formule over patterns.

3.1.1 Functions

In the rest of the paper, we will distinguish internal and external function names
using elements of the Finy and Fext alphabets. We will furthermore suppose that
Fint and Fext are disjoint.

Definition 5 (function) A function is a tuple

(1. G5, Q5 {(GFIHL QDY e, )
where Ky is a finite set of indexes, f € Fine is a function name and :

- G;‘} is a boolean combination of (relative) patterns, called the call guard ;
- QF is a relative query, called the call query ;
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- {(G? [k], Q?[k])}ker is a finite set of guarded return queries consisting, for
each k € Ky, of :
— a boolean combination of patterns G’} [k], called the return guard, and
~ a query Q%[k], called the return query.
Note that we do not require the guards G; [k],k € Ky to be pairwise disjoint. When-
ever convenient, a function will simply be referred to by its name, seen as a unique
identifier.

The role of DAXML functions is to query and transform AXML documents or
more precisely document instances, that contains structured data plus information
on ongoing service evaluations. If the call and return queries are both deterministic
and unconstrained, and if a function has a single return query, the above definition
corresponds to that of internal function in [3]. The differences with the function
model proposed in [3] are minor : we allow multiple returns (intuitively, K indexes
a finite set of possible returns of the function), and non deterministic values in
the queries heads. However, all these new features can be emulated in the original
AXML model by additional services that introduce non determinism.

In a DAXML system, each peer p in the system manages structured data, under
the form of AXML forests. Trees in this forest contain leaves with labels of the form
If, where f is either a internal or external function name. Intuitively, when a tree
contains a node tagged y a service name, it means that the data contained in the tree
can be completed by the values returned after a call to service f. Internal functions
are used locally by the peer owning them, and applied locally on the document
owned by this peer. Functions evaluations are performed into three phases : a call
to the function, the internal computation steps, and the return. A call to a function
by a peer will create a new temporary tree called the workspace. This workspace
will then be transformed by successive calls to other services. When a guard G';[k]
becomes true, then the query Q?[k] is applied to the workspace. Hence, at a given
moment, a peer may own its structured data, plus a set of temporary workspaces
created for functions evaluations. Of course, each workspace is related to an instance
of a service call. To avoid multiple evaluation of the same instance of a service call,
nods at which a service is called will be tagged differently : ! f if at this node service
f can be called to obtain some information, 7 f if service f has been called, and
the system is waiting for the value returned by f (hence there exists a workspace
in which this instance of the service is being evaluated), and f if the service call
is complete (a value has been returned, and the temporary workspace attached to
this call removed). This setting is captured by the notion of document instance.

Definition 6 (document instance) A document instance over s et of peers P is
a tuple D = (F, eval), where F' is a forest and eval is an injective function over the
subset of nodes in F that are labeled with 7 f for some f € Finy and such that :

1. For each node n with label ?f, eval(n) is a tree in F with root label ay, called
a workspace ;

2. Ewvery tree in F with root labeled ay is eval(n) for some n labeled by ?f.
Intuitively, document instances can be seen as the local state of a peer. We are
now ready to define formally how internal functions transform document instances.

We will say that there is an internal move from D = (F, eval) to D' = (F', eval")
through f € Fing, written

DV

func

D' (8)

if one of the following cases hold :

INRIA



Distributed Active XML and Service Interfaces 15

— Call : there exists some node n in T' € F', labeled by ! f, such that (F,n) = G5 ;
F' is obtained by changing the label of n to 7f and adding to the graph of
eval the pair (n,T"), where T” is a tree consisting of a root ay connected to
the forest Q% (F,n); eval’ extends eval with the pair (n, T"). This is illustrated
in figure

T

l_f,call

func

F1G6. 6 — Internal move : function call

— Return : there exists some node n in F', labeled by 7 f, and some k € K, such
that eval(n) = G%[k] and contains no node labeled with ?g for some g € ®
(contains no running call). Then, D’ is obtained from D as follows :

L. evaluate Q%[k](eval(n)) and add the result as a sibling of node n;
2. remove eval(n) from F and remove n from the domain of eval ;
3. change the label of n to f (with no mark)

Observe that, since guards may not be pairwise disjoint, the selection of
k € K; may be nondeterministic. This is illustrated in figure [l Another
important observation is that the returned forest may contain trees labelled
by any symbols in ¥ U F' U D. This allows returning references to another
service (lazy evaluation policy) instead of recursively calling services before
returning a completely evaluated tree (eager evaluation policy).

T T
ag

l_f,ret

func

F1G. 7 — Internal move : function return
Whenever needed we shall distinguish a call from a return by writing

DrLA D! and DR DY

func func

respectively. We simply write D b, D' to mean D D’ for some f € Fins.

func

3.1.2 Interfaces

Peers in DAXML systems own internal and external services. We have detailed
in section BTl how internal functions modify the local states of peers owning them.
The evaluation of internal services relies mainly on queries. The evaluation mech-
anisms is not explicitly described for external services, which are perceived by a
peer as an interface. An interface specifies the allowed parameters and the possible
returns of a call. It can be defined formally as follows :
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Definition 7 (interface) An AXML interface is a tuple

(I, P, {P?[k]}kem)

where I € Fexy is its name, P§ is a relative pattern defined over set of variables
XF, and {P?[k]}kelﬁ is a set of patterns defined over set of variables X} such

that X N XF = 0. We require in addition that, for each tree of each PR[k] :
— internal nodes have labels in ¥ and leaves have labels in XU F UV UD ;
— there is one designated node c, called the constructor node, such that the sub-
tree rooted at ¢ contains all variables of this tree.
Whenever convenient, an interface will simply be referred through its name, seen as
a unique identifier. We will frequently call PS the call pattern and {P?[k]}kel(,
the return patterns of interface I,

An interface specifies at a calling peer the input that must be accepted by a distant
service, and the set of “all possible returns” received after an external call. We
formalize this next. As services are non-deterministic, the interface may also specify
a finite set of return patterns, {PIR[k]}keKI‘ Let P} = (P, condp) be one of the

return patterns of an interface I. The set [PIR] of the possible returns of P® is
defined as follows, where {condp} is the set of all valuations v € IIx¢c yr Dom(X)

of the variables of PR that are consistent with condp. :

1. For each tree pattern P of P, let ¢ be the constructor node of P and P. be the
subtree of P rooted at c. For each v € {condp}, let v(P.) be an isomorphic
copy of P, with new nodes, in which every variable X occurring in P is replaced
by v(X), and that is then reduced. A pattern v(P.) will be called a pattern
valuation.

2. For each tree pattern P of P and each subset V' C {{condp}, replace the
whole subtree rooted at ¢ by the forest {v(P.) | v € V'}. Call V(P) the result
and define the following pattern V(P®) = {V(P) | P € P}, which possesses
neither condition nor variables.

3. Finally, the set of possible return patterns of P? is the set of patterns defined
as follows :

[P} = {V(P}) |V C feondp} A V] # 0} 9)

With this definition, the set of possible returns depicted by a pattern need not be
finite, as it can be a forest of arbitrary size with trees of arbitrary width. However,
under the finite domain hypothesis, the size of [PIR] remains finite (note however
that it can be doubly exponential in ||P}|| - as defined in (G)-).

The main idea behind interfaces is that these external descriptions of inputs and
outputs will be implemented by internal functions. Hence, we have to consider the
possibility that a return query of a function returns an empty set of answers. For
this reason we also need to consider a specific pattern that describes the structure
of the pattern above constructor nodes. For a tree pattern P with constructor node,
we will denote by Py = Vp(P) the pattern obtained by removing the constructor
node and its subtree from P. This definition easily extends to patterns by removing
constructors and subtrees in all tree patterns composing the pattern). Observe that
if P is the head of a return query Body — P, Py corresponds to the returned value
when no matching exists for Body.

Let us consider the pattern P of figure[§ with condition cond = {X = trueAY €
{1,2}}. This pattern contains a constructor node, denoted by {Record}. According
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to cond, there are two possible valuations for X,Y. The possible returns [P] com-
puted from P with respect to cond are represented in Figure [ They are built by
replacing the subtree of P rooted at {Record} by a subset of similar trees where
X and Y are respectively replaced by true or a value in {1,2}. In this example P
consists in a single node tagged by Personal Data

Personal Data
{Record}
/7 N\

Clearance Value

X Y

Fic. 8 — An example of pattern with constructor

Personal Data Personal Data Personal Data
[P] o Record Record Record Record
- VAN ’ 7/ N\ VAN VAN
Clearance Value Clearance Value Clearance Value Clearance Value
true 1 true 2 true 1 true 2

F1a. 9 — Possible return patterns [P] for cond = {X = true AY € {1,2}}

The set of possible returns is used to depict the set of legal values that a service
implementing an interface may return. Hence, a forest F' returned by a services will
need to satisfy one of the patterns listed in the set of possible return patterns.

Definition 8 Let (I,P?, {P?[k]}keKI) be an interface, and let F' be a forest. We

will say that F satisfies return pattern PR[k] and write
F = [PF[K]] (10)

if and only if there exists a pattern P € [PIR[k]] such that F = P. We will say
that F is a legal return for interface I if and only if there exists k € Ky such that

F = [P}[K]

Note that F' only needs to satisfy one of the patterns listed in [P?] . Hence, [PIR]
can not be seen as a pattern, but rather as a disjunction of patterns. Note also that
as we require that F' |= P for some P € [PR], the forests F' returned by a service
do not need to be isomorphic to one of the patterns in [P] to be legal return values,
and can then contain more information than depicted in the satisfied pattern P.

Note also that we do not have to compare a forest with the patterns obtained
from all combinations of valuations. Let [P] be the possible returns computed from a
pattern P = (P, cond p). We can define subsets of [P] according to the size of the val-
uation sets chosen in { condp}. Let us write [P!] = {V(P) |V C {condp} A V]| =i

Theorem 2 Let P = (P, condp) be a patterns with constructor nodes. Then F =
[P] if and only if F = [P']

In section 311l we have discussed how internal functions operate on document

instances. External function are defined as interfaces, and express the needs of a
peer, that are fulfilled by its environment. We next define the action of interfaces
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on documents instances. External function will operate like functions on document
instances, with the exception that, as the computation for an external service is
performed by the environment of the calling peer, no workspace is created. The
evaluation of an external service can then be decomposed into two phases : the call
and the return.

Say that there is an external move from D = (F,eval) to D' = (F', eval')

through interface (I, P, {PIR[k]}keKI) € Feoxt, Written

D Hye D' (11)

if eval’ = eval and one of the following cases hold :

— Call : there exists some tree T € F' located of p and containing a node n
labeled by !I, such that (T,,n) = P%, where T, is the smallest subtree of
T containing n and its siblings; Here, T, represents de parameters of the
external call. The new forest F' is obtained by changing, in F', the label of n
to ?1. Here, PY plays the role of a guard evaluated on the calling peer, that
guarantees that the parameters of a call to an external function can be found
on the part of the document owned by the calling peer.

— Return : there exists some node n in F, labeled by ?I; F' is obtained by
changing, in F', the label of n to I (with no mark) and by adding as a sibling
of n some forest satisfying a pattern in [PR[k]] U (PR[k])y for some k non
deterministically chosen in K.

Note that without the finite domain and child only assumption, there is an in-
finite number of forests that can be appended to the document instance. However,
with the finite domain assumption, one can easily bound this set assuming some
knowledge on the depth of the trees returned by a service that implements I (func-
tions always return bounded depth forests). Whenever needed we shall distinguish
a call from a return by writing

D' D' and DR D,

intf intf

respectively. We simply write D F; . D' to mean D . .. D' for some I € Feys.

3.2 Implementation

A site will use a distant service if and only if the provided implementation fits
the interface description. For AXML, this informal notion of “fitting an interface”
is formalized using the two concepts of containment (for the call) and satisfaction
(for the return). We begin with containment.

3.2.1 Containment

Containment is a way to compare and optimize queries. This problem is consid-
ered almost systematically when a new query language is proposed. An extensive
literature exists on containment. We refer interested readers to [24] for a survey on
tree patterns containment.

Definition 9 (containment) A (relative) pattern P’ is contained in a (relative)
pattern P, written P' C P, iff, for every tree T, T |= P’ implies T |= P.

The pattern containment proposed above is exactly the usual notion of boolean
query containment, that was widely studied in the literature (see for instance [24] for
a survey of this domain). Several notions of containment exist, but as most of con-
tainment problems can be brought back to a boolean containment, the latter is the

INRIA



Distributed Active XML and Service Interfaces 19

most studied notion. The complexity of containment changes depending on the frag-
ment of the query language that is used. For XPath, it has been shown [24 21}, [T7]
that, depending on the fragment, containment can be a polynomial, Co-NP or even
an Exptime problem. When one requires that containment is restricted to queries
satisfying some integrity constraints (SXICs) and a DTD, containment can even
become undecidable. Undecidability results also hold under simple DTDs when the
considered fragment of XPath allows testing nodesets [20]. Containment is a crucial
notion for our definition of interfaces and implementations. Implementation must
remain an effective problem, which justifies some restrictions on the Service archi-
tecture proposed in this paper. Here, we consider containment of patterns which
corresponds to containment for a fragment of XPath that uses only child and de-
scendant relation, filtering and wildcards. The difficult and expensive point will be
to deal with variables and constraints.

Theorem 3 Let P and P’ be two patterns whose variables range over infinite do-
mains. Then containment of P in P’ is an undecidable problem.

