
HAL Id: inria-00430159
https://inria.hal.science/inria-00430159

Submitted on 21 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Personalized Peer-to-Peer Top-K Processing
Xiao Bai, Marin Bertier, Rachid Guerraoui, Anne-Marie Kermarrec

To cite this version:
Xiao Bai, Marin Bertier, Rachid Guerraoui, Anne-Marie Kermarrec. Toward Personalized Peer-to-Peer
Top-K Processing. Second ACM Workshop on Social Network Systems (SNS), Mar 2009, Nuremberg,
Germany. �inria-00430159�

https://inria.hal.science/inria-00430159
https://hal.archives-ouvertes.fr

Toward Personalized Peer-to-Peer Top-K Processing

Xiao Bai Marin Bertier
INSA de Rennes, France

Rachid Guerraoui
EPFL, Switzerland

Anne-Marie Kermarrec
INRIA Rennes, France

ABSTRACT

We present the first personalized peer-to-peer top-k search

protocol for a collaborative tagging system. Each peer main-

tains relevant personalized information about its tagging be-

havior as well as that of its social neighbors, and uses those

to locally process its queries. Extensive experiments based

on a real-world dataset crawled from del.icio.us shows that

very little storage at each peer suffices to get almost the same

results as a hypothetical centralized solution with infinite

storage.

1. INTRODUCTION

A central task in information retrieval consists in process-

ing queries in order to obtain the top-k items with the high-

est scores under a monotonic function. This is particularly

appealing in collaborative tagging systems, also called folk-

sonomies, such as Flickr, del.icio.us and CiteULike, which

have become highly popular for publishing and searching

contents. Yet this can turn into a nightmare because of the

unstructured nature of tagging: there is usually no fixed on-

tology and users typically choose their tags in a free and pos-

sibly ambiguous manner.

One way to introduce some structure in such a scheme

is to capture affinities between users with common tagging

behaviors and then leverage these in the top-k processing.

More relevant results for a given user could be achieved

should the search be directed in a restricted network of users

exhibiting similar tagging bahaviors. For example, a com-

puter scientist and a Keanu Reeves fan might probably not be

interested in the same results when Googling ‘matrix’. User

affinities can disambiguate these situations and alleviate the

need for reformulating the same query through several steps

with more refined keywords.

Very elegant centralized approaches have recently been

proposed to capture the personalization through social scor-

ing models that compute the user-centric correlation among

different tags in order to improve information retrieval qual-

ity [1, 2]. In Amer-Yahia et al. [3], the score of an item

only depends on how users sharing similar preferences have

tagged it. The reference retrieval solution consists in main-

taining one inverted list per (tag, user), but this is extremely

space consuming. Alternative solutions to save storage space

do exist but their processing time is increased.

We argue that scalability calls for fully decentralized so-

lutions to process top-k queries. In fact, decentralized solu-

tions have indeed been proposed. In Michel et al. [4], pre-

computed inverted lists are distributed across peers and par-

tial information is transmitted in the network progressively

to approximate the top-k results. In Cuenca-acuna et al. [5],

a gossip scheme is used to implement distributed content

search and ranking. None of these decentralized solutions

is however ‘personalized’.

This paper presents, to our knowledge, the first decen-

tralized and personalized top-k processing scheme. In our

scheme, each user maintains its own inverted list by period-

ically discovering its network.1 Our approach alleviates the

storage space problem while enabling highly efficient local

query processing. We use a gossip-based network manage-

ment protocol to identify users’ personal networks in a peer-

to-peer way; once these personal networks are established,

users locally process their queries using a classical top-k al-

gorithm, namely NRA (No Random Access). Interestingly,

only a subset of (well selected) users suffices to provide the

most relevant items while preserving their relative order for

a given query. We explore various strategies to prevent over-

loading individual users by limiting the size of their personal

networks. This results in little degradation in the quality of

the top-k results.

We have implemented our decentralized and personalized

top-k processing scheme in PeerSim [6] with a dataset crawl-

ed from del.icio.us. Interestingly, if all qualified users are

kept as neighbors, after 50 cycles of gossips, we retrieve

at least 8 relevant items out of 10 with a negligible storage

overhead with respect to the idealized centralized solution

of [3] (called Exact). Thanks to our optimization strategy

which simply keeps the closest neighbors, more than 35%

storage space is further economized for each user.

