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Abstract Reasoning about the termination of equational program®jisticated equa-
tional languages such asLEN, MAUDE, OBJ, GAFEOBJ, HASKELL, and so on, re-
quires support for advanced features such as evaluatiategies, rewriting modulo, use
of extra variables in conditions, partiality, and expresdiype systems (possibly including
polymorphism and higher-order). However, many of thoséuies are, at best, only par-
tially supported by current term rewriting termination ¢or instancevu-TerM, CIME,
APROVE, TTT, TERMPTATION, etc.) while they may be essential to ensure termination.
We present a sequence of theory transformations that casdukta bridge the gap between
expressive membership equational programs and such tationrtools, and prove the cor-
rectness of such transformations. We also discuss a ppedbol performing the transfor-
mations on M\UDE equational programs and sending the resulting transfotimasaties to
some of the aforementioned standard termination tools.
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fmod LengthOfFiniteLists is
sorts Nat NatList NatIList .
subsort NatList < NatIList .
op O : -> Nat .
op s : Nat -> Nat .
op zeros : -> NatIList .
op nil : -> NatList .
op cons : Nat NatIList -> NatIList [strat (1 0)] .
op cons : Nat NatList -> NatList [strat (1 0)] .
op length : NatList -> Nat .
vars M N : Nat .
var IL : NatIList .
var L : NatList .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
eq length(cons(N, L)) = s(length(L)) .
endfm

Fig. 1 A MAUDE program example

1 Introduction

The goal of this work is to study transformational technigjtieat can help to bridge the gap
between programs in expressive rule-based equationalideyeg such as ASF+SDF [39],
OBJ[19], MauDE [5], CAFEOBJ [12], HASKELL [21], and modules in suitable equational
subsets of ELAN [1] and CASL [7] on one hand, and terminatmoid assuming consid-
erably more restrictive specifications (untyped, uncooddl term rewriting systems) on
the other. There is a clear tension between the goals of ssipeness and efficiency when
using equational theories @sograms and the considerably simpler assumptions of stan-
dard reasoning techniques for rewrite systems and theicéged tools. For example, many
equational programs do not terminate in the usual sensejdgb when evaluated with
suitabletypesand/orstrategies

Example 1Consider the MUDE specification in Figure 1, where sort&tList and
NatIList are intended to classify finite and infinite lists of naturahtbers, respectively.
The functionzeros generates an infinite list of zeros, abehgth computes the length of
afinite list. Note theoverloadedoperatorcons, which can be used for building both finite
and infinite lists of natural numbers and which is declarethwevaluationstrategy(1 0).
The interpretation of this strategy annotation is as fofiothe evaluation of an expression
cons (h,t) proceeds by first evaluatifgand then trying a reduction step at the top position
(represented by 0). No evaluation is allowed on the secoguinaentt, because index 2 is
missing in the annotation. Note also tiatList is a subsort oflatIList.

This system is terminating (i.e., all reduction sequenf@sany initial term, are finite),
but both the evaluatiostrategy(1 0) for cons and the use of sorts and subsorts (especially
for length) are crucial to achieve this terminating behavior. In fégtremoving either the
strategy annotation or the sort information we would get a-tewminating program: on the
one hand, if reductions were allowed on the second argunfesin@, then the evaluation
of zeros would never terminate. On the other hand, an attempt to at@liength (xs)
will not terminate iflength ‘accepts’ infinite listss like, e.9.,zeros; this is forbidden by
specifying thatlength only accepts lists of soatList, i.e., finite lists.

Current termination tools are not able to deal directly witbgrams like that in Exam-
ple 1. This is because the programs make use of either typssategies, or because of



other features such as conditional equations that are maliéd by a given tool’s input lan-
guage. As illustrated by Example 1, these features are efteantial to prove termination.
Expressive features not handled by some current termimétials include:

1. Sorts, subsorts, overloading, and memberships (se8]}33,

2. Conditions, which may introduce extra variables;

3. Fixed evaluation strategies (e.g., leftmost innermogftmost outermost);

4. Programmable evaluation strategies, which permit atimgf each function symbol with
local strategy information on what arguments to evaluateatr(e.g., context sensitive
rewriting strategies [24], E-strategies [19, 5], etc.);

5. Rewriting modulo axioms like associativity (A), commiitdy (C), identity (1), AC,
ACI, and so on.

For example, AROVE [17] supports some form of conditional equations (2) girmost
rewriting (3), context-sensitive rewriting annotatiorsy,(and AC symbols (5); ME [8]
directly supports part of (5); andu-TERM [26] directly supports (4). In all cases (and this
is the main focus of this paper), these tools do not suppertd@mbinationof these features.

