
HAL Id: inria-00430533
https://inria.hal.science/inria-00430533

Submitted on 8 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Behavior and Explicit Discrete Time in
Concurrent Constraint Programmin

Jesus Aranda, Perez Jorge, Camilo Rueda, Frank Valencia

To cite this version:
Jesus Aranda, Perez Jorge, Camilo Rueda, Frank Valencia. Stochastic Behavior and Explicit Dis-
crete Time in Concurrent Constraint Programmin. Logic Programming, Dec 2008, Udine, Italy.
�10.1007/978-3-540-89982-2_57�. �inria-00430533�

https://inria.hal.science/inria-00430533
https://hal.archives-ouvertes.fr

Stochastic Behavior and Explicit Discrete Time in

Concurrent Constraint Programming⋆

Jesús Aranda1,2, Jorge A. Pérez3, Camilo Rueda4,5, and Frank D. Valencia6

1 INRIA Futurs and LIX, Ecole Polytechnique, France
2 Escuela de Ingenierı́a de Sistemas y Computación, Universidad del Valle, Colombia

3 Dept. of Computer Science, University of Bologna, Italy
4 Dept. of Science and Engineering of Computing, Universidad Javeriana - Cali, Colombia

5 IRCAM, Paris, France
6 CNRS and LIX, Ecole Polytechnique, France

Abstract. We address the inclusion of stochastic information into an explicitly

timed concurrent constraint process language. An operational semantics is pro-

posed as a preliminary result. Our approach finds applications in biology, among

other areas.

Motivation. The study of quantitative information within languages for concurrency

has recently gained a lot of momentum. In many applications, quantitative information

becomes crucial when refining models with empirical data, and is of the essence for

verification purposes. Two main models of quantitative information can be singled out

from the vast literature on the subject. Given a computation that can perform different,

competing actions, a probabilistic model provides a probability distribution over such

actions. In contrast, a stochastic model relates each action to a random variable which

determines its duration: given a set of competing actions, the fastest action (i.e. the one

with the shortest duration) is executed. Consequently, notions not considered in a prob-

abilistic model (e.g. speed) are fundamental in a stochastic setting. Not surprisingly,

areas in which time is essential (e.g. systems biology, performance modeling) have

found in languages featuring stochastic information adequate frameworks for analysis.

Concurrent constraint programming (CCP) [1] is a declarative model for concur-

rency with strong ties to logic. In CCP, systems are described by pieces of partial in-

formation called constraints. Processes interact in a shared store; they either add new

constraints or synchronize on the already available information. Timed concurrent con-

straint programming (tcc) [2] is a declarative framework for reactive systems. In tcc,

time is explicitly represented as discrete time units in which computation takes place;

tcc provides constructs to control process execution along such units. In the light of

stochastic models for quantitative information, the explicit time in tcc poses a legiti-

mate question, that of determining to what extent the notions of stochastic duration and

⋆ Research partially supported by the COLCIENCIAS project REACT (No. 1251-330-18902)

and the INRIA Équipe Associée FORCES. The work of Jesús Aranda has been supported

by COLCIENCIAS (Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnologı́a

“Francisco José de Caldas”), INRIA Futurs and ÉGIDE (Centre français pour l’accueil et les

échanges internationaux).

of discrete time unit can be harmoniously conciliated within a CCP-based framework.

The question is relevant because it can give clues on clean semantic foundations for

quantitative information in CCP, which in turn, should contribute to the development

of more effective reasoning techniques over reactive systems in many emerging appli-

cations. In this paper, we outline preliminary results on an operational semantics for a

tcc language with explicit stochastic durations.