Proof sketch: The proof is an adaptation of the proof in [5] for the undecidability
of containment for conjunctive queries with variables equality and inequality. For
each instance of the PCP, one can compute two patterns P and P’ such that P C P’
iff there is no solution to the considered instance of the PCP. P is used to encode
the shape of potential PCP solutions. P’ is used to collect a list of bad properties
of trees that can not be PCP solutions. The details of the encoding are provided in
the appendix. O

This undecidability of containment for patterns with variables over infinite do-
mains holds as soon as equality and inequality of data values are allowed in patterns.
However, with the finite domain assumption, the undecidability result does not hold
anymore.

Theorem 4 Let P and P’ be two patterns whose variables range over finite do-
mains. Then, deciding whether P C P’ is in Co-NexpTime.

Proof sketch: To provide a counter example T such that T' = P but T [~ P’, one
can chose nondeterministically a P; € [P] and then chose nondeterministically 7'
such that T' |= P; but T [£ P for every P; € [P'].T can be chosen in polynomial
time from a set of canonical models as in [I7], but [P'] is of exponential size. O

Obviously, if P’ has no variables, the results of [I7] hold, and containment has
a Co-NP solution.

3.2.2 Satisfaction

The next concept needed to define implementations is that of satisfaction. The
satisfaction relation will be used to compare the shape of trees returned by a func-
tion, and the expected result depicted in an interface. Here again, we assume that
patterns use variables ranging over finite domains. The satisfaction relation will
hence compare return heads of functions, that is patterns defined using only the
child relation, and arbitrary patterns, using child and descendant relation. It is
defined as follows :

Definition 10 (satisfaction) Let P = (P, condp) and Q = (Q, condq) be two
patterns possessing one constructor node in each of their trees and such that Q
does not involve the relation || (descendant). Let [P] and [Q] be the sets of possible
returns of P and Q, respectively, see (@). Referring to ({I0), say that Q satisfies P,
written

QCP if QyEPy andQCP
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Let us detail this relation. Pattern Q should be seen as a constraint on the
shape and values of forests returned by a service (this is why we can assume that Q
does not use the child relation), and P as the description of the expected returned
values described by an interface. The first property that we want to ensure is that
Qp | Py. This is required because when no matching exists, a query nevertheless
returns a forest (computed by removing all subtrees below constructor nodes). We
feel that is is important to differentiate the cases where a service did not find a
matching. Consider for instance a service that may return the empty forest (this
is the case when all trees in the return head have constructors as roots) : as this
forest satisfies all patterns, then it satisfies the expected results in the interface. By
requiring that Qg |= Py, we allow interface designers to specify whether services
are allowed to return the empty forest or not. Note that as Qg contains no variable,
and as Q uses only child relation between nodes, we can write Qg = Py without
overloading our definitions.

The second property required by satisfaction focuses on forests that are returned
by a services when matchings for its return body exist. We want that all forests
F returned by a service (i.e. forests F' such that F' = [Q]) also satisfy [P]. This
means that we want to test whether [Q] C [P] ( with [Q], [P] seen as disjunctions of
patterns). We have seen in theorem 2lthat this is equivalent to testing [Ql] C [Pl] ,
and hence Q C P.

Q= <{ {T/}a\T },{Xe1,2}> P= ({ /a{\T}},{Y61,2}>

Y

[EEg——CN

Fia. 10 — Satisfaction relation between patterns

The example of Figure shows two patterns P and Q such that Q C P but
Qg [~ Py. Note that nothing forces P and @ to contain the same constructors, and
that constructor nodes do not play any role is containment satisfaction. However,
they are essential to differentiate empty returns.

We can reuse the complexity statement of theorem Ml for satisfaction :

Corollary 1 Let P and Q be two patterns whose variables range over finite do-
mains, with respectively lp and lg leaves. Then, testing whether Q T P is a Co-

NezpTime problem, and can be done in O ((||Q|| + 1).li_—?.|Q3|.|P2|).

Proof: The complexity statement comes easily from the number of possible val-
uations in [Q'], [P'], and from the complexity of pattern matching in theorem [

Note that even if theorem [2] avoids testing a doubly exponential set of patterns
([Q] can contain any subset of valuations of variables of @), due to constructors), the
overall complexity of satisfaction still implies an exponential blowup. The following
theorem provides an effective test to check for satisfaction :

First of all, we need to extend the definition of matching to (tree) patterns.

Definition 11 (matching between patterns) Let P = (Mp,Gp,\5; \E) and

Q = (Mg,Gq, )\5\2/[, )\?) be two tree patterns. A matching of P into Q) is a a mapping
u from the nodes of P to the nodes of QQ such that :

1. the root of P is mapped to the root of @,

2. the descendant and child relations of the tree pattern are respected by u, that
is for every edge (n,m) of P, if \E(n,m) = /, then u(m) is a child of u(m)
in T, and if \E(n,m) = |, then u(m) is a descendant of u(n) in T.
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3. ju preserves the labels, that is for every node n of P such that Y, (n) € SUFU

D, )\%[(u(n)) = AP/ (n). Note that this does not apply to nodes of P labelled
by *, which can be mapped by i to nodes labelled by any symbol or value ;

4. Nodes of P labeled with variables are mapped to nodes of QQ with variables or
data values. If a variable node is mapped to a data value, the image of variable
nodes must belong to the domain of variables, that is if \f;(n) = X €V then
)\%(u(w)) € Dom(X). If a variable node n of P is mapped onto a variable
node of Q, then Dom()\%‘,(u(n)) C Dom(A\F,(n)). Furthermore, if two nodes
are labelled by the same variables, then p sends them onto nodes of Q) with
compatible values and/or domains.

We will say that a tree pattern P embeds another tree pattern @, written Q |= P
when there is at least one matching from @ to P.

The definition easily extends to sets of patterns. This definition extends the clas-
sical definition of pattern homomorphisms [6l 24], [I7] with constraints on variables.
It is well known that the existence of homomorphism between patterns is a suffi-
cient condition for pattern containment, but that this is not a necessary condition
(see [24] for counter-examples). However, testing the existence of an homomorphism
is usually easier than other techniques.

Theorem 5 Let P and Q be two patterns as in definition[I0l and possessing disjoint
sets of variables. If there exists a matching p from P to Q such that conditions [1]
and [2 below hold, then Q C P.

1. the restriction of i to nodes in Py is a matching from Py to Qg

2. The following implication holds : (condQ A [/\)\(n):X X = /\(,u(n))]) =
condp.

Proof: Suppose that there exists a matching p that maps nodes of P onto nodes
of Q, and respects labeling, child and descendant relation, and satisfies condition
[[I Then, we obviously have Qg |= Py.

Then, there exists a mapping 1; from Q to every F; belonging to [Q!] that maps
nodes of Q to nodes of Fj;, and respects labeling and child relation (Fj is the pattern
obtained by replacing each variable by one of its valuations). The mapping ; o u
from P to F; associates a value to every variable of P, that is it defines a valuation

v; of variables of P. As Condg A (/\)‘(n):X X = )\(,u(n))) implies condp, we have

that v; € {condpj}. We also have v;(P) € [Pl]. There exists a bijective morphism
! from P to v;(P) that respects labeling, child and descendant relations and sends
nodes of P onto nodes of v;(P). It is now easy to see that ¢ o o), ' is a matching
from v;(P) to F;, hence F; = [P']. As this property holds for every F; € [Q'], it
also holds for every F' such that F' |= Q, which concludes the proof. d

The relations between P, Q,v;(P), F; are depicted on the diagram of Figure [TT1

Theorem [l provides means to test for satisfaction in O (lff (Ceona + |Q|3.|P|2)),

where C.,nq is the cost for verifying that condition 2l holds, as finding a correct p
can be brought back satisfaction of a pattern. Note however that if the existence of
a mapping guarantees satisfaction, the converse is not necessarily true. The reason
is that when there are two forests F; and F} of [Ql] that satisfy [Pl], it means that
there exist two patterns v;(P), v;(P) that are almost isomorphic up to valuations of
leaves, and two corresponding matchings p; from v;(P) to F; and u; from v;(P) to
F;. F; and Fj are also quasi-isomorphic up to labeling of leaves. However, distinct
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soporpl
:(P) omodi F;
wz’T T%'
P m Q
{7k
Vi (P oo - F;
i) o1 7

Fia. 11 - Relations between patterns and their valuations

valuations can force y; and p; to send images of variables nodes in v;(P), v;(P)
onto nodes of F; and Fj; that are the images of different nodes of Q. We may have
@[;;1 o i o} # ¢;1 o fi 0 g[;}. Hence, an unique morphism g may not exist, even
when Q C P.

Consider for instance the two patterns P and Q of Figure [[2] where variables
X,Y,Z,T,U take value in domain {1,2,3,4,5,6,7}, variables X', Y’ take values
in domain {3,4,5} and with conditions Condg = [X <Y < Z < T < U] and
condp = [X' < Y']. Clearly, there is no unique matching p from P to Q such
that for every valuation v; satisfying condg, u(v;) satisfies condp. Intuitively, for
each v;, variables X' and Y’ can always be sent onto nodes of v;(Q) while meeting
condition condp, but they have to be mapped onto different nodes of Q for every
valuation v;. This counter example shows that conditions listed in theorem [ are
only sufficient conditions. Note that even when patterns do not contain variables,
this test is only a sufficient condition, as it relies on the homomorphism technique
for pattern containment [I7].

{a}

Q = <{ RN },{X,Y,Z,T,Ue1..7/\X<Y<Z<T<U}>
I T I
XYZTU

P - <{ {a} },{X’,Y’E3..5/\X’<Y’}>
XY’

FiG. 12 — A counter example to show that conditions of theorem Bl are only sufficient

3.2.3 Implementation of an interface

We are now ready to define the concept of implementation, that guarantees
compatibility between an interface expressing some needs, and a function providing
a service :

Definition 12 (implementation) Let (f, G?,Q;:{(G?[k]’Q;[kD}keK > e o
f

function, where

Q} = Body® — Head"
Vk € Ky, Qj[k] = Body"[k] — Head"[K]
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and let (I, P¢, {P¥[j]}jeK1) be an interface. We say that f implements I, written
f1E I if and only if the following holds :

Body® D P§ and Vk € K;,3j € Kr: Head"[k] C P}[j] (12)
—_——— ~ —~—
containment satisfaction
function interface
—— ——
9 —
call(f) {Bodyc__ __________ D Py L
Head‘_|
gL
return(f) < Body L
Head" | _________. C PR _L
— —

F1a. 13 — Relations between an interface and a function implementing it

Discussion. Let us discuss our design choices for this notion. First, when relating
implementation f to interface I, the intent is that the two are located on different
peers, say g and p. The key remark is that p does not have direct access to documents
located at g but can only query them by performing a distant call. In particular, p
cannot evaluate whether a call guard holds in a document sitting at ¢g. Consequently,
our implementation relation does not involve the call guard of f.

Second, in SOA, the notion of compatibility relates the required and provided
service interfaces and does not involve detailed implementations. To stick to this
usual framework, just consider that the service provided by f is the pair

(Body®,{Hear" [k]}rek,)

Then, our notion of implementation as in definition is exactly the notion of
compatibility of interfaces in SOA.

Recall that the call and return patterns of an interface possess disjoint variables
sets. We will see in the is an essential assumption to keep implementation decidable.
Indeed, allowing a common variable X in P? and PR[j] for some j, gives the
possibility to encode a reachability problem with an interface that comports only
one return pattern : f implements I iff for a given input pattern containing X it
returns some pattern containing the same X. In this context of disjoint variables,
checking for implementation reduces to two occurrences of a query containment
problem.

Theorem 6 Let (I, P?, {PIR[j]}jEKI) be an interface with variables ranging over

finite domains. Let (f,G%,Q%, {(G}[k], Q}[k])}rek,) be a function such that the
variables in the head of each G’ [k] range over finite domains. Then deciding whether
fIE I is a Co-NexpTime problem.

Proof: The theorem is a direct consequence of theorem [l |

3.2.4 Discussion

The implementation relation of definition [[2is sound, but not complete (it may
consider as incorrect implementation that always return values satisfying one of the
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return patterns of an interface). The reason for this is that satisfaction holds only
when

R
FE \/ [Headjk] = F E \/ [P}K]
keK kEK;
However, some values in \/ [Head}[k]] may not be effectively produced by a
keEKy
return query (independently of the calling context), or may not be produced by a
return query when the service was called using parameters satisfying P$. Hence, the
set of possible returned values used in the satisfaction relation is only a superset of
the set of returned values that can effectively be produced by an service in a given
context. Figure [[4] illustrates this situation. Let (I, P?, {PIR}) be an interface,

FiG. 14 — Implementation

(f, 4 Q% {( b Q?)}) be a function (for simplicity, both have singletons as return
patterns sets), Tp, . .., Ty be a finite set of trees that satisfy Body® and Tj,...,T¢ be
a set of output trees that can be returned by Q? In the figure, an arrow from a T; to
a T]f indicates that T]f is a possible output for input tree T; in the context where f is
evaluated. The dashed ellipse containing 7}’s indicates the trees that satisfy P¢, and
the dashed ellipse containing 7;’s indicates the trees that satisfy [P?] . By definition,
function f does not implement the interface I since T} and T} do not satisfy [P¥].
On the other hand, we see here that T does not belong to f(7p, . ..,T>) and that no
input to f can produce Ty. Hence, f(F) |= P} for any input forest F' that satisfies
P¢. Thus our implementation relation is sound (no service that returns a value
F such that Vk € K, F [£ [PR[k]] is accepted as implementation of an interface

(I, P?, {PIR[k]}keKI) but not complete. Note however there is no effective solution

in general to check whether T} is or is not in f(To,...,Ts), because there is no
effective procedure to compute the relation between T;s and T/s induced by f, even
if theses sets are finite (services can simulate two counter machines, this point will
be detailed in section []).