1.1 Membership Equational Logic and Operational Termorati

Equational languages with expressive features are swgapbyt expressiviogics that typi-
cally include less expressive ones as sublogics. In therdegnembership equational logic
(MEL) [33, 3] has proved to be a very expressiggical framework in which a wide range
of partial and total equational logics can be faithfully esdted [33]. This makes it an attrac-
tive framework logic for our main goal, which is developirggrination techniques appli-
cable to equational languages with expressive featurecifggally, modules in equational
programming languages such as OBAFEOBJ, the equational sublanguage of ELAN,
and a suitable executable fragment of CASL can all be fdithfepresented as member-
ship equational theories. Similarly, MVDE’s equational sublanguage, whose modules are
membership equational theories, has itself a trivial, fiigmepresentation into this frame-
work. As a consequence, our termination techniques aremp@pplicable to MAUDE, but
also to all the above-mentioned languages.

In MEL the two basic types of atomic predicates are equalitie t’, and memberships
t : s stating that a termh has sorts. The axioms of a MEL theory are then Horn clauses,
whose head can be either an equation or a membership. Theetgaisic level of typing by
kinds and a more sophisticated one grts which is achieved by deduction using theory
axioms (the Horn clauses). Typing by sorts provides a gémexg to deal withpartiality,
in that a term having a kind but lacking a sort is regarded asnaefinedr error element.

Operationally, and assuming good executability propersiech as the Church-Rosser
property [3] and admissibility in the sense explained int®ec3, equalities =t’ can be
treated as rewrite rulds— t’. Rewriting with equations as rules can furthermore be made
context-sensitivby providing a replacement mapthat indicates which argument positions
of a function symbolf must be reduced before equations foare applied [23,24]. In this
way we arrive at the notion of eontext-sensitive membership rewrite the(@s-MRT),
which is the operational form of a membership equationagj@m. Note that in a CS-MRT
rewriting and computation of membershipss arerecursively intertwinedbecause appli-
cation of a conditional equation may require satisfying rhemships in its conditions, and
application of a conditional memberships may likewise rexjgatisfying equalities in its
condition. In particular, some useful programs may now amhplve memberships, without



involving any rewriting. Consider, for example, the follmg palindrome recognizer pro-
gram PALINDROME, which is a membership equational program expressible fuivE as
follows:
fmod PALINDROME is

protecting QID . -- Imports sort Qid (quoted identifiers)

sorts List Pal .

subsorts Qid < Pal < List .

op nil : -> Pal .

op —- : List List -> List [assoc id: nil]

var I : Qid .

var P : Pal .

mb I PI: Pal . -- membershipaxiom
endfm

This program —where list concatenation is expressed withtgsyntax and satisfies asso-
ciativity (assoc) and identity ¢d for nil) axioms— is terminating, that is, given a list of
quoted identifiers the specification can always be used tgpatemin a finite number of
steps whether it is a palindrome, i.e., has gat, or not. But note that no rewriting at all is
involved. Similarly, the program

fmod INF is

protecting NAT .

sort Inf .

subsort Inf < Nat .

var N : Nat .

cmb s(N) : Inf if s(s(N)) : Inf .

-- aconditional membership

endfm
is nonterminating, but again no rewriting is involved inrisntermination. This means that
the standard theoretical framework of term rewriting, amel termination notions that have
been developed for it, including those for Conditional T&ewriting Systems (CTRSSs), are
insufficient for dealing with termination of MEL programsoiRthis reason, we use in this
paper a proof-theoretic termination notion, caltgzkrational terminatiorj29]. This notion
is parametricon the logic: it can be defined not just for MEL, but for manyestlogics, that
may or may not involve rewriting in their computations. litieely, an CS-MRT program
is operationally terminating if all its well-formed proofees are finite. For example, the
nontermination of th&NF program is witnessed by the infinite proof tree,

s(s(s(N))) :Inf
s(s(N)) :Inf
s(N) : Inf

The following MAUDE program, involving both equations and memberships, shaws h
the recursive interaction between rewriting and membgrsbimputations can lead to subtle
nontermination problems



fmod INF2 is

sorts S .

op a: -> [S]

op £ : [S]1 -> [S] [strat (0)]

ceq a = f(a) if a : S .
endfm
Note that botla andf do not have a sort, and are only defined atkinel level, using the kind
[s] associated to the s@t(see Section 2.2). Note also thahas a strategyo), forbidding
reductions in the argument éf MAUDE fails to terminate when trying to reduce the term
a. The problem is that, to compute the sorepMAUDE tries to reduce to canonical form.
This is of course a correct proof attempt in membership révgilogic that leads to the
infinite proof tree

a—f(a) f(a):s

a:s

a—f(a)

showing thatiNF2 fails to be operationally terminating.

