N

HAL

open science

LT Network Codes: Low Complexity Network Codes

Mary-Luc Champel, Kévin Huguenin, Anne-Marie Kermarrec, Nicolas Le

Scouarnec

» To cite this version:

Mary-Luc Champel, Kévin Huguenin, Anne-Marie Kermarrec, Nicolas Le Scouarnec. LT Network
Codes: Low Complexity Network Codes. 5th ACM International Conference on emerging Network-
ing EXperiments and Technologies (CoNeXT), Student Workshop, Dec 2009, Rome, Italy.

00429680

HAL Id: inria-00429680
https://inria.hal.science/inria-00429680
Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

inria-


https://inria.hal.science/inria-00429680
https://hal.archives-ouvertes.fr

LT Network Codes: Low Complexity Network Codes

Mary-Luc Champel
Thomson R&D, Rennes,
France

Kévin Huguenin
Université Rennes 1/ IRISA,
France

*

Anne-Marie Kermarrec
INRIA Rennes, France

Nicolas Le Scouarnec
Thomson R&D, Rennes,
France

ABSTRACT

This paper proposes LTNC, a new recoding algorithm to
build low complexity network codes. At the core of LTNC
is a decentralized version of LT codes that allows the use
of fast belief propagation decoding instead of high complex-
ity Gauss reduction used by random linear network coding
(RLNC). In the context of a peer-to-peer content dissemi-
nation application, we observe that LTNC trades advanta-
geously communication optimality of RLNC with decoding
cost as it incurs only 38.5% of bandwidth overhead for a
gain of almost 99% in CPU cycles.

Categoriesand Subject Descriptors

C.2.4 [Computer Systems Organization|: Computer-
Communications NetworksDistributed Systems

General Terms

Algorithms, Design, Performance, Theory

Keywords
LT Codes, Network Coding, Peer-to-peer Networks

1. INTRODUCTION

Network coding [1] is an appealing paradigm enabling to
significantly improve the global throughput in content dis-
semination applications. Avalanche [3] is one of the most
celebrated examples of such an application that uses ran-
dom linear network coding (RLNC) for file sharing. In
random linear network coding, nodes send random linear
combinations of packets they have received, thus increasing
the chances to be innovative to the receiver. These codes
are optimal as n original packets can be recovered from n
encoded packets with high probability. However, decoding
requires an expensive (O(n?m) operations, where m is the
size of the packets) Gaussian elimination. For this reason,
RLNC cannot be used in numerous applications such as time
constrained applications (e.g., video on demand) and power
constrained applications (e.g., sensor networks) [5].

*A full version of this paper is available as a technical re-
port [2] at http://hal.inria.fr/inria-00416671/en/.

Copyright is held by the author/owner(s).
CoNEXT Sudent Workshop’ 09, December 1, 2009, Rome, Italy.
ACM 978-1-60558-751-6/09/12.

In this paper, we explore the feasibility of building net-
work codes from LT codes, which can be decoded in
O(mnlogn) operations. We propose a recoding technique,
namely LTNC, to extend LT codes into new low complexity
network codes. In a nutshell, LTNC combines cleverly, using
a low complexity algorithm, the packets received into fresh
encoded ones that follow the statistical properties specified
by LT, thus allowing fast decoding using belief propagation.

We briefly give some background about network coding
and LT codes in Section 2 before presenting our recoding
algorithm in Section 3.

2. BACKGROUND

LT codes are source codes proposed by Luby in [4]. Simi-
larly to linear codes (which they inherit), LT codes involve
linear combinations of original packets. However they differ
from random linear network codes in that they (i) specify
the degree (i.e., the number of original packets involved in a
linear combination) distribution of the encoded packets sent
and (i) they are decoded using a different algorithm called
belief propagation.

LT packets are organized into a specific data structure
named Tanner graph. A Tanner graph is a bipartite graph
where nodes in the first set are original packets and the
nodes in the second set are the encoded packets received.
There exists an edge from an original packet x to an encoded
packet y if x is involved in the linear combination forming
y. Figure 1 depicts a sample Tanner graph. Every time
an original packet x is received or decoded, every encoded
packet y involving z (i.e., to which z points) is xor-ed with x
and the edge between x and y is deleted. When an original
packet is the only one to point to an encoded packet, it can
be decoded and its value is propagated along its outgoing
edges.

Figure 1: A sample Tanner graph: ys = x3 P x4.