The rest of this paper is organized as follows: Section 2

establishes the social model of our system and provides a

brief review of relevant top-k processing and network-aware

search techniques. Section 3 describes our peer-to-peer per-

1Note that this is different from a social network in the traditional
sense, as neighbors in our network are those with similar tagging
behavior and might be and remain unknown.

1

sonalized top-k processing scheme and some optimization

techniques. Section 4 presents our experimental setup and

results. Section 5 concludes the paper.

2. SOCIALNETWORKMODELANDBACK-

GROUND

Social Network Model.
In a social network model, collaborative tagging sites are

typically presented as information space U × I × T , where

U denotes the set of users. Each user has a profile that ex-

presses his endorsement of visited items by tagging them.

The profile is described in the form of i{t1, ..., tn}, meaning

that an item i is tagged by tags t1, ..., tn. I is the set of items

that appear in the system and T is the set of all related tags.

Tagged(u, i, t) captures the fact that user u tags the item i

with the tag t.

We model the social network as a directed graph where

a node corresponds to a user and an edge presents the rela-

tionship between two users. We use Link(u, v) to indicate

the existence of a directed edge from user u to user v. For

a user u ∈ U , Network(u) is the set of u’s neighbors, i.e.,

Network(u) = {v|Link(u, v)}.
There are many possibilities for establishing Link(u, v)

according to user preferences. We do not assume any par-

ticular semantics; as such we follow the criterion in [3] that

Link(u, v) exists if and only if v tags a sufficient number of

items with the same tag as u, i.e.,

|{i|∃t, T agged(u, i, t)∧ Tagged(v, i, t)}| > threshold,

where threshold is a predefined number. The number of

commonly tagged items is also used to measure the strength

of Link(u, v), denoted by StrengthLink(u,v).

Query And Scoring Model.
We consider a query Q = {u, t1, ..., tn}, issued by a user

u with a set of tags t1, ..., tn. Returned items for a query

should be ranked according to its overall score. Our score

is user-specific and network-aware. The score of an item

i for user u and tag tj is defined as the number of users

in u’s network who tags i with tj , i.e., Scoretj
(u, i) =

| Network(u) ∩ {v | ∃tj , T agged(v, i, tj)} |. The overall

score of an item i for user u is the sum of all the scores re-

lated to the query, i.e., Score(u, i) =
∑

tj∈Q Scoretj
(u, i).

We use the same scoring functions as in [3] for ease of com-

parison. (Note that alternative functions can be used in our

social network model.)

Top-k Processing.
Given a query, a top-k processing algorithm (e.g., [7])

aims at retrieving the k most relevant items. The goal is

typically to minimize the time it takes to come up with these

items as well as the amount of storage needed to perform the

actual computation.

Information is organized in per tag inverted lists. Each

entry of the inverted list contains the identifier of an item

and its score for that tag. Inverted lists are sorted in a de-

scending order of scores. Below we review the well-known

NRA algorithm, as this is considered particularly effective:

it underlies our work as well as that of [3].

For a query of n tags, NRA scans the n inverted lists in

parallel. In order to do so, NRA maintains a heap of candi-

date items. Each candidate has a score lower-bound and a

score upper-bound, which are the overall scores it can attain

based on the information available at the moment. The score

lower-bound takes the most pessimistic assumption that if

an item has not been seen in some lists, then it does not exist

in them. Alternatively the score upper-bound takes the most

optimistic assumption that its scores in those lists equal to

the scores of last seen items in them. Once an item is seen,

it is either added to or updated in the heap. The score upper-

bounds of items already in the heap are also updated. Candi-

date items are sorted based on their score lower-bounds. For

those with equal lower-bounds, the one with a larger upper-

bound is ranked ahead. The processing stops when none of

the items out of the top-k items has an upper-bound larger

than the lower-bound of the kth item.

Network-Aware Search.
Amer-Yahia et al. [3] proposed several strategies to achieve

efficient network-aware top-k processing. Again, for a netw-

ork-aware search, the score of an item only depends on the

querier’s network. The most straightforward strategy, called

Exact, is to build one inverted list for each (tag, user) pair.