What these examples show, most strikingly BFARINDROME and INF specifications, is
that termination of a declarative program may not involwerigng at all, or, as in the case of
INF2, may involvebothrewriting and other computational relations. As we furteeplain
in Section 2.3, one key advantage of the notion of operalti@nanination is that it is para-
metric on the logic underlying the given programming larggidn particular, it is useful to
clarify termination issues fozonditionalspecifications, even for the special case of rewrit-
ing specifications [29]. Intuitively, and this is for exarapllustrated byINF2 above, the
problem is that a conditional specification may have a teatirig rewriting relation INF2
does, since it is the empty relation) and still be nontertiigeby “looping” in evaluating a
condition. Where some notions of conditional termination aground, for example that of
"effective termination” (see [29]), is in failing to give agper account of such looping. In
operational termination terms, any nonterminating bebraeither in the rewrite relation, or
in a condition, or in any other computational relation, istbdetected and characterized by
the existence of an infinite proof tree.

1.2 Proving Termination of CS-MRTs by Program Transforiati

In proving termination of a CS-MRT, an important goal is tgpit a wide range of stan-
dard termination tools. We achieve this goal by using a secgieftheory transformations
that map the original program into increasingly simpler ®reeach having the property
that termination of the transformed program at each stepreegermination of the input
program— until we reach a transformed program that we caerénto a tool. A CS-MRT
may exhibit all the features (1)—(5) mentioned above. Westiarm it by applying two trans-
formation steps eliminating, successively, features () @). In this paper we ignore (3),
because indeed innermost rewriting with a conditional T®RSat clearly defined at present
(see Section 6 for further discussion).

The endpoint of this transformation process is a TRS (TermriRiag System) together
with a replacement map (moduloa set of axioms). A substantial amount of research has
already been devoted to the definition and implementatideafniques for proving termi-
nation of such context-sensitive TRSs (CS-TRSs) [2,122,27,28,42].



| Context-Sensitive Membership Rewrite The(l)ry

Transformation A
A

| Context-Sensitive Conditional Rewrite Syst+m

Transformation B

| Context-Sensitive Rewrite Systelm

* Existing transformations

Rewrite Syste

TRS Termination tool

CS-TRS Termination to

Direct termination proof Termination proof
Fig. 2 Overview of the methodology

The sequence of theory transformations is summarized iar€ig. Transformation A
eliminates memberships and sorts (feature 1) resulting imaorted context-sensitivand
conditionalrewrite theory. Transformation B eliminates conditionssgibly with extra vari-
ables (feature 2); it generalizes a known transformatiomfCTRSs to TRSs [35] in two
ways: (i) by making it aware of context-sensitive rewritinprmation; and (ii) by allowing
rewriting modulo axiom#x. In this way we obtain annsortedandunconditional context-
sensitiverewrite theory.

We have implemented transformations A and B in theUde Termination Tool (MTT,
http://www.lcc.uma.es/~duran/MTT/). At this point, two options are available, lead-
ing to the forking in Figure 2. On the one hand, we can use aitation tool (such as
MU-TERM) that can directly prove termination &SR[2,27] (left branch). On the other
hand, we can use several existing theory transformationjding those proposed by Lu-
cas [22], Zantema [42], Ferreira and Ribeiro [10], and Gésl Middeldorp [15] (see also
[28]), to pass from a context-sensitive rewrite theory tooaginary rewrite theory whose
termination ensures that of the context-sensitive theldmgse transformations are also im-
plemented irmu-TERM and implicitly used in AROVE. The resulting theory can then be
sent by MTT to a number of termination tools (namelME, Mu-TERM, and all tools sup-
porting the TPDB syntaxattp://www.lri.fr/~marche/termination-competition/:
APROVE, TTT [20], etc.)