More into details, the proposed semantics aims at an explicit account of stochastical-

ly derived events using the description power of timed CCP calculi. This is a feature that

in other CCP calculi (e.g. [3]) is handled at best implicitly. We define stochastic events

in terms of the time units provided by the calculus: this provides great flexibility for

modeling and, as mentioned before, it allows for a clean semantics. Most importantly,

by considering stochastic information and adhering to explicit discrete time, it is possi-

ble to reason about processes using quantitative logics (both discrete and continuous),

while retaining the simplicity of calculi such as ntcc [4] for deriving qualitative reason-

ing techniques (such as denotational semantics and proof systems). We consider exist-

ing qualitative reasoning techniques have a great potential for guiding/complementing

the use of (usually costly) quantitative ones. Such an approach for applying qualitative

techniques has shown to be useful in the biological context [5].

This work is part of a larger research programme aimed at developing robust CCP-

based techniques for analyzing complex applications and systems in computer music,

security and biology. As such, it is our objective to formalize stochastic information in

tcc in such a way that resulting languages and techniques (i) remain generic enough so

to fit well in the target applications, and (ii) be amenable to efficient implementations,

in the form of e.g. simulators and model-checkers.

Description. We consider a variant of tcc in which certain processes are annotated

with a function λ, which represents the stochastic information in the language (see

below). Annotated processes are tell, when and unless. With a slight abuse of notation,

in tell and unless processes λ also stands for the constant value 1. We annotate unless

as we see it as a counterpart of when processes. A careful definition of unless in the

stochastic context, however, is yet to be completely determined. We do not discard

that different applications (e.g. biological systems and computer music) need different

unless definitions.

P, Q ::= tellλ(c) |when c do (P, λ) |P ‖ Q | local x in P | !P | next (P) | unlessλ c next (P)

Operational Semantics. We use the same notion of discrete time as in ntcc and tcc.

We assume that there are discrete time units of uniform size, each of them having its

own constraint store. At each time unit, some stimuli are received from the environment;

the process then executes with such stimuli as input. At the end of the time unit, some

output is produced in the form of responses to the environment, and a residual process

to be executed in the next time unit is scheduled. Information does not automatically

transfer from one time unit to the following.

The operational semantics, given in Table 1, is defined over process-store configu-

rations. We use γ, γ′ to range over configurations, and assume a structural congruence

relation ≡ to identify processes with minor syntactic differences. The rules of the se-

mantics carry both a probability value (denoted p) and a global rate value (denoted r).

They decree two kinds of process execution, immediate (probability value equal to 1

and rate value max), and stochastic. In this sense, processes can be either immediate or

stochastic. The idea of the semantics is to schedule immediate processes first, and then

move to stochastic processes, whose execution involves a certain duration.

Rules for immediate execution resemble analogous rules in tcc and ntcc. The

rule IMMTELL adds a constraint to the store as soon as possible. The rule IMMREP

specifies that process !P produces a copy P at the current time unit and then persists in

the next time unit. There is no risk of infinite behavior within a time unit. In the Rule

IMMUNLESS, process P is precluded if c is entailed by the current store d. The rule

IMMINT allows for compositional extension.

Rules for stochastic executions consider the aforementioned function λ. Using the

current store as parameter, λ describes how the global rate of the whole process varies.

We use δm(P) to denote a delay process P with duration m: P will be executed at the

m-th time unit from the current one. Given probability and rate values for a process,

function ∆ determines its duration. The duration can be thus seen as an exponentially

distributed random variable that depends on a probability and a rate.

The rule STOTELL defines stochastic tell actions. The rule STOCHOICE defines a

choice over a number of guarded processes. Only those enabled processes, i.e., those

whose guards entail from the current store, are considered. The rule STOINT defines

the simultaneous occurrence of stochastic actions. As usual, the probability value is

calculated assuming independence of the actions. Notice that the current store is not

affected by stochastic actions; their influence is only noticeable in the following time

units. The rules STOUNLESS and STOREP define unless and stochastic replicated ac-

tions, resp. The rule NEXT extends stochastic actions to next processes. In the rule

LOCAL, local in P behaves like P , except that all the information on x produced by P

can only be seen by P and the information on x produced by other processes cannot be

seen by P . Notation (localx, c) P expresses that c is the local information produced by

process localx inP . The rule STRCONG is self-explanatory.