This incompleteness may seem bothering, but we will prove in section [ that
determining whether a given value can be returned by a service during the evolution
of an AXML system is undecidable, even when variables range over finite domains.
Hence, this approximation of returned values is essential, and the implementation
relation in definition [I2] can be considered as a sound and effective compromise.

Let us illustrate the incompleteness of implementation on an example. Consider
for instance the interface I and the service f in Figure[I3l It is clear that if service
f receives only data such that X < 10, then it can only return values with Y < 10.
However, this dynamic aspect is not captured by our definition of implementation,
and service f is not considered as a correct implementation of interface I.

Let us recall that in definition[I2] variable sets in P§ and {P®[j]} ¢ are disjoint.
The first reason is mainly consistency between variables use and properties that are
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afr
i T b -
I, X ) Y f,true, | X' true, | Y’
X' Y’
{X <10} {Y <10}
{X'" <20} {Y'" <20}

F1G. 15 — Approximation in Implementation relation ; an interface (left) and a func-
tion not implementing it (right).

checked for implementation : If we allow P¢ and P} to contain common variables,
then condition (I2)) does not guarantee by itself that common variables have the
same valuation in the input and in the output of a service for every correct input
document, as relation between P? and the input to a service and between the
output of the service and PIR are checked separately. Hence, the natural semantics
is to consider that call and return patterns of an interface are defined over disjoint
variable sets.

Changing the semantics of implementation and interfaces to require that com-
mon variables designate the same value in P§ and P¥ leads to undecidability of
implementation. Within this setting, common variables mean that a service that
implements an interface should guarantee that some input values are returned by
the service. However, checking that the value of a variable is preserved by a service
amounts to establishing a relation between input and output ; as already mentioned,
this is not effectively computable, even with variables ranging over finite domains.
Computing the relation between inputs and outputs resumes to finding whether
some output is reachable from an input, which is undecidable, as shown in sec-

tion E11

3.3 DAXML Schemas and Instances

Now that we have defined services, interfaces, and an implementation relation for
interfaces and functions, we are ready to define a compositional Service Oriented
Architecture based on AXML through the notion of Distributed AXML schema.
Active documents over this architecture will be captured by instances.

3.3.1 Schemas and their composition

The notion of DAXMLschema captures the architecture of a distributed system,
i.e. it collects information on peers of the modeled systems, internal and external
services provided or required and their localization, and associates some external
services with their actual implementation.

Definition 13 (DAXML schema) A Distributed AXML schema (DAXML) is a
tuple
S= (P, <I)inta <I)exta Ea 7)

where :
— P is a finite set of peers, generically denoted by the symbols p,q ;
— @iy C Fing @s a set of internal services, consisting of functions ;
— Doyt C Fext 15 a set of external services, consisting of interfaces ;
— L ®ipy U Py = P is a function that localizes each internal and external
service on a single peer.
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— v Doy = Py is a partial function, called implementation map, that maps
external services to internal services. We furthermore require that L(y(g)) #
L(g) and that vy(g) implements
g (v(9) |E g) for every external service g. We do not require that every external
service in the system is implemented by an internal service ; when this occurs,
the schema is closed.

In their work [3], Abiteboul, Segoufin and Vianu leave external functions that are
not implemented by another peer totally unspecified, with the exception of static
constraints expressed as DTD and a boolean combination of patterns. Here, external
services are not necessarily unspecified, and define the requirements for a service
provided by a distant peer. The intuition behind this definition is that the mapping
~ associates an interface definition with the internal service that implements it. The
interface defines at the same time the expected output of a service call, but also the
valid range of parameters used in a call. When external services are not mapped to
the definition of an internal service, their interpretation is the same as in [3], that is
they are implemented by other peers that are not part of the system. Note however
that even in this case, external services provide precise information that can be used
for analysis, as detailed later in this section.

The next step is to equip DAXML with a notion of composition. The intent is
that when two schemas compose, one schema provides the details of some external
services to the other schema and conversely. To formalize this we first need to define
what “providing the details” means. This notion is captured by the notion of pairing
map, that associates external service of a given peer to a compatible internal service
provided by another peer.

Definition 14 (pairing. map) Consider, for i = 1,2, two schemas
Si = (Pi, @, Bloy, £1,7"). A pairing map for Si, Sz is a partial map

int»

U @2

int

£ (Ph URZ,) \ (P(Y)UD(YY)) = &

ext int

where D(v') denotes the domain of v,and such that :
— For every service f in D(§), &(f) |E f, i-e., &(f) is an implementation of
external service f.
— For every service f in D(§)N®L,, £(f) & L., that is & maps external services
of 81 having no implementation to internal services of So and conversely.
— For every external service g, we have L(£(g)) # L(g), that is internal services

and the interfaces they implement are located on distinct peers.

This technique of pairing maps seems adequate to define the composition of DAXML
schemas. Indeed, several internal services may be correct implementations of an
interface, and relying on names to map a service to an interface assumes that these
names are known in advance by peers.

Definition 15 (composition of DAXML schemas) Let S; and Sy be two
schemas, and let & be a pairing map. The composition of S; and S through &,
denoted by Sy ||¢ S2, is the schema S = (P, Pint, Pexs, £,7y), where :

P = PLUP, O, = B UDL, L = clur?

Pext = q)(lext U q)gxt Y= 'Yl U ’72 ué

It is only defined if the two maps L' and L agree on the common part of their
respective domains, and similarly for v' and ~2.

A DAXML schema can be seen as kind of a component in a SOA. Note however
that nothing forces to schemas to be defined over disjoint sets of peers, interfaces
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and services. Schema composition can hence glue systems that are defined over
non disjoint sets of peers and functions. Figure [If illustrates composition. Schema
S1 is defined over three peers P1, P2, P3, with three internal services f1, f23, f3
respectively located on P1, P2, P3 and three external services g, g’ located on P1,
and h located on P3. Function 7, associates g and h with f2. Implementation maps
are represented in the figure by a dashed line. Schema S2 is defined over three
peers P1, P2, P3, with three internal services f'1, f'3, f'4 respectively located on
P1, P3, P4 and three external services ¢'1, h, h' respectively located on P1, P3, P4.
Function 75 associates g'1 with f2, and is represented by a dotted line on the figure.
The composition of S1 and S2 with the pairing map v that associates g’ with f'4
and h' with f3 is represented on the right of the figure.

Pl P2 P3
. 1 2 ]
int Y ..
S1=
[ I |
ext . h [ E Pl P2 P3 P4
S :
: o n | EN v
St 82=
i Sty T I ST N
P1 P3 B : e [
Py ext |¢ | | hnC3 b w3
int £'1 f'3 — f'4 [ gl [} e [ B
S2= ’
ext | g1 :
g4 h ] W[}

Fi1G. 16 — DAXML Schemas composition

Theorem 7 Let S,S51,S52 be DAXML schemas, then :

1. Composition is idempotent : S || S = S where L denotes the trivial pairing
map with empty domain.

2. Composition is commutative :
Sille S2 =8 [le Su
3. If pairing maps &12,&3, &1, Eas satisfy consistency conditions

Vf € Dom(&) N Dom(&;) = &(f) =¢&;(f), and (13)
Dom/(&2) U Dom(€3) = Dom(&) U Dom(&as) (14)

where i and j denote two different indices belonging to the alphabet {12,3,1,23},
then composition is associative :

(Si Ml S2) lles Sz =81 lley (S2 lleng Sa)

The proof of these properties of composition are rather straightforward, as compo-
sition is defined in terms of unions of sets and functions. Note that condition (3]
is trivially met if the sets of external services in &; and S, are pairwise disjoint.

3.3.2 Instances and their runs

So far moves defined in (8) and (II)) describe the evolution of an instance for a
schema located on a single peer and considered in isolation. We now describe how
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documents located on several peers evolve when these peers provide and use services
from one another. The state of such systems is captured by the notion of DAXML
instances. DAXML instances can be seen as an extension of document instances to
sets of peers.

Definition 16 (DAXML instance) A DAXML instance over a schema
S = (P, ®int, Pext, L,7) is a tuple D = (F, eval,l), where (F,eval) is a document
instance following definition [B, and ¢ : Trees(F) — P is a function associating a
peer to each tree of F'. We require that, for each node n with label 7 f, where f € ®jyy,
then the following holds :

L(eval(n)) = L(f). (15)

Condition (3] expresses that service f is evaluated at the peer that owns it. As for
document instances, call and returns of functions make DAXML instances evolve,
and we can define runs over DAXML instances. We first focus on moves. Clearly
the two internal and external moves, k¢ . defined in (), and F;,,; defined in (I,
extend to DAXML instances respectively for internal services, and external services
that have no implementation. Hence, we will have :

— internal call : (F,eval, ) |- feall (F', eval’, ') iff
(F, = 0-Y(L(f)), eval,) FLe" (F,,evaly,), where eval, is the restriction of

eval to trees owned by L(f) = p, F' = (F \ {7'(L(f))) U F}, and eval’ =
eval U eval;,

— internal return : (F,eval,f) FL™ (F' eval', 0') iff (F,eval) H™" (F', eval'),
and ¢’ is the restriction of £ to trees of F',

— interface call : an interface move an external service I is allowed iff the con-
sidered external service is not implemented, that is if v(I) is undefined. If
~v(I) is defined, we will apply the external call rule define later in the section.
(F, eval, l) FLeall (F',eval,l) iff ~(I) is undefined, and
(F, = (=" (L(f)), evaly) Fi (B!, eval,), F' = (F\ ¢~ (L(f))) U F},

— interface return : (F,eval, ) FS" (F', eval, €) iff (F,eval) L' (F', eval)

In addition, the implementation map 7 leads to considering another type of
move, which consists in calls to services implemented by another peer.
Formally, let (I,PY, {P?[j]}jeKI) € Foxt be an  interface  and
(f,G%, Q% {(G}[k], Q}[k]) }rer,) € Fine be a function of a DAXML schema such
that f = v(I) (this implies that f implements I). Recall that, in this case, I and f
are owned by different peers : p = L(I) # L(f) = q. We will say that there exists a
distant move from D to D' through the pair (I, f) € graph(y), written

D+LI D (16)

forw

if one of the following cases holds :

— Call : there exists some tree T € F located of p and containing a node n
labeled by !I, such that (T,,n) = P%, where T}, is the smallest subtree of
T containing n and its siblings; Here, T, represents de parameters of the
external call. To avoid finding matchings for P$ into parts of the tree that
are not related to current call of I, the matchings are restricted to T),. F' is
obtained by :

1. changing the label of n to 71 and

2. adding to peer ¢ a tree T’ composed of a root labeled by a; that caps
a copy of the smallest forest of T}, containing the matchings u(P¢) of
P¢ into T),, plus a node labeled by !f. Intuitively, the siblings of n can
be seen as the parameters of an external call that match an interface
requirement.
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3.

adding to the graph of eval the pair (n,T"). Function eval’ follows ac-
cordingly as an extension of eval. Finally, T' = eval’(n) is located in q :
{(T") = q. Observe that, since (T),,n) = PY and f implements I, then
(T',n") | Body$, where Body$ is the body part of the call query Q%
of service f. Note however that nothing forces the guard of service f to
hold when the external call is performed, nor after appending tree 7" to
the document owned by ¢. The external call is illustrated in figure [I7

on peer p on peer ¢ on peer p on peer ¢
—_—

Ty Ty Ty

T T,

Nl g ‘fﬂfv‘gggig‘ziik

T1 Tz T3 Tl TZ TS

F1G. 17 — An external call

on peer p on peer q on peer p on peer q
L T, L T,

Y YA /A

%ﬁiﬂ%m& IANANANA

Ty

T, T3 Tn Ty, T3 R R

Fia. 18 — Corresponding return

Discussion. Let us discuss our design choices regarding distant calls. Recall

that,

in accordance with SOA principles, we regard a peer as an autonomous

computing unit executing the internal services it owns. Hence, if f sitting at

peer

q implements interface I sitting at peer p, the only solution for p to make

a distant call to f is to communicate the parameters of the call to g. Observe

that

we only need to communicate the matchings of call pattern P¢, thanks

to implementation relation of definition

— Return : there exists some node n in T' € F, labeled by ?I and located in p,
and some node n' of eval(n) and labeled by f (that is the evaluation of f is
completed at its owning peer) ; Then, D’ is obtained from D as follows :

1.
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pick the forest F,. collecting all subtrees that are siblings of n’. This
forest may still contain references to interface or service names that are
not known by peer p. So, before returning F;,/, we have to replace some
tags of nodes in F},/. First, for every node tagged by !g, if ¢ is an imple-
mentation of an external sevice I owned by p, replace !g by !I. If g is not
an implementation of an external service of p, leave the node unchanged.
The next step is to replace references to external services. For every node
tagged by a call to an external service I.J, if J is implemented by a service
g owned by p, replace tag !J by lg. If .J is implemented by a a service g
that is not owned by p, but that implements an interface K of p, replace
!J by K. If none of these situation apply, replace !J by a reference lg
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to the service ¢ = (J) that implements J. Even after this relabeling,
p may receive a forest containing references to services that it does not
own. This should not be considered as a problem, as these nodes will
simply be ignored by p during next moves.