Query Q generated by a user u is processed on the (tj , u)
lists, where tj ∈ Q, using a traditional top-k processing al-

gorithm such as NRA. However, storing these lists is pro-

hibitive space-wise for a single server. Therefore, they ex-

plore another strategy, Global Upper-Bound, that maintains

user-independent inverted lists whose entries only contain

the max scores over all users. The exact score of an item

is computed at query time. With Global Upper-Bound, con-

siderable storage space is saved but much more time is re-

quired for query processing. To strike a balance between the

two extremes, users are then clustered and only score upper-

bounds over all clusters are maintained in per (tag, cluster)

pair inverted list.

3. PEER-TO-PEER SOLUTION

In our decentralized scheme, each user maintains a set of

neighbors that form its personal network. A query is pro-

cessed with the information available in the querier’s net-

work to get personalized top-k results. If its network fails to

provide any satisfactory results, a default search mechanism

will be activated. Here we concentrate on the personalized

processing. In our setting, a key problem is how to build

a personal network for each user in a peer-to-peer way as

quickly as possible so as to guarantee the quality of top-k

results.

2

3.1 Personal Network Construction

In our scheme, the personal network is discovered and

maintained through a two-layer gossip protocol. The bottom-

layer gossip protocol, typically known as a randompeer sam-

pling protocol (RPS) [8], is in charge of keeping the overlay

connected. Basically it provides each peer with c random

peers. On top of the peer sampling protocol, a top-layer pro-

tocol is in charge of tracking the similarity between users’

profiles and discovering new neighbors. Once the top proto-

col has stabilized, it is still possible to discover new related

peers through the peer sampling protocol.

We assume that each peer executes the same protocol in

the same manner every T time units, referred to as a cycle.

A gossip protocol, bottom and top, consists of two threads:

an active thread initiating communication with other peers,

and a passive thread waiting for incoming messages. A gos-

sip protocol is fully characterized by three functions: (i)

the peer selection (choice of gossip target); (ii) the data ex-

change (which data are exchanged in a gossip interaction)

and, (iii) the data processing (which data are kept after the

interaction). In this paper, the data exchanged are peers (IP

addresses and profiles of peers).

At the beginning of each cycle, the peer selection selects

a neighbor with the oldest TimeStamp as a gossip destina-

tion. Once a peer is picked, its TimeStamp is set to zero and

other neighbors’ TimeStamps increase by one. The variable

TimeStamp ensures that all the neighbors have a compara-

ble chance of participating in gossiping. The data exchange

function selects gossip-size neighbors from the views of both

layers and sends the profiles of selected peers to the gos-

sip destinaton. When the gossip destination receives this

information, its passive thread is activated. It also selects

gossip-size neighbors and sends their profiles to the peer

from who the message came. The data processing function

selects the network-size closest peers according to some pre-

defined metric. Two users are added to each other’s view

if they tag a minimum number of items in common with at

least one same tag. Note that the top layer provides each

peer with its personal network.

3.2 Inverted Lists and Query Processing

In the process of gossiping, the profiles of a user’s neigh-

bors are stored by the user. To enable efficient top-k process-

ing, inverted lists for each (tag, user) pair are also computed

and stored by the user itself. When a user generates a query,

it first checks whether the inverted lists for the tags in the

query already exist in its cache and whether they should be

updated to reflect new neighbors. Once all the related lists

are up-to-date, the user processes its query locally with NRA

to get the top-k results.

The inverted lists are constructed lazily so that an inverted

list is computed only when it is necessary for the query pro-

cessing. There is no need to pre-compute the inverted lists

for the tags that may never be queried in the Exact central-

ized case. Note that the computation of inverted lists are not

more expensive than Exact when changes occur in the net-

work. In contrast, gossip-based protocols enable to capture

such dynamics.

3.3 Personal Network Optimization

We adapt the criteria in [3] for choosing neighbors in our

setting. (Note that any metric that captures the affinity of

users will work as well with our gossip-based personal net-

work construction protocol). Since the common-item-based

neighbor choosing criteria may cause a scalability problem

when the network grows and users addmore contents in their

profiles, we propose several optimization strategies that re-

duce the size of user’s network without degrading the top-k

quality.

Instead of maintaining all the users that meet the criteria

to be a neighbor, only n of them are kept in a user’s personal

network. The effect of n will be evaluated in the next sec-

tion. These strategies can also be used independently of the

criteria in [3] to form personal networks.

Random n random neighbors are chosen from the candi-

date users. The intuition is that a random sample is usually

representative of the population from which it is drawn.