This paper is organized as follows: in Section 2, we recalldsof CTRSs, Membership
Equational Logic, and operational termination. SectiomtBoduces Membership Rewrite
Theories, and their operational semantics. In Section 4egeribe our theory transforma-
tions and prove their soundness w.r.t termination: trams&dion A is defined in Section 4.1,
transformation B in Section 4.3. The example in Figure 1 edugs a running example for
these transformations. In Section 5, we discuss implertientssues and experiments. We
conclude with Section 6.



2 Preliminaries
2.1 Conditional Term Rewriting Systems

We refer the reader to [35] to recall the usual notions andtimis regarding term rewriting
and CTRSs. In general, a conditional rule is as follows:

l—rif s;=t, -, $s=1y

wherel,r,s1,t1,- -+, S, ty are termsl andr are called the left- and right-hand sides of the
rule, and the sequenesg =t1,---, 5 = t, (often denoted) is the conditional partof the
rule. Rewrite rule$ — r if care classified according to the distribution of variable®am

[, r, andc, as follows: type 1, if Vafr) U Var(c) C Var(l); type 2, if Var(r) C Var(l); type

3, if Var(r) C Var(l) UVar(c); type 4, if no restriction is given. An-CTRS contains rewrite
rules of type at most.

It is well-known that the conditiong =t; for 1 <i < ncan be interpreted in a number
of different ways.Join CTRSs (often calledtandardCTRSS) interpret the equality symbol
= as joinability (| ). We are mainly concerned wittrientedCTRSs [35], i.e., those whose
(conditional) rules are written as follows:

| —rif 51—’t17"'75r|—’tn

indicating that the conditions — t; for 1 <i < n are intended to express the reachability,
in arbitrary many steps, of (instances affrom (instances ofly. A normal CTRS % is
an oriented CTRS such that eveyys a ground normal form (w.r.t. the unconditional TRS
obtained by removing the conditional part from each condl rule of#Z) for 1L <i <n. It
is well-known that a join CTRS can be easily simulated by ama@CTRS by introducing
new symbolsequalandtt, adding the rulequalx,x) — tt, and encoding a conditiosi= t
into equals,t) — tt [31]. An oriented 3-CTRSZ is calleddeterministicif for eachl —
rif s —ty,...,sn —tyhin#Z and each K i <n, we have Vafs) C Var(l) uU'j;llVar(tj).

dLet,% be a CTRS. We inductively define unconditional TRBsfor n € N by %y =0
an

Ini1={loc—ro|l —rif slﬂtl,..‘,snﬂtne%/\Vi,saﬁ}n tio}

The rewrite relation— 4 associated with a CTRZ is then— z = Uneny —%,-

In what follows we will need two further generalizations b&tCTRS notion. First, we
want to allow rewritingmoduloa setAx of equational axioms, so that matching of rules
is performed with amAx-matching algorithm. We therefore view such a CTRS as aetripl
Z = (2,Ax R) with X the signature of function symbol#x the equational axioms we
rewrite modulo, andR the set of conditional rewrite rules. A second generalirais mak-
ing rewriting context-sensitivg23, 24] so that only certain function arguments are rewrit-
ten, whereas other arguments remain “frozen”. For examiplis, natural to restrict the
evaluation of anf-then-else operator so that rewriting is only allowed on the first argu-
ment. In this way, we can express that the evaluation of timglidions only makes sense
after evaluating the guard of the conditional expressidre Simplest way of specifying re-
quirements of this kind is to assume that there replacement maf3], i.e., a function
u: x> — Z(N) associating to each operatbiof n arguments a set of argument positions
u(f) = {i1,...,im}, with 1 <ij < n, which are those under which rewriting is allowed. For
example,u(if-then-else) = {1}, and in Example Ju(cong = {1}. We then arrive at our
most general CTRS notion, namely a context-sensitive CTESCTRS) defined as a pair
(2, 1), with # a CTRS that may involve axion®, andu a replacement map.



An important advantage of context-sensitive rewritinghattrewrite systems that are
nonterminating if rewriting is allowed on all term posit®ean often become terminating,
and can also allow one to handle infinite data structures) aadn the example in Figure 1.