2. remove eval(n) from F and remove n from the domain of eval ;

3. change the label on n to I (with no mark). Note that as f implements I,
then the forest of appended siblings necessarily satisfies [PIR[j]] for some
j € K. The return is illustrated in figure

Note that the return from a distant call can occur as soon as f has been evaluated.
The values computed to evaluate f may however still contain references to services
calls. All references to external services known by the calling peer are replaced by
their interface. The remaining references that are appended are unknown at the
calling peer, and can simply be ignored (i.e. they will never be evaluated).
Whenever needed we shall distinguish a call from a return by writing

D l_I,f,call D/ and D l_I,f,ret DI,

forw forw

respectively. We simply write D F; . D' to mean D l—fo’fw D' for some pair (I, f)
such that f = ~(I).

Definition 17 (run) Let D, D' be DAXML instances. We will say that there is a
move from D to D', written D & D', if one of the following cases hold :

- D I_func DI’

-D l_forw DI’

~ DL D" for some interface I that has no implementation in the schema.
We will say that D is deadlocked if there exists no D' such that D + D'. A run
of @ DAXML schema S = (P, ®ing, Pext, L£,7) from a document Dy is an infinite
sequence p = Dy, ..., Dy, .. of instances over S, such that for every i, either D; -
Diy1 or D; is deadlocked and D; = D;11. We denote by Runs(Dy,S) the runs of
a schema S starting from instance Dy.

3.3.3 Projections and restrictions

So far, we have shown how to compose DAXML schemas over sets of peers. We
can define the converse operation consisting of a restriction of schemas and instances
to a selected subset of its peers. Projections and restrictions will be useful to express
and study properties of a subset of a DAXML schema.

Definition 18 (restriction)

1. Let § = (P, ®int, Pext, L,7) be a DAXML schema and R C P be a subset of
its peers. The restriction of S to R, is the schema

Sk = (R, ®int N LT (R), Pexs NLH(R), L1z, V%) (17)

where L is the co-restriction of L to R, and vy is the restriction and
corestriction of v respectively to external and internal function located on peers
of R. When R = {p}, the restriction is the schema

S|p = ({p}7 Ding N ‘C_l(p)a Dexy N ‘C_l(p)v ‘C\pa J—) (18)

where L), is the constant map with value p and L is the partial function with
empty domain — no interface has an associated implementation.

2. Similarly, instances D = (F, eval,f) over S can be restricted to a subset of
peers or to a single peer by setting

Dig = (t7'(R), eval %, %) (19)
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where eval|r and /| are respectively the corestriction of eval to R and the restric-
tion and corestriction of £ to nodes and trees of £~*(R). By the definition of moves
@®), (), and (4], it is clear that moves involve changes in the documents hosted
by at most two peers, which can be summarized by the following properties :

~ Vf € &1, YR C P, D[ . D" and L(f) ¢ R implies D'z = D

— VI € @y, VR C P, DL . D" and L(I) € R implies that D'\g = Dir

~Vf € &, VI € B VR C P, D Fl D', £(I) ¢ R and L(f) ¢ R implies

that D,|R = D|'R

Using the above definitions and properties, we are now ready to define projec-

tions of runs on a single peer :

Definition 19 (projection of run) The projection IIg(p) of a run

p = Do,D1y,...,D,,... of a schema S = (P, Pint, Pext, L,7y) onto a set of peers

R C P is the sequence Iz (p) = Do , D, R Dizjrs- - Dikm ,... such that
—0< i <t < < < ...

- Vi, j € 1.k, eitherDi]._lln is deadlocked and Di:‘—1|R = Dif\R’ or Dii_l\R #*
Dile.
—Foralln, 0 < iy < iy < -+ < i < n is the largest sequence of indezes

satisfying the above condition.

Intuitively, projections of runs only record the changes of instances that are
visible on documents owned by peers in P. Figure [I9 shows the projection on peer
p for a simple run, involving a local call to function f on peer p, and an external
call to a function ¢ offered by peer ¢ where g implements an interface I of p. The
projection of this run on peer p hides all trees located on ¢, and also moves that are
local to ¢, that is evaluation of function g.

Definition 20 (local run) Let Dy be an instance of a DAXML schema
S = (P, ®ing, Pext, £,7). A local run of S over a subset of peers R C P is a run of
S\ starting from Dog .

Note that it is false in general that Il (Runs(Do,S)) = Runs(Do|g , Sz ). There
are several reasons for that. The first one ist that when a service implements an
interface, it does not necessarily return an answer, as its return guard may never
become true. However, local runs may consider a return move of an interface I
(hence considering that a service that implements I always returns a value). On the
other hand, the set of possible returned values considered in interface moves can be
larger than the actual set of values returned by an implementation. The third reason
is that local moves do not consider distant calls incoming from peers to which they
provide services. When an implementation f located on peer ¢ is called from a peer
p, a new tree containing a call to f is created on peer ¢q. Hence, there is a distinction
between local changes enforced by external calls (cretation of a tree containing !f
for some f) and changes due to a local call to a service (creation of a workspace).

Theorem 8 Let S be a DAXML schema and Dg be an instance of S. Let R C P
be a set of peers such that R provides no services to P\ R. Then,

[z (Runs(Do,S)) C Runs(Dor , SR )

Proof sketch: We use the fact that moves are either local, and are then the same
in a system or its projection, or distant services calls/returns. Distant calls have the
same effects in a system and its projection, and distant returns append values that
are compatible with the return pattern of the interface. |

We will see in section M]that this result is useful to show that some local safety
properties of parts of a system are preserved by restriction. Note that when R
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provides services to the rest of the system, then the runs of the restriction of a
schema to R do not take into account the distant calls from peers in P\ R to
services owned by peers in R that may occur when considering the whole schema.
Hence, in this situation, theorem [§ does not hold in general.

3.3.4 Refinement of services and instances

A theory of interfaces should offer comprehensive support for the modular devel-
opment of systems. One way of achieving this is by offering a notion of refinement
ensuring substitutability : it should always be possible to replace an interface by a
refinement of it and still preserve system properties. As we shall see, our DAXML
framework provides interface theories for both services and schemas.

Definition 21 (Service refinement) Let S = (P, Ping, Pext, £,7) be a DAXML
schema. Say that 8" = (P, @, Poyi, L£',7') is a service refinement of S (via external
service I € @y ), written 8" <; S, if there exists f € Fing such that :
— f is an implementation of I ;
— ®! . is obtained from Pin by :
1. adding service f, and
2. renaming, in each service of @iy, every occurrence of \I by !f ;

= Pl = Pext \ {I} and ~' is the restriction of v to ®L,.

Say that a system S’ is a refinement of a system S and write S" < S if and only if
there ezists a sequence of service refinements S' <y, Sk...S1 <y, S.

Intuitively, service refinement is performed by replacing an interface by an imple-
mentation for it. Note that from the definition of refinement, < is a partial order (we
allow empty sequences of refinements and hence S < §). The notion of refinement
also holds for schema instances.

Definition 22 (instance refinement) Let D = (F, eval,l) be an instance over
schema S. Say that D' is a refinement of D via external service I € @y (written
D' <y D) iff D' is obtained from D by relabeling every node labeled by I by !f,
nodes labeled by 71 by 7 f,and nodes labeled by I by f, where f € @i is the name of
a service that implements I and is located at the same peer as I. D’ is a refinement
of D if there is a sequence of service refinements D' <y, Dy <y,_, --- <y, D.

Note that refinement replaces interface moves by function moves. Hence, moves are
not necessarily preserved by refinement (up to the renaming of instances).

Theorem 9 Let Dy and Dy be two instances over Sy and Sy such that Di < Dy
and S; < Sy. Then, for every move Dy = DY, there exists two document instances
DY and Dy such that Dy - D{, DY < D{, and DY C D]

Proof: Assume that D; <; Dy. Then, the move from D; to D] can be either
a call or a return of a service or interface that is not the refinement of I. In this
case, this move is also allowed from Dg, D] is the refinement of the document Dy
obtained after the move. Now, if the move from D; to D] is a call to a service f
that refines I, then D] contains a tree labeled with root labeled by as (a workspace
for an occurrence of a call to f) that is created by the call query of the service. The
corresponding interface move allowed from Dy simply relabels a node with label !T
with a label 77, without creating new trees. Hence, if we call D} the refinement of T
in Dj), we have that DY C D}. Note that the considered move can not be the return
of a refined service, as Dy and D; must be isomorphic forests up to renaming of
services, and returning from a refined service supposes the existence of a tree created
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after a call to f. The reasoning extends to refinement chains of arbitrary length, as
illustrated on Figure O

D() >[1 Dl >I2 D2
T T T

Dy >,D{C D >,DyC D
F1G. 20 — Refinements and runs

Theorem [0 shows the relations between refinement and moves. For a given in-
stance Do and its refinement D, one could expect a move of the refined system
to be a refinement of a move from Dy. However, this is not the case, as instances
that appear in moves from D; subsume the refinement of moves starting from Dj.
The difference between D{ and Dj) sits in the creation of workspaces to evaluate
services. This is why runs of refined instances are not refinements of runs of less
refined schemas. Note also that refinement does not preserve liveness, as an imple-
mentation of an interface may never return a value (a call to a service may remain
deadlocked, waiting for the satisfaction of its return guard) while interfaces always
do. Yet, runs of a schema and runs of its refinements are connected by these sub-
sumption and refinement relation of their reachable instances, and may preserve
some safety properties that do not address the contents of the workspaces.

3.4 DAXML versus classical SOA

In this section we provide a summary of comparison between DAXML and SOA
principles. Let us compare the services descriptions and composition mechanisms in
DAXML with the usual Service Oriented Architectures.

In SOAs, offered services are localized and and made public through offered
interfaces. Needed services, i.e., the services needed by a peer to provide another
service, are specified using needed interfaces, usually referred to as contracts. Ser-
vice buses are middlewares playing the role of an adapter between a service and
its clients. In addition to this, SOAs can be equipped with a service repository ref-
erencing the available services, their functionalities, and the way to interact with
them.

DAXML systems comprise functions that are the counterpart to SOA’s services.
We did not distinguish services from operations, and considered a single interac-
tion between a client and a service, under the form of an external call. However,
guards can be used to define control flows and ensure coordination among exter-
nal calls. The interfaces owned by a peer are the DAXML counterpart to SOA’s
contracts. Offered interfaces are not considered in DAXML. It shall, however, be
clear that the interface for a service (f, G% , Q% , {(G}[k], Q}[k]) }rek,) is the pair
(Body",{Head"[k]}rek, ), where Body® is the Body part of the call query in service
f and {Head"[k]}recr, is the list of all possible Head parts for each return query.
Localization of a service is ensured by the pairing map. We did not explicitely define
DAXML repositories, but they can be easily defined as the list of services interfaces,
with their localizations.

The notion of compatibility of a service with a contract is described in DAXML
with the notion of implementation. It might be argued that this implementation
relation mainly consists in typing separately inputs and outputs to/from a service
— whereas one would expect to see a contract as a pair (In, f(In)), relating input
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parameters to their possible outputs. We will show in section @l that our design
choices for definition of the implementation relation were essential in keeping
implementation effective. Still, section @l explains how to enhance interfaces with
constraints relating the variables of the call and return queries. These additional
constraints, which are not part of implementation relation, are then handled as side
entities when performing analysis.

The semantics of implementation and of external call were also designed to take
distribution into account. An external call consists in passing a set of parameters
to a peer p owning the required service f. Peer p can then use these parameters in
combination with data from its own to execute f locally. In particular, the decision
to execute f remains local to p and subject to satisfaction of guard G. Clearly, a
consequence of this design choice is that external and internal calls are not similar
from the service provider’s point of view (note however that this is not a requirement
of SOA). But our way is the only way to cope with distribution and at the same
time access remote data from a distant database.

Finally, note that the composition of schemas provided in section B.31lis slightly
more general than a simple plugin of compatible services. A schema can be seen as
a module and composition is not necessarily a parallel composition of schemas over
independent peers. Our more flexible notion adds expressiveness at no cost, which
proved useful in the Dell example of section Bl We will see in the sequel that the
converse operation (i.e. restriction) operation allows compositional reasoning on
DAXML schemas.

4 Analysis of DAXML systems

In this section we study some properties of DAXML systems with respect to
reachability problems or model checking. Unsurprisingly, many negative results hold,
except for the case of bounded DAXML systems. Most of the considered properties
that we would like to address can be defined as a model checking problem for the
Tree-LTL logic proposed by [3] over runs of the system, which is an undecidable
problem in the general case.

4.1 Reachability

Reachability is often a key problem for several applications such as verification
of safety properties, security,... For an instance Dy of a schema S, we will say that a
pattern P is reachable from Dy if and only if there exists a run p = Dy, ..., Dy, ...
in Runs(Dy,S) such that Dy = P. Such reachability problem is frequently met,
when for instance a designer wants to ensure that a bad property, depicted as a
patter Py,q can not occur. When this simple reachability problem is untractable,
then more elaborated questions are usually hopeless. In this section we show that
reachability is an undecidable problem for DAXML.

Theorem 10 ([3]) Let Dy be an instance of a DAXML schema S, and let P be a
tree pattern. Then, it is undecidable whether pattern P is reachable by some run of
S starting from Dy.