These rules define behavior within a time unit; internal behavior takes place until

reaching a configuration where no further computation is possible (quiescence). We

need to define the residual process to be executed in the following time unit. We start

by conjecturing that each quiescent configuration γ has a “standard” form:

γ ≡ 〈
∏

j∈J

next (Pj) ‖
∏

k∈K

unless ck next (Qk) ‖
∏

i∈I

δmi(Pi), d〉.

In the following definition we use A to denote the set of delayed processes in a quiescent

configuration.

Definition 1 (Future function) Given a quiescent configuration γ, its residual process

is given by function F :

F (γ) =
∏

j∈J

Pj ‖
∏

k∈K

Qk ‖ F ′(A)

IMMTELL
〈tell1(d), c〉 −→1,max 〈skip, c ∧ d〉

IMMREP
〈P, c〉 −→1,max 〈P ′, c′〉

〈! P, c〉 −→1,max 〈P ‖ next (! P), c′〉

IMMUNLESS
〈unless1 c next (P), d〉 −→1,max 〈skip, d〉

if d |= c IMMINT
〈P, c〉 −→1,max 〈P ′, c′〉

〈P ‖ Q, c〉 −→1,max 〈P ′ ‖ Q, c′〉

STOTELL
〈tellλ(d), c〉 −→1,λ(c) 〈δm(tell(d)), c〉

with m = ∆(1, λ(c))

STOCHOICE
〈
P

i∈I
when ci do (Pi, λi), c〉 −→p,r 〈δm(Pj), c〉

if c |= cj

with r =
P

i∈{j | c|=cj} λi(c); p = λj(c)/r; m = ∆(p, r).

STOINT
〈P, c〉 −→p1,r1

〈P ′, c〉 〈Q, c〉 −→p2,r2
〈Q′, c〉

〈P ‖ Q, c〉 −→p′,r′ 〈P ′ ‖ Q′, c〉
with p′ = p1 × p2; r′ = r1 + r2.

STOUNLESS
〈unlessλ c next (P), d〉 −→p,r 〈δm(unless c next (P)), d〉

with m = ∆(p, r).

STOREP
〈P, c〉 −→p,r 〈δm(P), c′〉

〈! P, c〉 −→p,r 〈δm(P) ‖ next (! P), c′〉
NEXT

〈P, c〉 −→p,r 〈P ′, c〉

〈P ‖ next (Q), c〉 −→p,r 〈P ′ ‖ next (Q), c〉

LOCAL
〈P, c ∧ ∃xd〉 −→p,r 〈P ′, c′〉

〈(local x, c)P, d〉 −→p,r 〈(local x, c)P ′, d ∧ ∃xc′〉
STRCONG

γ1 −→p, r γ2

γ′
1 −→p, r γ′

2

ifγi ≡ γ′
i (i ∈ {1, 2})

Table 1. Operational semantics: internal transition rules.

where function F ′ is defined as

F ′(δm1(P1) ‖ . . . ‖ δmn(Pn)) = G(δm1(P1)) ‖ . . . ‖ G(δmn(Pn))

and where G is defined as

G(δm(P)) =

{

δm−1(P) if m > 1
P if m = 1.

Unlike other languages like the stochastic π-calculus [6] or sCCP [3], it is worth

noticing that in our semantics stochastic actions can evolve simultaneously; there is

no a predefined order for execution. This way, for instance, tellλ1
(c1) ‖ tellλ2

(c2)
evolves into δm1(tell(c1)) ‖ δm2(tell(c2)) and in the next unit time, the configuration

is δm1−1(tell(c1)) ‖ δm2−1(tell(c2)) (assuming m1,m2 > 0). This allows to naturally

represent the evolution of different components in parallel.