2.2 Membership Equational Theories

The simplest typed equational logic is many-sorted equoatitogic [34], in which function
symbols are typed and each term has a sort. Order-sorted@upldogic [18] generalizes
this by allowing a subsort inclusion relatian< s between sorts, interpreted as subset in-
clusion in the models. In this way, some partial functiorezdito handle in a many-sorted
setting, can become total. Membership equational logic3B8&irther generalizes order-
sorted equational logic, by allowing sorts and subsortsdtenot defined just syntactically,
as in the order-sorted setting, but whose domains of definiten be characterized by se-
mantic conditions (see for example the definition ofth& sort in thePALINDROME example

in Section 1.1). This provides a general way of dealing wiltipl functions in equational
specifications (which become total on appropriate sortd)yéelds a logical framework into
which many other equational formalisms, both partial artdlf@an be faithfully embedded
[33]. As we explain below, by introducing a distinction be®wn kinds and sorts, partiality
can be achieved within a simple total setting.

We now explain in detail the syntax, models, and axioms of beship equational
logic. A membership signature is a tripl@, = (K, 2, S), where(K, %) is aK-sorted signa-
ture, that isK is a set, and is an indexed family of set& = {Zyk} wx)ck+xk —that we
call “many-kinded” because the elementd<ére callekindsso as to avoid confusion with
the sortsS that are instead treated as predicates—ard{S}kek is a disjoint family of
unary predicates. Eache & is called asort, and is understood as a unary predicatekpn
written _: s, so that elements satisfying the predicate determine ttemsion of the sorsin
k. Intuitively, elements having some seidre well-defined elements, whereas elements hav-
ing a kindk but no sort are understood as error elements. For exampléetins (a) in the
moduleINF2 in Section 1.1 has kindis] but has no sort; it should therefore be understood
as an error or undefined element. Similarly, in a number hibgsaincluding sortdlat, Int,
andRrat, if we denote by[Rat] the corresponding kind to which all the above sorts belong,
the term7/0 has kind[Rat], but has no sort and should therefore be understood as an erro
or undefined element.

Note that if inQ = (K, Z,S) the setsS, are all empty for each kindl € K, Q becomes
a standard many-sorted signature, and we obtain manydseqigational logic as a special,
degenerate case. However, since in this setting we wistatplsidistinguish between kinds
and sorts, instead of calling(&, >)-algebra a “many-sorted” algebra, we will now call it
a many-kinded algebra. A model &, called a membership algebBais a (K, X)-algebra
B together with an interpretation of each unary predicateS; as a subseBs C By. Q-
sentences are then universally quantified Horn clausesevéitmsnic predicates are either
equalities =t’ between twa-terms of the same kind, or unary membership predidates
with t a 2-term of kindk ands € S,. Therefore, such Horn clauses are eithenditional
equationg1) or conditionaimembershipg2):

t=t' if A...,An 1)
t:s if Ag,...,An (2)

where theA; are atomic equalities or memberships. In other words, meshiie equa-
tional logic is just the sublogic of many-sorted (although see it here as “many-kinded”)



Horn clause logic with equality in which all the predicatdber than equality are unary.
A membership equationdheoryis just a pairT = (Q,E) with E a set ofQ-sentences.
T-algebras are thef-algebras satisfying the clausesT™of according to the usual notion
of satisfaction in many-sorted (again, seen as “many-kif)dirst-order logic with equal-
ity. Given a membership equational thecoFy there are free and initial -algebras, and
sound and complete inference rules [33]. Order-sortedtioota; < s, for subsorts can
be used to abbreviate the conditional memberstip: k) x: s, if X: 1. Similarly, an op-
erator declaratiorf:s; x --- x §, — s corresponds to declarinf at the kind level and giv-
ing the membership axiorf¥xy : ki,...,Xn i kn) f(X1,...,%0) 1S if Aq<i<nXi :S. We write
(VX1:S1,..., % S) t =1’ in place of(¥xy : Ky, ..., % kn) t =t if AjcicnXi :S. The above
abbreviations make it easy to embed order-sorted spedifiteas a special case of the more
general membership equational specifications [33]. Spedlifi anorder-sorted specifica-
tion is one in which: (1) the only memberships are subsort detitenss; < s, and operator
declarationd:s; x - - - x 5, — s; and (2) the only other clausesknare conditional equations
of the form (VX1 : S1,..., X0 : S) t =t" if Aj<i<nUi = Vi. The Maude language [5] supports
all the order-sorted abbreviations just mentioned; furtiare, kinds do not have to be de-
clared explicitly by the user: they are inferred by the systéhat associates a kind to each
connected component of sorts in the subsort ordering gfeghexample, the specification
in Figure 1 is order-sorted and has two kinds, correspontiinthe connected components
{Nat} and{NatList,NatIList}. The first kind is denotedNat], and the second kind can
be equivalently denoted by eithé&atList] or [NatILIst]; thatis, we represent kinds as
equivalence classes of their corresponding sorts.