Proof: A DAXML schema can simulate a two counter machine. The encoding of
states is as follows : there is a service g; for each state of the machine, a service ¢; for
each counter. Being in state ¢; correspond to having a running instance of ¢;, and
the number of running instances of counter ¢; encode the value of the correspond-
ing counter. Incrementing and decrementing a counter correspond respectively in
launching a new occurrence of ¢; or returning from the last called instance of c¢;.
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The allowed transitions of the machine are then encoded using services guards and
intermediate steps to chose the next state to which the machine has to move, per-
form the needed actions, and set the machine to the desired new state. We will not
detail further this encoding, which can be found in [3]. However, it is clear that
within this setting, a pattern can encode a desired configuration of the two-counter
machine, and hence, reachability of a given pattern is an undecidable problem. O

Note that the two counter machine encoding described above needs only one
peer, and does not rely at all on external functions. This encoding is possible as soon
as negative patterns in guards and recursive calls between functions are allowed.

Undecidability of reachability has several consequences. First, it is in general
undecidable whether a service call terminates, as the return from a call is guarded
by a tree pattern, which eventual satisfiability is undecidable. Note also that as it
is undecidable whether some pattern is reachable from a given configuration, it is
also impossible to compute the image of a set of inputs by a function, as already
mentioned in the discussion of section 3.2l This justifies our choice for the incomplete
(but decidable) implementation relation.

4.2 SOA modalities

A frequent question addressed in SOA [23| [16], is the modality of a composi-
tion. When a component provides a service to another, it makes sense to require
that this service eventually returns something (and even in some cases within a
bounded amount of time). So far, our implementation definition only specifies that
the returned values must satisfy properties described by the return patterns of the
interface. However, nothing guarantees that an implementation always returns a
value. To complete the description provided by the input and output types that
have been introduced in the definition of interfaces [I2] one can enhance interfaces
with modalities “may”or “must”. Attaching a must modality to an interface I means
that a valid implementation f for I must have one of its return guards become even-
tually true after a call. Giving a may modality does not add anything new to our
previous definition of implementation (a service may return a forest or not). Note
that our may/must modalities slightly differ from the usual modalities proposed for
instance in [23| [16], where obligation are attached to transitions of state machines.
Here, the obligation imposed by a must modality is not attached to a given move
of a DAXML system, but rather forces the occurrence of a return move eventually
in the future.

Corollary 2 Let (I,PY, {PIR[k]}keKI) be an interface, and let f |= I. Then it is
undecidable whether f satisfies a must modality.

Proof sketch: Satisfaction of a must modality can be brought back to a reachability
problem (reaching an instance where the return guard of f is satisfied). O

4.3 Beyond static interfaces

The definition of implementation in definition [I2]is only a “static implementa-
tion”, that allows the connection of a service and an interface if every input described
in the interface is a valid input of the service and if every output produced by the
service is conform to one of the return patterns described in the interface. The in-
put and output patterns of the interface are defined over disjoint sets of variables,
nothing forces an implementing service to return a result, and furthermore, when a
result is returned, the returned values are not constrained by the parameters of the
call. However, in many functions of service description, relating parameters of a call
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and values of a return is essential. Imagine, for instance, an application providing
best, prices to customers, and a service that that takes as input a product name
and a maximal price that a customer wishes to pay for it, an returns several offers
(i.e pairs (product,price) from a list of product descriptions stored in a database.
Clearly, the prices for all proposed items should be lower than the desired input
price. However, static interfaces can not force such relation between input and out-
puts. Now, if we add constraints over variables that appear in the input pattern and
in the output pattern of the interface, we can define constraints such as equality
of values. This can be seen as defining interfaces which input and output sets of
variables may have common elements. This forces us to refine both the notions of
interface and implementation to take into account that the expected returned values
depend on the values of inputs. We will call this situation dynamic implementation.

Definition 23 (dynamic interface) A dynamic interface is a pair (I, DC), where
(1,PY, {PIR[k]}kGKI) is an interface, and DC is a set of additional constraints over
XF U AR

A function f implements a dynamic interface (we will use the term dynamic
implementation and write f |= (I, DC)) iff f |E I and for every pair of forests
(In,Out) such that Out € f(In) :

- In ': P?7

— Out |= [P}[K]] for some k € K

— there exists two matchings [y, : P? — In and pou : PR[k] — Out such

that vy, Uv,,,, satisfies DC.

Note that this definition requires the existence of only one single pair of match-
ings satisfying DC. DC can be seen as an additional set of constraints that restrict
the way variable leaves of P§ (respectively PR[k] are mapped onto leaves of In
(respectively O). Hence, matching a dynamic interface means that for every pair
input/output provided by f, there is a correct interpretation of variables satisfying
the input and output patterns of the interface and also the dynamic constraint.

Corollary 3 Let (I,DC) be a dynamic interface, where (I, P¢, {PIR[k]}keKI)’ is
the static part of the interface, let (f, G%, Qf, {(G; [k], Q’}[k])}ker) be a service,
and S be a DAXML schema. Then, it is undecidable whether f |= (I,DC) in
schema S.

Proof sketch: dynamic implementation can be brought back to a reachability
problem. |

Note that our definition of dynamic implementability does not say whether im-
plementability should hold for systems with a given initial schema instance, or for
all initial instances of a given schema, or for any schema (that is with arbitrary
services, peers,etc.). The undecidability result holds for these three situations.

In the rest of the paper, we will then consider static implementation of interfaces
over disjoint sets of variables (over finite domains), and keep aside the verification
of side conditions involving variables from the input and output patterns.

4.4 Tree-LTL logic

Reachability of a pattern is sometimes not sufficient to express the desired prop-
erties of a system, and one has to rely on temporal properties, that depict properties
of successive configurations of the system. In this section, we will use the tree LTL
logic, as defined in [3], The role of this section is not to study extensively the prop-
erties of DAXMLwith respect to tree LTL formulae, but rather to show some limits
of verification, and how modularity can help in verification tasks.
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Following [3], a Tree-LTL formula is defined by the following grammar :
¢ = Qpattern | oA ¢ | ¢ | pU S| O ¢,

where Qpattern is a Qpattern, i.e., a pattern P in which variables belonging to
some subset X are declared as free and universally quantified over the formula,
and A, =, U, X have the usual meaning of LTL. Tree-LTL formulae are then used to
form sentences of the form ¢ = VX¢(X), where ¢ is a Tree-LTL formula, and X
denotes the set of free variables of ¢. Tree-LTL sentences define properties of runs of
DAXML systems. Properties of runs are defined as follows : let p = (Do, D1, Da,...)
be a run of a DAXML system. Then,

— p E P, where P is a pattern without free variables iff Dy = P
p E VX ¢(X) iff for every valuation h of X, p = ¢(h(X))

—pE-GiffpE o

~pPEN AN p= ¢ and p | é2

~pEQoifp'=(D1,...) E¢

-pEOUY IMETi,(D;,...) E¢ and Vj <i,(Dj,...) = ¢

As usual, properties of runs extends to complete systems with an universal in-
terpretation. We will say that an instance D over a DAXML schema S satisfies a
sentence ), written

(D,S) Ev

if and only of all runs of § starting from D satisfy . In the sequel, we shall call
system a pair (D,S) consisting of a DAXML schema and an instance over it.

Existing techniques from [3] allows model checking closed systems where all
external services used are effectively implemented — or specified only through data
constraints, that are composed of a boolean combination of patterns and of a DTD.
A new possibility offered by our framework is to consider open systems, that is to
use interfaces for services with no implementation when checking for the validity of
Tree-LTL sentences. Even if implementations are available, we may still be interested
in representing a service by its interface when checking for the validity of Tree-LTL
sentences, not by its implementation. The reason is that interfaces are generally
more abstract and thus simpler to analyze.

Another interesting question is local model checking. Let (D, S) be a system, and
R be a set of peers in P. We can model-check a property locally to R, by considering
properties of runs projected on peers in R. We will denote this local model checking
problem by

(D,S) Er ¢

Formally, (D,S) Ex 9 holds if there exists a run p of S starting from D, such
that Il (p) as defined in definition [[9] satisfies .

Abiteboul et al. [3] have shown that without restriction to the considered kind
of systems, model-checking of Tree-LTL formula is an undecidable problem for
guarded AXML. Their results immediately apply to DAXML systems. We will show
in this section that, under suitable restrictions, Tree-LTL formulae can, however, be
checked.

Theorem 11 [3] Let (D,S) be a DAXML system, where S = (P, ®int, Pext, L,7)-
Then, the following problems are undecidable :

1. for a given Tree-LTL formula ¢, determine whether (D,S) = ¢

2. for a given Tree-LTL formula ¢ and a set of peers R C P, determine whether
SEr ¢
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Proof: These results come directly from [3], and use a reduction from the impli-
cation problem for functional and inclusion dependencies [7]. Undecidability of tree
LTL holds even for patterns without variables, and for systems composed of a single
peer (which immediately brings the undecidability for local model checking). O

Note that the second undecidability result also holds even when R is composed
of a single peer. A possibility to overcome all the undecidability results is to restrict
the kind of DAXML systems considered, as proposed in [3]. We now consider AXML
trees of bounded depth, and set as a new semantics rule that a result is appended
to a calling tree if and only if the obtained tree depth does not exceed a constant d
(this can be enforced by a very simple DTD). As trees are supposed reduced, this
immediately means that the number of bounded trees is limited. This also reduces
the different shapes that a tree can have. However, an infinite number of workspaces
can still be created by recursive function calls, and an infinite number of different
documents can also be produced due to infinity of variable domains.

Definition 24 (Bounded DAXML) Let S = (F,P,l, Pint, Pext, L,7y) be a
DAXML  system  (under  the  bounded  depth  restriction). Let
(f, G$, Q% {(G; [k], Q;[k])}ker) be one of its internal functions. Let us denote

by fun(f) the functions f' such that there exists k € Ky, Q'[k] = (B, Hy) and Hy
contains a node labelled by 'f. The call graph of S is a directed graph whose nodes
are function names, and whose edges are pairs of function names (f, f') such that
f' € fun(f). S is bounded if and only if its call graph is acyclic, and the domain
of all its variables is finite.

Bounded DAXML systems prevent recursion in function calls, hence the number
of calls that can be performed from a given document, and consequently the number
of workspaces is necessarily bounded.

Theorem 12 Local and global truth of Tree-LTL formule, must modalities of ser-
vices and dynamic implementation are decidable for bounded systems under the
bounded depth restriction.

Proof sketch: One can easily show that there is only a finite number of documents
in a bounded systems under the bounded depth restriction d

Note that considering variables over finite domains only is quite restrictive. The
results in [3] shows that for a class of recursion free AXML -without restriction
on the variables domains- model checking of tree LTL is decidable. These results
might be transferable to our setting. DAXML systems are not always bounded, but
by restricting a system to an adequate set of peers of interest, one may bring the
model checking problem to a finite or more decidable setting. Now, the question
that immediately arises is the relation between the following questions :

) (D) v
i) (D,S) Fr ¢
i) (D, Sy ) b= v
First of all, we can note that as projection results in smaller runs, there is no
implication between ) and i) ? For instance, for formulae containing the next (O))
temporal operator, we can have (D,S) E QP but (D,S) [Er O P, or conversely,
even for a single simple tree pattern P without variables. Similarly, (D ,Sz )
(O P means that in all local runs staring from D, P holds in the successor of D. This
property is not necessarily preserved by runs of the global system, which may allow

more successors to D than local successors (these successors do not need to satisfy
P). Conversely, (D,S) |= O P does not imply that (Djz,Sjz) = O P, as the only
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mappings for P might map P onto a workspace that appear in all runs of (D,S)
but is ignored in local runs of (D|z , S|z ). Similar reasoning holds for comparison
of ii) and ii7) for formulae containing (), as local runs are a superset of projected
runs when R provides no services to P \ R, and as projections of runs on a set of
processes R C P might also contain workspaces created to handling distant calls
to services owned by peers in R. Similar reasoning holds in general for formulae of
the form ¢; U ¢pc. Hence, we can deduce that projection of runs, restriction, and
composition of DAXML schemas an instance do not preserve tree LTL formulae in
general.

Note however that if in general Djz |= =P does not imply that D = P,
for a simple tree pattern P, Dz = P indeed implies that D = P. This leaves
the hope that several simple tree LTL properties can be preserved by local runs or
projections. In the sequel, we study some useful safety properties of the form “future
P” (FP = (truelUd P), “never P”, or in the usual terminology O —-P = —(trueU P)
and “always P”, O P = = (trueld =P).

The following (obvious) lemma shows that projections of runs on a set of peers R
collect all changes to documents that are local to R, and that these documents, and
hence the patterns that hold on these documents do not evolve during the moves
that are erased by the projection.

Lemma 1 Let p = Dgy,Dy,...Dy,... be a run of a DAXML schema S starting
from Do, P be a tree pattern, and let Dy Exr P. Let llzr(p) = Dojr,Diir ;- - - -
Then for everyi € 0.k —1, D; = P.