Discussion. Since variables in tcc are logic (i.e. they can be defined at most once in

each time unit), a potential source of inconsistencies is the simultaneous execution of

several stochastic actions involving the same variables. This could represent a limitation

in modeling. Consider for instance the kind of systems in which it is required to deal

with quantities of elements of a certain type (as in biological reactions). In such sys-

tems, variables could be part of several actions, which would represent the changes over

the elements in consideration. An inconsistency caused by two actions simultaneously

altering the value of the same variable is clearly an undesirable feature. Therefore, there

is the need for enhancing the semantics with a mechanism that imposes some kind of

order over those actions related with potential inconsistencies. This would also presup-

pose modifications over rules calculating duration of stochastic actions, as concurrent

actions would be simulated in a specific order. The formal definition of such a consis-

tency mechanism is part of ongoing work.

Applications in Biology. We think that our language and semantics have applications

in the biological domain. This is supported by the fact that CCP-based calculi have

shown to be convenient for modelling, simulating and verifying several kinds of bio-

logical systems [7,8,3]. In [3], stochastic concurrent constraint programming (sCCP)

is used to model biochemical reactions and gene regulatory networks. Functional rates

in sCCP give considerable flexibility to formulate reactions. However, sCCP does not

include an explicit notion of time and does not exploit the logic nature of CCP for ver-

ification. Also, sCCP lacks a means of expressing absence of information, which has

proven most useful in the biological context [8]. The explicitly timed ccp language ntcc

[4] provides both a proof system and a means of representing absence of information.

In fact, ntcc was used in [7,8] to model different biological systems using two kinds

of partial information: behavioral (e.g. the unknown relative speeds on which a system

evolves) and quantitative (e.g. the set of possible values that a variable can take). It

must be noticed that ntcc does not allow for stochastic or probabilistic information.

Based on the above, we think that the extension to tcc here proposed could serve

several purposes in the biological context. The most immediate use is the definition of

enhanced models of systems already modeled in ntcc (the Sodium-Potassium pump,

regulation and mutation processes in genetic regulatory networks). Also, although it is

not evident that every sCCP process can be translated into our language (the tell oper-

ator in sCCP has continuation), we are confident we can model most of the biological

systems described in [3]. We also plan to analyse the model in [9], which describes the

cycle of Rho GTP-binding proteins in the context of phagocytosis.

References

1. Saraswat, V.: Concurrent Constraint Programming. The MIT Press, Cambridge, MA (1993)

2. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint pro-

gramming. In: LICS, IEEE Computer Society (1994) 71–80

3. Bortolussi, L.: Constraint-based approaches to stochastic dynamics of biological systems.

PhD thesis, University of Udine (2007)

4. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming:

Denotation, logic and applications. Nord. J. Comput. 9(1) (2002) 145–188

5. Fages, F., Soliman, S.: Formal cell biology in biocham. In: SFM. Volume 5016 of LNCS.,

Springer (2008) 54–80

6. Priami, C.: Stochastic pi-calculus. Comput. J. 38(7) (1995) 578–589

7. Gutiérrez, J., Pérez, J.A., Rueda, C., Valencia, F.D.: Timed concurrent constraint programming

for analysing biological systems. Electr. Notes Theor. Comput. Sci. 171(2) (2007) 117–137

8. Arbeláez, A., Gutiérrez, J., Pérez, J.A.: Timed Concurrent Constraint Programming in Sys-

tems Biology. Newsletter of the ALP 19(4) (2006)

9. Cardelli, L., Gardner, P., Kahramanogullari, O.: A process model of rho gtp-binding proteins

in the context of phagocytosis. Electr. Notes Theor. Comput. Sci. 194(3) (2008) 87–102

	 Stochastic Behavior and Explicit Discrete Time in Concurrent Constraint Programming
	Jesús Aranda , Jorge A. Pérez , Camilo Rueda , and Frank D. Valencia