It is clear from the previous paragraph that the belief
propagation decoding algorithm requires at least one en-



coded packet of degree one. More generally, the lower the
degree of the encoded packets the faster the decoding. On
the other hand, the higher the degree of the encoded pack-
ets, the less redundant the sent packets. It is shown in [4]
that the optimal distribution of degree for the encoded pack-
ets is the Robust Soliton (see Figure 2). Secondly, to ensure
optimal decoding, the distribution of degrees for the original
packets must be a Dirac.

1000

10’7: S E—
1 10 100

degree

Figure 2: Robust Soliton: optimal distribution of
degrees for encoded packets.

3. LT NETWORK CODES (SKETCH)

In a nutshell, our solution works as follows: when a node
needs to generate a fresh packet, it (i) builds a packet of
degree d, where d is drawn from a Robust Soliton distribu-
tion, using the encoded packets available ; (i) refines the
obtained packet so that the degree distribution of original
packets matches a Dirac (i.e., minimum variance).

Coping with a picked degree: the degree d is a random
variable drawn from the Robust Soliton distribution. We
use a heuristic to detect and discard unreachable degrees.
For instance, a node that received two encoded packets of
degree 2 and one packet of degree 5 cannot generate encoded
packets of degree higher than 9. The packet to be sent is
then built iteratively by adding encoded packets available at
the node in a greedy fashion. At each iteration, the degree of
the packet being generated must increase and must remain
smaller than d. The encoded packets available are examined
in decreasing order with respect to their degree.

Fitting the degree distribution: in order to fit the de-
sired distribution, an original packet involved in the packet
being built can be replaced with another one using encoded
packets of degree 2. For instance, if the node has generated
a packet y = z1 ®y’, x1 can be replaced with x2 by xor-ing
y with z1 @ z2. Therefore, it enables to balance the degree
of original packets without jeopardizing the degree of the
generated encoded packet. Note that nodes have numerous
opportunities for such refinement operations as half of the
encoded packets are of degree 2 (Robust Soliton).

Doing so, recoding packets is achieved with no CPU over-
head as compared to RLNC and enables low complexity de-
coding using belief propagation.

4. EXPERIMENTAL RESULTS

We evaluated LTNC using a round-based simulator. We
simulated a random network of 250 peers where a single
source broadcasts a file divided into n packets of size m.
Each node has a static fixed-size neighborhood. At each

round, a node picks uniformly at random one of its neighbor
and sends it an encoded packet.

We compare LTNC to RLNC along two metrics: (i) the
communication overhead, that is proportion of redundant
packets sent; (ii) the decoding cost, that is the number of
CPU cycles required to recover the original packets from the
encoded packets.

100

10° e

CPU cycles

10* P —————

10! L L L L L L L L
400 600 800 1000 1200 1400 1600 1800 2000

code length (n)

(b)

Figure 3: Simulation results in a random network.

Figure 3a plots the communication overhead as a function
of the code length (n). While RLNC has almost no commu-
nication overhead (0.005%), LTNC sends less than 50% of
redundant packets. This value decreases with n and reaches
38.5% for n = 2000. This communication overhead remains
significantly lower than when packets are forwarded without
encoding (89%).

Figure 3b plots the decoding cost (log scale) as a function
of the code length. The number of CPU cycles required by
LTNC is several orders of magnitude lower than for RLNC
and the gap widens with n. For n = 2000, LTNC requires
100 times less CPU cycles than RLNC, that is a gain of 99%.

These results show that LTNC trades advantageously
communication optimality of RLNC with decoding cost
making LTNC an appealing alternative to RLNC for time
and power constrained applications.

5. CONCLUSION

In this paper we proposed network codes based on LT
codes (LTNC). Our experimental evaluations demonstrate
that LTNC outperforms RLNC in terms of CPU cycles
needed for encoding and decoding at the price of a small
overhead in terms of communication. LTNC is therefore an
appealing alternative to RLNC for networks of low capabil-
ities devices. Our current work focuses on removing on the
fly redundant packets that are useless to the belief propaga-
tion algorithm in order to save both bandwidth and CPU.

6. REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung. Network
Information Flow. IEEE Transactions On Information
Theory, 46(4):1204-1216, July 2000.

[2] M.-L. Champel, K. Huguenin, A.-M. Kermarrec, and
N. Le Scouarnec. LT Network Codes: Low Complexity
Network Codes. Research Report 7035, INRIA,
September 2009.

[3] C. Gkantsidis and P. Rodriguez. Network Coding for
Large Scale Content Distribution. In INFOCOM, 2005.

[4] M. Luby. LT Codes. In FOCS, 2002.

[5] M. Wang and B. Li. How Practical is Network Coding?
In ITWQoS, 2006.