Proof: All moves from Dy to Dy_; are local evolutions (internal /external calls
and returns) of peers in P \ R, as Dy,...Dp_1 do not appear in Iz (p). Hence the
matching relation that send every P; onto trees in Do also exist in Dy, in every
Dijr = Do, and in every D; forie 1.k —1. O

Theorem 13 Let Do be a DAXML instance, S be a DAXML schema over a set P
of peers, and R C P. Then, the following properties hold :

i) (Do, S) |:R< A P,») U ( A P; | implies that

i€l .k JEL. K

(Do, S) (ie/l\“kpi> “ (je{\k'Pj>

ii) if R provides no service to P \ R, then

(DO\R;S\’R) |:’R (I /\ ﬁPi implies that (Do,S) |:’R (I /\ ﬁPi
i€l..k i€l..k

Proof: Property i) is a direct consequence of lemma [I as projected runs are
sequences of the form Doz, Di1|r , Di2|r ,- - -, obtained by projections of runs of
the form Do, D1,...Dy,,...D;,,.... Every tree pattern (and hence any conjunction)
holding from D;, = to D;, = also holds in any run obtained by inverse projection
from D;, to Dy .

Property ii) is a consequence of theorem [§: if for every local run of Doz , Sz ,
patterns Py, ... Py never hold, then they do not hold in Iz (Runs(Dy,S), which is
a subset of Runs(Do|r , Sz ) provided that R provides no services to P\'R. O

Note that theorem does not mean that the tree LTL properties that are

preserved by projection or restriction on a subset of peers are decidable. For instance,
(Dojr »Sir ) Er 0P can be brought back to the reachability of pattern P.
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These preliminary results on local model checking of tree LTL show that there
are situations where verification of formulae can be brought back to a finite setting
or to smaller sets of runs. Note that projections and restrictions are not automatic
solutions, and that interface moves that are used in restrictions may impose explor-
ing more runs than in an implementation. However, we believe that these results are
encouraging, and that systematic study of transformation of LTL model-checking
into local (or even modular) LTL model checking could bring ad-hoc solutions to
reduce the complexity of the problem.
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5 A DAXML example : the Dell supply chain

The Dell supply chain is a very interesting example as it combines aspects of
Web stored data management — the Dell Web portal — and complex distributed
supplier chain involving logistics. The underlying workflow is rich and can be seen
as a choreography [I8] since there is no central orchestrator. Data are important
and complex by involving inventory management. Therefore, locality and abstrac-
tion/refinement are key tools in facilitating system analysis. Our study relies on
the well documented description [15] and our description below consists of almost
verbatim quotes from the above reference.

Verbatim description from [I5] : Dell’s supply chain works as follows. After a
customer places an order, either by phone or through the Internet on www.dell.com,
Dell processes the order through financial evaluation (credit checking) and config-
uration evaluations (checking the feasibility of a specific technical configuration),
which takes two to three days, after which it sends the order to one of its man-
ufacturing plants in Austin, Texas. These plants can build, test, and package the
product in about eight hours. The general rule for production is first in, first out,
and Dell typically plans to ship all orders no later than five days after receipt.

In most cases, Dell has significantly less time to respond to customers than it
takes to transport components from its suppliers to its assembly plants. To com-
pensate for long lead times and buffer against demand variability, Dell requires its
suppliers to keep inventory on hand in the Austin revolvers (for “revolving” inven-
tory). Revolvers or supplier logistics centers (SLCs) are small warehouses located
within a few miles of Dell’s assembly plants. Each of the revolvers is shared by
several suppliers who pay rents for using their revolver.

Dell does not own the inventory in its revolvers; this inventory is owned by
suppliers and charged to Dell indirectly through component pricing. The cost of
maintaining inventory in the supply chain is, however, eventually included in the
final prices of the computers. Therefore, any reduction in inventory benefits Dell’s
customers directly by reducing product prices. Low inventories also lead to higher
product quality, because Dell detects any quality problems more quickly than it
would with high inventories.

Dell has a special vendor-managed-inventory (VMI) arrangement with its sup-
pliers : suppliers decide how much inventory to order and when to order while Dell
sets target inventory levels and records suppliers’ deviations from the targets. Dell
heuristically chose an inventory target of 10 days supply, and it uses a quarterly
supplier scorecard to evaluate how well each supplier does in maintaining this target
inventory in the revolver. Dell withdraws inventory from the revolvers as needed,
on average every two hours. If the commodity is multisourced (that is, parts from
different suppliers are completely interchangeable), Dell can withdraw (pull) those
components from any subset of the suppliers. Dell often withdraws components
from one supplier for a few days before switching to another. Suppliers decide when
to send their goods to their revolvers. In practice, most suppliers deliver to their
revolvers on average three times a week.

To help suppliers make good ordering decisions, Dell shares its forecasts with
them once per month. These forecasts are generated by Dell’s line of business (LOB)
marketing department. In addition to product-specific trends, they obviously reflect
the seasonality in sales. After the center of competence (COC) checks a forecast for
predicted availability of components, the forecast goes to Dell’s commodity teams
and becomes the basis for a six-month rolling forecast that they update weekly. The
commodity teams make generic forecasts for systems and components and break
those forecasts down to a level of the specific parts that need to be ordered. If the
forecast is not feasible, the LOB marketing department revises it, although such
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revisions are very rare. The buyer-planner for each commodity receives an updated
rolling forecast weekly ; suppliers receive forecasts monthly.

5.1 DAXML modeling of Dell supply chain : architecture and
schemas

The overall architecture of the Dell supply chain is shown on Figure 21l As the
“Dell supervisor” involves monitoring (a topic in itself) and a lot of algorithmic
inventory management, we leave aside this part of the application.

_—

monitoring Dell
revolver [~~~ 7 """~ | supervisor

setpoint —p——T—

tuning

order e !
(business ¥ reconfiguration
artifact)
Dell
% T | webstore bank

F1a. 21 — Architecture of the example. Multiple boxes indicate that there exist
several instances of the considered peer. Each rectangle symbolizes an AXML peer.
The customer and adjacent arrows are not within the scope of our model, so we
only provide the expectations of the customer in the form of an interface.

The Dell supply chain involves several services, which are summarized in Table[]l
Observe that the last three services need access to the revolver.

The distributed and decentralized nature of DSC is reflected through its decom-
position into several schemas, in the sense of definition [I5l Table 2llists the schemas
with their corresponding services. Corresponding peers are indicated in the caption.

Each column of table 2 specifies a schema. Its internal and external services are
indicated by an int or an ext, respectively. Each schema has a single peer with same
name, with the exception of “plant” and “supplier”, which share the peer “revolver”.
Note that we did not make “revolver” a schema — it is, however, a peer. Reason
for this is that the revolvers are only passive repositories of items. They exercise
no action and offer no service. Access to this repository is given to the two peers
“plant” and “supplier”. These two peers can both observe and modify the stock at
revolver. The revolvers thus serve as kind of “passive shared memory” for these two
peers, containing the shared part of their respective documents.

The two services “Deliver” and “AssembleOrder” are owned by the plant (where
they are labeled int) and used by WebStore via their interfaces (with label ext).
Accordingly, these two services must be publicized in a registry. Thanks to the fully
decentralized execution protocol described in definition [l we do not need a global
registry. Instead, the needed (local) part of the registry is passed as a parameter to
the WebStore in the form of the services interfaces when required by the distributed
execution.

Also, by specifying as interfaces the services of the WebStore that access the
revolver, we will be able to abstract away the interaction between the suppliers and
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Service Description
DellOrder Returns an assembled computer to a customer in
conformance with the order form
GiveOrderld Gives a new identifier to a computer order form
FindOffer Checks in the DSC system whether there is a special
offer (reduced price) for a given model of computer
GivePrice Returns the actual price of a computer — either cat-
alog price or reduced price in case of offer
CheckCredit Checks whether a customer has sufficient credit. This
service is provided by the bank (which is not part of
the DSC, and hence only described as an external
service)
RejectOrder Rejects an order if it can not be processed
ProcessOrder Processes an order, that is ochestrate the collection
of items, their assembling, and the delivery of the
assembled computer.
Deliver Delivers an assembled computer
AssembleOrder Assembles the items for a computer
Getltem Gets a given item from the revolver
DecrementInventory Removes one item from the revolver
Refuellnventory Adds a certain number of items to the revolver
TAB. 1 — Dell Supply Chain : informal description of the services
schema customer WebStore plant supplier
service
DellOrder ext int
GiveOrderld int
FindOffer int
GivePrice int
CheckCredit ext
RejectOrder int
ProcessOrder int
Deliver ext int
AssembleOrder ext int
Getltem int
DecrementInventory int
Refuellnventory int

TAB. 2 — The Dell system and its schemas. Schemas Customer and Webstore possess
a unique peer with same name. On the other hand, schemas Plant and Supplier
possess the peer with same respective name, together with a shared peer Revolver.
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the rest of the system. A consequence of this will be that this abstraction will not
involve inventory levels (which monitoring is the duty of the suppliers), hence its
analysis will not require reasoning about integers. By abstracting some services as
interfaces we can thus simplify the task of proving properties — provided that the
considered abstraction is precise enough to allow proving the desired property.

5.2 DAXML description of DellOrder

In this description, we will actually use dynamic interfaces following defini-
tion 23] i.e., interfaces enhanced with additional constraints, also referred to in the
sequel as side conditions. Side conditions act as assertions when performing program
analysis and, therefore, must be discharged at some point.

/Main
Order Catalog
I
DellOrder Customer BankData Computer Computer
| I /7 \
Name Card# Name Name Price
[

Benveniste 1234 E6400 E6400 800€

F1G. 22 — Initial document. The initial document comprises one order that has been
posted to the WebStore. The ordered computer is found in the catalog, together
with its price.

An example of initial document is given in figure22 Then, figures23H38 describe
all internal and external services.

((Ipenorders I, I™); [XG = Xo] A [X < Xprice])

Main \
Order Catalog {Orderld} {ActualComputer} delivered
o | O /N
— self Customer BankData Computer Computer - Y Name Price
I VEERN
Name Card# Name Name Price X¢ X
I | | |
XN X# XC XC XPrice

F1G. 23 — DellOrder, external view from customer. According to table 2] service
“DellOrder” is an external service of the customer and is therefore specified as an
interface consisting of two patterns. The meaning of this external service is that
when a customer sends a product reference, a catalog price, and his credit card
information to the webstore, she expects the delivery of the ordered product at a
price that can be lower than the catalog’s price if special offers apply to this product,
but not greater. Together with its side condition [X{, = X¢] A [X < Xprice, this
interface specifies that, when calling DellOrder service, the customer should receive
the computer she ordered, at a price not higher than found in the catalog.
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(DellOrder, true, Q% {(G1,Q1), (G2, Q%) })

Main — {Order}
Order Catalog Customer BankData Computer !GiveOrderId
C | | | / \ !GivePrice
Q —  self Customer BankData Computer Computer Name Card# Name Price !CheckCredit
| | / \ | | [ [ 'RejectOrder
Name Card# Name Name Price Xx Xy X¢  Xprice !ProcessOrder
[ , , , !Deliver
X~ Xy Xc Xc  Xprice
GDellOrder
= | {Orderld} {ActualComputer} delivered
ADellOrder R OrderIld ActualComputer delivered
G = ) Ql = | / \ — Y Name Price
delivered Y Name Price
X, X
x, X
a]})llO{ler
__ GDellOrder R _ 7 N\ {OrderId} rejected
Gy = I v @3 = Orderld rejected T |
rejected | Y
Y

Fi1G. 24 — DellOrder, implementation by Webstore. Let us detail how the Webstore
implements the DellOrder. The call guard for the DellOrder service is simply true.
Note that as this service is only called from a distant site, the value of the guard does
not really matter. The call query of the DellOrder copies all the needed parameters
and creates instances of service calls that have to be completed before returning an
order (this is a flat forest whose nodes are written on top of each other, for better
readability). These service calls define the needed steps to build and ship a product.
The returned value depends on whether the order was accepted or rejected. Here,
the implementation of the DellOrder service cosists of a set of two guarded return
queries, namely (G, QF) and (G2, QF). Query QF returns a delivery certificate,
but can only be executed when the oder was effectively delivered, which is descibed
by guard G. Query QI returns a rejected order when guard G holds, that is when
the order was tagged as rejected by service RejectOrder due to negative answer from
the bank. Note that these two guards are not specified as being mutually exclusive.
Nevertheless, they never hold together at runtime.

The side condition [X < Xpyice], which is part of the interface of DellOrder (see
figure23)), is not discharged by the implementation of DellOrder. It will be, however,
discharged by the implementation of GivePrice (see figure 26]).

Observe that this is not an implementation of the interface specified in figure
Reason is that the customer was too optimistic in not considering possible rejection
of her payment by the bank. The interface of figure 23] should in fact be corrected
accordingly.
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aDellOrder
Onter
(GiveOrderId, GC) Qca {(truea QR)}) ’ GC = Custom(gmleata Computer
Name Card# Nalme
O

aci Orderld
QY = true — Orderld, QF = G“’e(ljrdeﬂd —, for v 4
Orderld Y

Fia. 25 — GiveOrderld (internal service of Webstore). This service is in charge of
providing a new identity to an incoming order. The guard of the service G¢ checks
that the parameters of the order have been correctly filled. The body of the service
does not need to identify values in the call, so since guard is true, it can produce
immediately a new tag “OrderId”. Then, the service has to return a new value
that was never used as Orderld. Note that the returned value is represented by a
free variable Y, constrained by the fact that Y is a new unused value. Note that
GiveOrderld can only be called after a call to DellOrder.