Biased Random Like Random, only n users are ran-

domly selected as neighbors. However the probability that

a user is kept as neighbor is proportional to the strength of

the link between the two users. So users with stronger links

have better chances of being chosen as neighbor.

Nearest As users are more likely to enjoy what is pre-

ferred by the users having similar preferences, and the simi-

larity of user preferences is measured by the strength of the

link between them, this strategy has confidence in users pos-

sessing strongest links with the gossip initiator and chooses

them as neighbors.

Nearest With Enhanced Link Strength (Nearest-ELS)

Similar to Nearest, users having similar preferences are also

chosen here. In collaborative tagging sites, similarity of user

preferences depends on the tagging behaviors exhibited in

their profiles. Normally, the overlap of used tags in users’

profiles implies their common interests on topics, while an

overlap of tagged items reveals specific objects they prefer.

As a tag can be used for several items and a same item can

receive different tags from different users, it is more accurate

to compare tagging behaviors by the number of (item, tag)

pairs in common rather than the number of items tagged by

both users with same tags. The intuition is that the more

common tags are used for an item, the more similar the

way on which the users understand and judge the world is.

For this reason, we re-define the strength of Link(u, v) as
| {(i, tj) | Tagged (u, i, tj) ∧ Tagged (v, i, tj)} |.
For each candidate neighbor v of user u, we re-compute

StrengthLink(u,v) and keep the n users having strongest

links with u as neighbors.

4. EVALUATION

3

4.1 Experimental Setup

Data Set and Query Generation.
We have implemented our decentralized and personalized

top-k processing scheme in PeerSim, an open source simu-

lator for peer-to-peer protocols. All experiments presented

here are executed on a cluster of servers including 10 Dell

PowerEdge 1855 machines equipped with Bi-pro Intel Xeon

processors with 3.40GHz CPU and 4GB memory.

The dataset used in our evaluationwas crawled from del.ic-

io.us. It contains 13,521 distinct users who participate in

31,833,700 tagging actions in the form of Tagged(u, i, t).
4,741,631 distinct items and 620,340 distinct tags are con-

cerned by these actions. We randomly picked 10,000 users

from the dataset and built their profiles with the items and

tags used by at least 10 distinct users. Note that this does not

affect the top-k results and processing time because only the

items ranked at the tail of the inverted lists are dropped. Af-

ter removing uncommon tags, the interference of the noisy

and often meaningless tags is also eliminated. The remain-

ing dataset contained a total of 101,144 items, 31,899 tags

and 9,536,635 tagging actions.

In our experiments, each user processed exactly one query.

We randomly picked an item from a user’s profile and com-

posed the query with the tags used by the user to annotate

this item. This is motivated by the reasonable observation

that the tags in the query reflect the user’s understandings

of this item and their combination within the same query is

meaningful.

Evaluation Metrics.
We were mainly interested in the implicit semantic rela-

tions exhibited by users’ tagging behaviors. As in [3], there

is a link between two users if they tag two items in common

with at least one same tag. The personal relationships are

formed as the network converges. If all users have their com-

plete networks, the same top-k results would be obtained for

a given query. We assume that there is neither arrival nor de-

parture of user for ease of comparison with Exact and Global

Upper-Bound in [3], which are considered ideal in terms of

processing time and storage space respectively. Important

questions related to our decentralized setting are then how

fast the personal network of each user can be established and

what is the influence on the top-k results.

A user begins building its personal network by first dis-

covering the IP address of any user currently in the system

with some bootstrap mechanisms. At any following time,

each user has a number of neighbors thanks to gossiping.

The ratio of this number to the user’s network-size in a cen-

tralized setting implies how close its current personal net-

work is to the target. We measure the speed of convergence

with the average ratio of all users, i.e.,

Speed =
1

|U |

∑

u∈U

|Current Network(u)|

|Network(u) in centralized setting|
.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Cycles

S
p

e
e

d

Gossip size 20

Gossip size 50

Figure 1: Convergence speed

Speed attains 1 when all users find their personal networks

in the centralized implementation.

Our goal is to show that an efficient network-aware top-

k processing can be achieved in a peer-to-peer way, so we

take the top-k results in [3] as a reference. Note that all al-

gorithms proposed in [3] provide the same top-k items and

only differs from each other in processing time and storage

space. We then try to obtain as similar top-k items as possi-

ble for the same query with less time and space consumption

in our setting.

