Constrained extremal problems in the Hardy space H2 and Carleman's formulas

Abstract : We study some approximation problems on a strict subset of the circle by analytic functions of the Hardy space H2 of the unit disk (in C), whose modulus satisfy a pointwise constraint on the complentary part of the circle. Existence and uniqueness results, as well as pointwise saturation of the constraint, are established. We also derive a critical point equation which gives rise to a dual formulation of the problem. We further compute directional derivatives for this functional as a computational means to approach the issue. We then consider a finite-dimensional polynomial version of the bounded extremal problem.
Type de document :
[Research Report] RR-7087, INRIA. 2009, pp.50
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger
Contributeur : Juliette Leblond <>
Soumis le : vendredi 6 novembre 2009 - 10:07:51
Dernière modification le : jeudi 11 janvier 2018 - 16:42:51
Document(s) archivé(s) le : jeudi 17 juin 2010 - 19:27:52


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00429898, version 1
  • ARXIV : 0911.1441



Laurent Baratchart, Juliette Leblond, Fabien Seyfert. Constrained extremal problems in the Hardy space H2 and Carleman's formulas. [Research Report] RR-7087, INRIA. 2009, pp.50. 〈inria-00429898〉



Consultations de la notice


Téléchargements de fichiers