(GivePrice, true, Q°, {(Gf, Qf), (Gfa Q?)})

GDellOrder
7 N\
Computer  sel,
QY = / — IFindOffer
/7 \
Name Price
Xc Xp
QAGivePrice
Il {ActualComputer}
R _ AGivePrice R _ Computer /7 \
G1 - Il ’ T = / \ Name Price
Offer Name Price
Xc Xp
Xc Xp
AGivePrice
Il {ActualComputer}
R _ QAGivePrice R _ Computer / \
G2 - Il ’ 2 = / \ Name Price
Offer Name Offer
| | Xe  Xo
Xo  Xo

F1G. 26 — GivePrice (internal service of Webstore). The role of this service is to find
the price of a product in the catalog, and return it. We assume that there is at most
one single offer for each product — this can be enforced via a DTD. Two cases can
occur, specified by the two guards : either there is an offer on the desired computer,
or there is not. This calls for executing service FindOffer before returning a price.
We take as an assertion that an offer is always cheaper than the regular price of the
catalog : Xo<Xp.
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(FindOffer, true, Q°, {(true, QR)})

/Main\
Catalog Order GFindOffer
o [ | {Offer} R _ | {Offer}
Q - Computer Computer 7 | ’ Q - Offer ; |
7/ \ / N\ Xo | Xo
Name Offer Name self Xo

Xc  Xo Xc

F1G. 27 — FindOffer (internal service of Webstore). The role of this service is to find
whether an offer exists in the catalog for the requested product. Note that, since a
constructor is used in the call and return queries, this service can return an empty
forest, indicating that there is no offer on the considered product.

R
(IcheckCreait, I, )

GDellOrder
/Order
o / R _{Clearance}
I~ = Customer BankData Computer self ) It = | ) Ce {OkanOk}

| [ c

Name Card# Price
|

Xn X Xprice

F1G. 28 — CheckCredit (external view from Webstore). The webstore uses an external
service provided by the bank to verify that the data provided by the customer are
correct, and that the bank allows for the payment of the actual price of the product.
Note that the presence of tag ActualComputer in the interface definition means in
paticular that an external call to CheckCredit can only be performed after the price
of the computer has been found by GivePrice. Note also that the shape of I® forces
the bank that implements CheckCredit to accept the data the way the webstore
structures them. C' is a variable taking values in the set {ok, nok}.

(RejectOrder, G, Q% {(true, Q™)})

aD/ellOr\der
¢ = ADellOder [CR— 7 N\ {Clearance}
¢ N 7 N\ ’ Q - self Clearance ?
self Clearance | &
C
QaDellOrder
R _ I _
Q - Clearance —>  rejected
nok

Fi1a. 29 - RejectOrder (internal service of Webstore). This service is in charge of
rejecting orders for which the bank did not give clearance. Note that application
of this service only results is the appending of tag rejected to orders that were not
validated by the bank.
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(ProcessOrder, G%,Q°, {(GR, QR)})

GDellOrder
aDellOrder /7 \ {Computer}
c / '\ ¢ _ self Computer
G - Clearance self ’ QY = | 7 Name !AssembleOrder
Name
Ok | Xa
Xc
GProcessOrder
Gt = ComLuter , QF = true —> processed

AssembleOrder assembled

F1G. 30 — ProcessOrder (internal service of Webstore). This internal service consists
of service that creates an instance of AssembleOrder, and waits for the appearance
of a tag “assembled” in the workspace before returning a new tag “processed”. This
service cannot be executed before getting clearance from the bank, hence, it must
be executed after the execution of CheckCredit.

Name

(IAssorder,IC,[R) JIC = ,I% = assembled

Xc

Fia. 31 — AssembleOrder (external view from Webstore.) Service AssembleOrder
is performed by the plant, and seen from the webstore as an interface shown in this
figure. — In principle, assembling a computer requires getting all its parts, and then
assembling them. To simplify the presentation of the example, we have decided that
assembling a computer consists in getting the whole computer at once. The more
realistic description would not have illustrated any new feature of our modeling.
— By looking at this interface, it may seem at a first glance that assembling can
be performed as soon as an order is submitted. This is wrong, however, since an
occurrence of service AssembleOrder is only created by calling service ProcessOrder,
i.e., posterior to obtaining clearance from the bank. Internal service AssembleOrder
returns a tag assembled when the computer has been assembled. This return can
only be performed when the needed parts building the computer have been obtained
through service GetItem.

(AssOrder, true, QY {(GE, QR)})

GProcessOrder
{Computer} G AssembleOrder
Computer
QC = / \ > Name item N GR = Computer
Name self | / \
| Xc  Hgetitem Xident Getltem got it
Xc

QF = true—sassembled

Fia. 32 - AssembleOrder (implementation by Plant). Calling AssembleOrder creates
a new occurrence of Getltem with unique identifier Xiqeng, to be later used in the
management of the stock to ensure that an item is reserved only once. Observe
that Getltem is called through its interface. Xtgeny must be a fresh identifier. The
implementation of “AssembleOrder” involves the additional external service GetItem
for which we provide an implementation at peer Plant in figure B4l
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GDellOrder
/

C 7R e self Computer assembled R .
(Ipetiv, 19, 1%, I¢ = | y Inery = delivered

Name

Xc

(Deliv,GC,QC,{true,QR}) . GO = aD/GllO{der

self assembled
Q€ = true —» true , QF = true —» delivered

F1a. 33 — Deliver (external view from Webstore, top, and implementation by Plant,
bottom). Deliver is an external service for the Webstore (specified as an interface),
and is implemented at peer Plant. Both interface (top) and corresponding imple-
mentation (bottom) are shown in this figure. Note that Deliver can only be executed
when the computer has been assembled. The implementation of this service is triv-
ial and returns the tag delivered. It is readily checked that the implementation is
correct with respect to the given interface.

(Getltem, G°, Q7 {true, Q™)})

A AssOrder Main
G¢ = QF = true — ¢ R = true — got_it
- Ttem Obtained > = true rue, Q = lrue goi—t

/\

self Xident  Xident
Fia. 34 — Getltem (internal service of Plant). Observe that the guard of Getltem

only becomes true after DecInvent has been completed, meaning that an item has
been removed from the stock, see the specification of DecInvent.
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/Main
%ssOrdi St(l)ck
C C R C
(DeCInventaG 7Q 7{true7Q )})7 G” = Ttem Computer Ttem
7\ [ /' \
Xident !'Getltem Name Name self
Xc Xc
/Main
A AssOrder StTCk ( ) ( )
C Obtained R Obtained
Q = Item Computer Item ? | ) Q = true 7 |
/" \ [ /\ X1dent X1dent
Xident !Getltem Name Name self
Xc Xc

F1G. 35 — DecrementInventory (implementation by plant). Occurrences of service
DecInvent are attached to each item in the stock at peer Revolver. A “current”
status of the stock is depicted in figure Executing Declnvent is interpreted
as the removal of one item from the stock. This can only be performed when an
occurrence of Getltem is ready for being called. A key observation is that the guard
of DecInvent guarantees that the right type of computer is removed from the stock,
by identifying the name of Item and the name of Computer with the unique variable
Xc. On the other hand, this same value X¢ is consistently copied throughout the
processing of the order. This discharges assertion X{,=Xc¢ in figure[23.

Main

Stock
Ttem /W/ Y IRefInvent
[ O 1 O — \ T

Name 05760 !DecInvent Name 05243 !DecInvent Name 76859 DecInvent Obtained

10 10 14 543

Fia. 36 — A “current” status of the stock, which is located at peer Revolver. This
figure reads as follows. The first and second subtrees represent items that are avail-
able in the stock — this is shown by the presence of !DecInvent, indicating that
this item can be removed from stock. The item has a type (here 10) and a unique
identifier (here 05760 and 05243, respectively). The last subtree corresponds to an
item that has been removed from the stock — this is shown by the removal of “!”
before DecInvent. This removal has been given a unique identifier 543. Parts are
stocked in the revolver. The stock level is decremented by the plant when getting a
part, and incremented by the supplier using service Refuellnventory, see figure
Observe that peer Revolver is shared by the two schemas Plant and Supplier.
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(Reﬂnvent, GY,QC, {true, QR)})

Main
[

Stock

G = - ITtem Ttem Ttem ’ [X 75 Y’Y # Za 7z 75 X]
Name X !DecIlnvent Name Y !Declnvent Name Z !Declnvent
L 10 10 10 J
Q¢ = true—>true
{Item} {Item} {Item} {Item} RefInvent
OF = tre —s 24N SN SN SN
- Name X I!DecInvent Name Y !DecInvent Name Z !DecInvent Name 7T !Declnvent

10 10 10 10

F1G. 37 — Refuellnventory (implementation by supplier). Service Refuellnventory is
an internal service of peer Supplier. This service refuels the stock with a predefined
amount of items, when the stock level gets below a predefined critical level. In the
implementation specified here, critical level is 3. This is shown by the guard, which
expresses that one cannot find three distinct available (indicated by the presence
of a!Declnvent) items in the stock. On the other hand, the return query indicates
that four new items of type 10 are added to the stock. Finally, the return query
regenerates a new occurrence of Refuellnventory. We take as an assertion that all
identifiers in the head of the return query are new and pairwise different.
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DellOrderCall

Y Y Y l Y Y
[ GiveOrderIdCall| | GivePriceCall | | [ CheckCreditCall| | [ RejectOrderCall | DeliverCall
Y /
[ GiveOrderIdRet | [ FindOfferCall | | [ CheckCreditRet |
T
Y Y
FindOfferRet [ RejectOrderRet | [ ProcessOrderCall |
[AssembleOrderCall]|
IF [nvento¥vCalll
RefInventoryRet DecInventoryCall
DecInventoryRet
efInvento i I—I y
RefInventoryCall [ GetltemCall |
[ GetltemRet |
[AssembleOrderRet |
Y Y
[ ProcessOrderRet | [ DeliverRet |
Y \
DellOrderRet

F1G. 38 — Dependencies between service calls and returns. This figure shows that sev-
eral service calls and returns can be performed concurrently. The part of the depen-
dency graph involving the two services “Refuellnventory” and “Decrement Iventory”
is slightly involved. It shows, with different colors (namely : black — red — blue),
the dynamic instantiation of new occurrences of these services. Observe that no
cyclic dependency occurs.
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5.3 Using service abstraction to simplify property checking

Service GetItem of figure[34] creates a coupling between the processing of an order
and the control of the stock level by the supplier. This intricate inter-dependency
makes the analysis of the whole application difficult — and more so if integers are
used instead of enumerations while managing stock level.

By using an abstraction in lieu of the above implementation, it is possible to
discharge assertion X{,=Xc¢ in figure in a much simpler way. The needed ab-
straction of implementation of “GetItem” at peer plant, as specified in figure 34]
is :

(IGetItema Selfa {gOt—it}) (20)

Let us abstract service Getltem as in ([20). Since variable X¢ is copied by all internal
services of figures B4H32] we infer that, if something is returned to the customer,
then it must be the right computer, that is, the one satisfying assertion X{,=Xc¢ in
figure

Considering the actual implementation of figure B4l proves, in addition, that 1/
the stock is decremented from the delivered computer, and 2/ delivery eventually
occurs (modulo clearance from the bank) since stock gets eventually refueled above
critical level provided that refueled amount exceeds critical stock level.

To summarize, our mechanism of abstraction/refinement of services and in-
stances allows to prove some safety properties at a lower cost.

6 Conclusion

Guarded Active XML (GAXML) was proposed by Abiteboul, Segoufin, and
Vianu, as a high-level specification language tailored for data-intensive, distributed,
dynamic Web services. GAXML consists in XML documents with embedded guarded
service calls, thus allowing for the definition of control flows in documents. In this
paper we have enhanced GAXML with the concepts needed to satisfy the require-
ments of “Service Computing” and “Service Oriented Architectures”.

We have provided a richer model for external services in the form of interfaces.
Specifying an interface consists in describing, using patterns : 1/ the shape of doc-
uments that can serve as parameters to a call, and 2/ the possible returns of a
call. Our notion of interface comes with a notion of implementation — a service
implements an interface — that builts upon the known concept of containment and
a new concept of satisfaction. We have shown that when using variables, this no-
tion of implementation quickly becomes undecidable when the expressive power of
interfaces increases. The solution adopted in this paper appears as a good tradeoff
between expressiveness and decidability of the implementation relation.

Then, we have proposed Distributed Active AXML (DAXML) as a model of
guarded active XML systems distributed over a set of peers. Peers transform dis-
tributed documents in response to service calls from their own or other peers in an
asynchronous way. Our way to capture distribution was by adopting a fine grain
semantics for remote service executions. DAXML systems compose, thus capturing
the mechanism of replacing an external service call by a distant call to an imple-
mentation of it, offered by another peer. DAXML systems and documents can be
refined by replacing, in documents, external service calls by repective implementa-
tions thereof ; the symmetric operation is service abstraction. Abstracting services
as interfaces is an efficient tool in simplifying analyses of DAXML documents.

In addition to providing a compositional framework for Web services, the formal
semantics of DAXML allows for reasonning on excutions of services using a dedi-
cated logic (in our case Tree-LTL). As for most of expressive languages, this logic
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is undecidable, in particular due to undecidability of reachability. Nevertheless, it
is still possible to reason about DAXML systems or their abstractions by taking as
assertions the eventual satisfaction of return guards. Abstractions are another way
to bring back DAXMTL analysis to model checking of finite systems — for instance,
when local safety properties are considered.

We have illustrated our approach on a representative example combining data
and workflow management, namely the Dell supply chain. In developing this exam-
ple, the following features of DAXML proved convenient :

— Allowing shared peers between DAXML schemas was convenient in modeling

the revolver.