We use the acceptedmetric, recall, in information retrieval

to evaluate the quality of top-k results. The recall Rk is the

proportion of the total number of relevant items that are re-

trieved in the top k:

Rk =
Number of Retrieved Relevant Items

Total Number of Relevant Items

Recall quantifies the coverage of the result set and varies

between 0 and 1.

The space overhead for each user is estimated by the num-

ber of entries in the inverted lists and the number of entries

in the profiles of its neighbors. The query execution time for

a query is quantified by the number of sequential accesses of

related inverted lists. Both metrics are highly dependent on

the query and the user, so we are more interested in the rel-

ative improvement compared to the centralized implementa-

tion of Exact and Global Upper-Bound for a given user and

query.

4.2 Convergence of Personal Networks

We start with some observations on how the network con-

verges and how fast our algorithm enables users to find their

own networks, which are considered as the basis of our per-

sonalized top-k processing. The gossip-size is set to 20 and

50 respectively for both layers in two different experimental

settings. We can see from Figure 1 that exchangingmore in-

formation provides higher convergence speed. After a small

number of cycles, users can get almost its whole personal

network in a centralized setting.

We run top-10 processing in a centralized implementation

of Exact and take the 10 returned items for each query as

relevant items and compare our top-10 results with them.

4

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Cycles

P
e
rc

e
n
ta

g
e
 o

f
q
u
e
ri
e
s

recall = 0.8

recall = 0.9

recall = 1

Figure 2: Recall evolution (gossip-size=50)

Table 1: Network-size in different systems

Number of users Average network-size Max network-size

1000 180 750

5000 897 4165

10000 1801 8350

The following results are from the setting of gossip-size set

to 50. Figure 2 plots the evolution of R10 in the process of

network converging.

At cycle 50, more than 77% of queries get exactly the

same results as in the centralized implementation and the

rest of the queries retrieve at least 8 relevant items. R10 con-

tinues improving as time passes and about 98.5% of queries

obtain all their relevant items at cycle 250.

4.3 Comparison of Optimization Strategies

Constructing personal networks in a peer-to-peer way can

provide almost the same personalized top-k results as the

centralized implementation can do. However, when the num-

ber of users and the items tagged by each user increase, it is

possible that users’ local disks become fully occupied, be-

cause too many profiles of neighbors and inverted lists need

to be stored. With our own dataset, average network-size

and maximum network-size over all users are listed in Ta-

ble 1. On average, each user should maintain about 18% of

other users as neighbors to construct inverted lists for top-k

processing, which is infeasible in large-scale networks. It is

therefore important to choose neighbors in a more intelligent

way.

Figure 3 compares the performance of the four strategies

we proposed in Section 3.3 The horizontal axis corresponds

to the maximum number of neighbors a user can have. We

consider Recall with no less than 0.7 as satisfactory top-

10 results. The vertical axis shows how many queries re-

ceive such results. In this figure, only the queries sent by

users having corresponding number of neighbors are taken

into account, because others will get the same results as in

the centralized implementation using the users’ whole per-

sonal networks. It is seen that the strategy Nearest With

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

%
 o

f
to

p
-1

0
s
 h

a
v
in

g
 r

e
c
a

ll
a

t
le

a
s
t

0
.7

network-size

Random
Biased Random

Nearest
Nearest With Enhanced Link Strength

Figure 3: R10 for the four strategies with varying

network-sizes

Enhanced Link Strength outperforms the others in terms of

top-10 quality. When the network-size is relatively small,

the difference among these strategies is more pronounced,

while the difference decreases when fewer limits are set on

network-size. This difference also conveys the fact that users

with similar tagging behaviors are more representative and

contribute more to the final top-k results.

4.4 Space Overhead And Response Time

The maximum space overhead for each user is attained

when its complete personal network is established. Figure 4

compares individual user’s space overhead with that of Ex-

act and Global Upper-Bounds. As mentioned earlier, the in-

dividual user’s space overhead depends on the total length of

its inverted lists Figure 4(a) and entries in all its neighbors’

profiles Figure 4(b). Users are ranked in ascending order of

their space overhead. As expected, no user needs to store as

much information as a centralized database even for Global

Upper-Bounds. Space is no longer a severe problem with

our decentralized storage.

Figure 4(c) illustrates the response time at cycle 50. Short-

er inverted lists do not necessarily mean less execution time

because the lack of information may decrease the scores of

certain items and as a result, more entries in the lists may

need to be checked to get the final top-10. However, the

penalty in time consumption is not too expensive. On aver-

age, only 3% more time is required to process these queries.

With the optimization strategies to limit network-size, fewer

profiles and shorter inverted lists are stored by each user. If

we use the Nearest-ELS strategy to choose neighbors and

fix the network-size to 500, there is no difference for about

28% of the users whose network-size is 500 or smaller. For

the others, on average storage space for 34.5% of the entries

in inverted lists and 54.2% of the entries in neighbors’ pro-

files are saved. As the inverted lists are changed, the number

of sequential accesses to get the top-10 items is no longer

the same as before. About 28% of queries need the same

time to retrieve the results while 35.9% consume less time

and 36.1% require more time. On average, there is no great

difference as before in terms of processing time.

5

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L
e

n
g

th
 o

f
in

v
e

rt
e

d
 l
is

ts

Users

Exact
Global Upper-Bound

Individual User

(a) Length of inverted lists

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L
e

n
g

th
 o

f
s
to

re
d

 p
ro

fi
le

s

Users

Tagging actions stored in centralized database
Entries of profiles stored by individual user

(b) Length of stored user profiles

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r

o
f

s
e

q
u

e
n

ti
a

l
a

c
c
e

s
s
e

s

Users

Exact
50th cycle

(c) Number of sequential accesses per query

Figure 4: Space overhead and processing time at cycle 50 (log scale)

4.5 Scalability

As shown in Table 1, the personal network-size grows lin-

early as the number of users increases using the criteria in the

centralized implementation to choose neighbors. With our

optimization, we find that the necessary number of neigh-

bors to obtain top-10 results of same quality remains sta-

ble even when the number of users continues increasing (see

Figure 5). Clearly, the larger the network, the smaller the

ratio of necessary network-size over number of users. Our

optimization scales well, and similar phenomena can also

be found in other optimization strategies. This suggests that

there is no need to maintain a large network to obtain good

personalized top-k results. Well selected neighbors conserve

the relative order of relevant items to a query even though

their overall scores decrease.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

%
 o

f
to

p
-1

0
s
 h

a
v
in

g
 r

e
c
a

ll
a

t
le

a
s
t

0
.7

network-size

1000 Random Users
5000 Random Users

10000 Random Users

Figure 5: Recall of Nearest-ELS in systems of different

size

5. CONCLUSION

We presented in this paper the first peer-to-peer approach

to personalized top-k processing. We described the design

and implementation of our approach and investigated its per-

formance. The experimental results are encouraging and we

believe that decentralization is the right way to provide per-

sonalized top-k processing in a scalable manner.

We are exploring several complementary research direc-

tions, including system dynamics, in terms of churn as well

as frequent changes in tagging behaviors. We are also con-

sidering various techniques to improve privacy as well as

reducing redundant information within a cluster.

6. REFERENCES

[1] R. Schenkel, T. Crecelius, M. Kacimi, T. Neumann,

S. Michel, J.X. Parreira, and G. Weikum. Efficient top-k

querying over social-tagging networks. In SIGIR ’08.

[2] S. Xu, S. Bao, B. Fei, Z. Su, and Y. Yu. Exploring

folksonomy for personalized search. In SIGIR ’08.

[3] S. Amer-Yahia, M. Benedikt, Laks V. S. Lakshmanan,

and J. Stoyanovich. Efficient network aware search in

collaborative tagging sites. In VLDB’08.

[4] S. Michel, P. Triantafillou, and G. Weikum. Klee: a

framework for distributed top-k query algorithms. In

VLDB ’05.

[5] F.M. Cuenca-acuna, C. Peery, R.P. Martin, and T.D.

Nguyen. Planetp: Using gossiping to build content

addressable peer-to-peer information sharing

communities. In HPDC’03.

[6] M. Jelasity, A. Montresor, G.P. Jesi, and S. Voulgaris.

The Peersim simulator. http://peersim.sf.net.

[7] R. Fagin. Combining fuzzy information: an overview.

SIGMOD Record, 31:2002, 2002.

[8] M. Jelasity, S. Voulgaris, R. Guerraoui, A.M.

Kermarrec, and M. van Steen. Gossip-based peer

sampling. ACM Trans. Comput. Syst., 25(3):8, 2007.

6