— Side conditions were used to capture the link between ordered and delivered

product and its price.

— Checking for implementation relations involved a small number of variables

in all cases, thus making the exponential cost of it acceptable.

— The mechanism of refinement/abstraction was useful in two ways : first, it

allowed to simplify the proof that the right product would be delivered, if

any ; second, it allowed to perform local analyses, from the point of view of a

given peer.
Drawbacks and limitations of our approach in handling this example were expe-
rienced in the part of the application dealing with stock inventory management.
This does not come as a surprise since this kind of application would be naturally
handled using arithmetic operations, which were not within our model. This can be
overcome by combining the usage of external types and operations together with
abstraction mechanisms for reasoning.

Issues of decidability of the implementation relation prevented us from allowing,
within interfaces, for side conditions involving call and return variables. Unfortu-
nately, side conditions proved to be unavoidable in practice for nontrivial appli-
cations. It seems to us that the way we handled such side conditions was a good
compromise.

Another way to cope with undecidability of Tree-LTL (or other temporal logics)
would be to concentrate on business artifacts [22), @], i.e., key business relevant
objects that flow through a business process specified by a set of services. The
analysis of such business artifacts are simpler in that it concerns the analysis of
possible evolutions of one item throughout the DAXML system.
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A Appendix : proofs

A.1 Proof of Theorem [

First, let us show that the problem is in NP. It was shown in [I3] that evaluation
of a pattern without variables (and henceforth existence of a matching) can be
done in polynomial time in the size of the tree pattern and of the queried tree
(more precisely in O(|T|® x |P|?)), where |T'| and |P| are the sizes of tree T' and
tree pattern P, respectively. The pattern model proposed in this paper extends
the tree patterns considered in [I3] with constraints on variables. Note that all valid
matchings associate variables in tree pattern P to leaves of tree T'. Hence, for a given
matching g, the valuation v, must satisfy condition cond. Then, finding whether
there exists a valid matching can be done in two steps. First, fix the part of the
matching ;o that associates variables of IP to data leaves of T verify that v, must
satisfies condition cond (this can be done in linear time). The second step consists
in verifying that the chosen leaves assignements allows for satisfaction of the rest
of the tree pattern, i.e. verifying the satisfaction of a pattern without variables. For
this, we can use the polynomial algorithm of [I3]. There are at most |L7|/"?! such
assignments (where Lt and Lp denote respectively the leaves of T and P). Selecting
one of them can be done nondeterministically in polynomial time. This also gives
us an upper bound in O(|Ly|!F#! x (|cond| + |T|* x |P|?)) for testing T' |= P.

Let us now show the problem is hard. We proceed by reduction from 3SAT,
which is known to be NP-complete. Consider a set of variables V' = {v1,02,...,v,}
and a logical boolean formula ¢ over V in conjunctive normal form, where each
clause contains exactly 3 litterals (i.e. is for instance of the form (v V vz V —w;3)).
We can design a pattern P that has a root, labelled by %, and n children Sy, ...S,
such that each node S; of pattern P is labeled by a variable v;. Now consider
the following tree T', with a root labeled by a tag a, with two children T't; and T f;,
labeled respectively by value true and false. We can transform ¢ into an equivalent
formula ¢’ as follows : each clause of ¢ is transfomed into an equivalent clause where
positive litterals v; are replaced by an expression of the form v; = true and every
negative litteral —w; by an expression of the form v; = false. Then, it is not difficult
to see that T = ({P}, ¢') iff there is a assignment for variables of V' that satisfy ¢.
O

A.2 Proof of Theorem

We have that [P'] = {P,...}, and for every pattern P in [P], there exists some
P; in [Pl] such that each tree in P; is a subtree of a tree in P with the same root
as in P (P is obtained by replacing constructors by a forest of size greater than
1). Consider a forest F. If F' [~ P; for some i € 1..n, F' = P for all patterns that
contain P;. Furthermore, if F' £ P; for every pattern P; € [Pl], then F' [~ [P]. If
F |= P, € [P'], as P; € [P] then F |= [P]. We then have F = [P] if and only if
FE [Pl]. O

A.3 proof of Theorem

We reuse a result of [5] showing that containment for conjunctive queries over
data trees is undecidable. A conjunctive query is a first order formula that uses
unary predicates (the labeling of nodes with o) and binary predicates of the form
child, child*, child*, Nextsibling, Nextsilbling*,Nextsibling™ depicting relation be-
tween nodes of an odered tree. [5] also consider data trees, that is trees which nodes
carry data from a countably infinite data domain, and add binary predicates ~ and
= ~ depicting that two nodes carry the same or distinct data value. Bjorklund et
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al. show that containment for queries over data trees with ~ and — ~ allows for an
encoding of PCP, and is hence undecidable. We can reuse their encoding of the PCP,
but taking into account two differences between AXML and conjunctive queries :

— in AXML, only leaves can carry data values. This is not really bothering, as
we can simulate association of a data by adding to every node a branch that
contains a new tag Data followed by a data value. Data values are used to
encode the choice of indexes in the solution of the PCP.

— in AXML, trees are supposed unordered. The encoding of the PCP with con-
junctive queries defines a solution to PCP as a string of the form
fi1.wiy - .01 wg, B 01Uy, - ip.ug, 4, and forces a counter example to contain-
ment to be a string with the predicate Nextsibling. However, in the encoding,
the ordering between siblings does not matter, and this predicate is only used
to capture trees that do no have the shape of a string. Then, the structure
of any counter example is of the form depicted in Figure In this figure,
r depicts the root of the tree and each w; must be interpreted as a branch
describing word w; in the given PCP instance. Depicting a counter example
that is branching can be imposed by a pattern saying that the minimal dis-
tance from the common ancestor of two nodes is greater than 2 (the size of
the branch with the Data tag). The PCP encoding with Tree patterns uses
variables defined over an ordered infinite domain of indexes or over an ordered
finite set of letters (the letters used in the considered instance of the PCP),
and tags in ¥ = r, #, Index, Data, to identify respectively the root, delimiters
of w;’s concatenations, indexes, and the letters of each w;, or u;, . Hence, a
bad counter example that does not have the form of Figure [39 will necessarily
satisfy a pattern of the form depicted in figure @0, where oy # o2 € X.

For the rest of the PCP encoding, we can reuse exactly the same constructs as
in [3]. Inequality of values is obtained by using ordered domains, and then imposing
constraints of the form X <Y Vv X > Y.

O

A.4 Proof of theorem [4

It is known that containment testing for XP(/,/,[ ],%,|) (that is for disjunctions
of tree patterns) is in Co-NP [19]. This result of [I9] reuses a first Co-NP algorithm
proposed by Miklau et al. [I7] for XP(/,/,[ ],%). Let us detail this algorithm.

Let P be a tree pattern and @) be another tree pattern, respectively of size n
and m. Then there is a finite set of bounded canonical models T(P, slg), such that
P C @ if and only if for every T' € T(P,slg), T | Q. T(P,slg) is the set of trees
that “look like P and are not bigger than@”. A tree in the canonical set is a tree
built from p, where x labeled nodes are replaced by a new tag (), and descendant
edges by chains of § of size up to slg + 1, where slg is the size of the largest chain
of nodes labeled by . This yields a Co-NP algorithm, that consists in choosing
in polynomial time a member of T(P,slg), and then testing (again in polynomial
time [I3]) if T |= Q. If this is not the case, then T' is a counter-example showing
that P ¢ Q. Note that all trees in T(P, slg) are of size at most in O(2n.(m + 2)).

The result of [I7] has been extended to include disjunctive combinations of tree
patterns in [19], just by noticing that P = P,V ---VP, € Q = Q1 V---V Q if
and only if there exists some i € 1..n such that T |= p; and p; € ¢. The algorithm
proposed by Neven is to guess a p;, find a ¢ from T(P;, slg) (we can take for slg
the largest length of x chain in all @;’s), and to check in polynomial time whether
T |= p; and T [~ @, that is test for every g;,j € 1.0 that T [~ g;.

Let us now show how the algorithms of Neven and Miklau adapt to our setting.
The tree patterns used in our expressions are exactly the tree patterns of the above
algorithms, with some additional constraints on the values of nodes.
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Let P = (P, condp) and Q = (Q, condg) be two patterns, defined over set of
variables Xp and Xg. Using the disjunction over patterns defined in (), consider
P =P, V---VP,, and Q' = Qu, V---VQu,, wherevy,...vy and wy,... wy are
the different possible valuations of Xp and Xy that are compatible with condp and
condg, and P,, is P in which all variables have been replaced by their valuation
according to v. As all variables are given actual values, the condition attached to
P, becomes trivial.

There is no containment from P to Q if we can find a pattern P,, and a tree
T such that T = P, but T £ Q'. Note however that the size of these disjunctions
can be exponential in the size of variables. That is the algorithm of Neven et al.
is not Co-NP anymore, as there is necessarily an exponential number of tests to
prove that a 7' is a counterexample. Then the algorithm to check containment is as
follows. Chose in polynomial time a valuation v, verify that it satisfies cond p. If this
holds, then choose non deterministically a tree T' from the set of canonical models
T(P,,slg). Here, we can note that this set of canonical models does not depend
from any valuation chosen for @, as slg is the same for every Q,,;. Then, we have
to check if T' = Q/, that is test for every possible valuation w; satisfying condq, if
T | Qu,. If T = Qu, for every w; that satisfies condq, then T' is a counterexample,
and P ¢ Q follows. As we have to perform an exponential number of tests to be
sure that 7' = Q’, the containment algorithm is then in Co-Nexptime.

A.5 Proof of theorem [§

Assume that there exists a run p = Dy, Dy,...,Dy,... such that Iz (p) ¢
Runs(Do‘R,S). Without loss of generality, we can consider that move Dy_1 F Dy
is the incriminated move, that is g (Do, D1, ...,Dg_1) is a prefix of some run in
Runs(Dor ,S), but llzr(Do, D1, ..., Dy, Dy) is not. We know that P provide no
services to the rest of the system, Dy_; F Dy can then be : an internal call, an
internal return, a distant call between p,p’ € P, or a return from a distant call, or
an interface move (call or return). Internal calls or returns are guarded by patterns
evaluated locally to the peer owning the service. Hence, if Iz (Dj_1) is reachable
from Doz by a run over Sir, then Iz (Dy—1) F I (Dg) is a move of Sjz. An
interface call or return in S is a similar interface call/ return in Sy . The last possi-
bility is then distant calls or returns. Distant calls are only guarded by the fact that
siblings of a node contain a given pattern, defined locally to P by an interface. They
are then allowed with similar modifications on trees owned by P by Sjz and S (i.e.
replacing a tag !I at a given node by a tag ?I). The last kind of move is a return
from a distant call, which consists in appending to the trees owned by P a forest F’
returned by the invoked service. As the called service implements an interface of P,
it returns values that are compatible with the return pattern of the interface, and
hence, for every Dy, that is reachable from Dj_1, we have that Iz (Dy_1) F Iz (Dy)
is an interface move of S . Assuming Iz (p) € Runs(Dor ,S) then leads to a con-
tradiction. O

A.6 proof of corollary

Satisfying a must modality means returning a value, and hence reaching a con-
figuration where a return guard of f holds (one can even restrict to the case where
f has only one single guarded return query). However, the call query of service
f can create a workspace that can be transformed into an initial configuration of
the two counter machine depicted in theorem [I0]in a finite number of unavoidable
steps (these steps just ensure that the machine is put in a predetermined state g;,
symbolized by a running function ?¢;). Hence, satisfying a must modality can be
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brought back to a halting problem of a two counter machine, and is undecidable.[]

A.7 Proof of corollary 3]

As for must modality, one can bring back our problem to a reachability problem.
Without loss of generality, one can restrict to the case where the interface comports
one single return pattern PR, and function f contains only one guarded return
query Q} = (B,H). For a pattern B = (P,condg) and a condition cond let us
define B\ cong = (P, condp A =cond) as the a pattern with the additional constraint
that cond does not hold.

Suppose that B and H are isomorphic trees, and B and PIR) are also isomorphic
patterns. Suppose also that there is only one valid valuation of variables in P? for
every input In to function f, that is compatible with P?. Let condr be the list of
constraints of the form X = ¢ for every value imposed to a variable X of P§ by the
input In.

Then, within this setting, f is not a dynamic implementation of I if, for a given
input value In allowed by I, there is no reachable workspace where G; AB\cond;uDC
holds (that is if f can return a value such that DC is not satisfied). As for must
modalities in corollary [ the call query of f can encode the initial configuration of
a two counter machine, and the schema can simulate this machine. Hence, dynamic
implementation is undecidable. |

A.8 Proof of theorem

Proof: Let S be a bounded DAXML system. Let ©° be the set of tags used in a
forest or a service of S, and let D° be th data values appearing in a forest of S or
in a domain of a variable of S. When a tree has maximal d, then the number of non
isomorphic subtrees at depth d is a = |[SUF'UD?|. At depth d—1, it is a.2?. Hence,
the overall number of reduced trees of depth at most d is T'(a,d) = a.27(»4=1) with
T'(a,0) = a. The acyclicity of service calls graph guarantees that in any schema de-
rived from S, there is a bounded number of workspace under evaluation. Hence, all
Tree-LTL formulae can be checked over a finite structure as an usual LTL formula,
with Patterns holding is a document as atomic propositions. |
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