Admissiblemembership equational theories [5] provide a very gendeascof equa-
tional theories that are executable by equational revgitifheir sentences are a union
E UAX whereAx is a collection of equational axioms such as, for exampleo@ativity,
commutativity, and identity of some operatorsinfor which a matching algorithm modulo
Axexists; we furthermore assume that the axidrare unconditional and are definatthe
kind leve] that is, the variables in such axioms have kinds and do mohia any restrictions
to sorts. The sefE consists of conditional equations (1) and conditional mersitips (2),
where in(1) the variables in’ are among those tnor in someA;, and where, in botlil) and
(2) eachA is either a membershiy; : s, or an equation; = v; such that any new variable
not int or in someA; with j < i must occur only iny or in someA; with j > i; furthermore,
if u; introduces any new variables, themust be a nonvariable term; we then agl=v; a
matching equationin MAUDE such matching equations are distinguished syntacticatly w
the notatioru; :=v;.

2.3 Operational termination

We consider a logicZ defined by inference rules, parameterized ltiyeory.. That is, we
focus on provability, and assume the axiomatic frameworgeferal logics [32], in which
what we call dogic becomes a particular style of presentingesutailment systenWe refer
to [4] for a more detailed account of the axiomatic metalagimackground that we assume
in what follows. The notion obperational terminatiorj29] is parametricon the inference
system. We briefly recall the notions we need for our purpose.

Definition 1 The set of (finite) proof trees for a theory in a logic.# and the head of a
proof tree are defined inductively as follows pfoof treeis
— either anopen goal simply denoted ag, where¢ is a formula for.; then, we define

head¢) = ¢.
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— or anon-atomidree with¢ as its head, denoted as
T - T
()

where¢ is a formula for.#, A is an inference rule itZ, andTy,. .. T, are proof trees
such that

(4)

headT;) --- headTy,)

is an instance o\ for the theory..

We say that a proof tree idosedwhenever it is finite and contains no open gdals.

Notice the difference betweef), an open goal, an@, a goal closed by a rule without
premises.

Definition 2 A proof treeT is aproper prefixof a proof treeT” if there are one or more open
goals¢s,...,¢n in T such thafl’ is obtained fronil by replacing eaclp; by a non-atomic
proof tre€eT; having@; as its head. We denote thishs T'.

An infinite proof treeis an infinite increasing chain of finite trees, that is, a seqe
{Ti }ien such that for ali, Ti C Tiy1.

We characterize the proof trees with computational meafihmmse which are computed
by aninterpreter[29]), by means of the notion of well-formed proof tree.

Definition 3 We say that a proof tre€ is well-formedif it is either an open goal, or a closed
proof tree, or a proof tree of the form

T o T
¢

where for eaclj T is itself well-formed, and there is< n such thafl; is not closed, for any
j <iTjisclosed, and each of thg1 ,....T, is an open goal. An infinite proof treeveell-
formedif it is an ascending chain of well-formed finite proof tree4.is calledoperationally
terminatingif no infinite well-formed tree for¥ exists.

(4)

So operational termination intuitively means that, giveniritial goal, an interpreter that
solves goals from left to right will either succeed in finiteé in producing a closed proof
tree, or will fail in finite time, not being able to close or erd further any of the possible
proof trees, after exhaustively searching all such prcedsr

3 Rewriting with Membership Equational Theories
In the spirit of [3], we can associate to an admissible mestiiprequational theofyT =

(Q,EUAX) a corresponding (conditionathembership rewrite theorg?r = (Q',Ax,Rr)
defined as follows. The signature & adds a fresh new kind Truth with a constant tt to

1 Open goals appear at the leaves of a proof tree; but they calodedby the application of inference
rules with no premises. For example, an open goalt can be closed by applying a Reflexivity inference
rule.

2 Asin [3], admissible theorie¥ = (Q,E UAX) will always be assumed to hamen-empty kindghat is,
for each kindk in Q there is always a ground term of kitkd
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fmod LengthOfFiniteListsMRT is
kind [Nat].
kind [NatIList] .
op 0 : -> [Nat] .
op s : [Nat] -> [Nat] .
op zeros : -> [NatIList] .
op nil : -> [NatList] .
op cons : [Nat] [NatIList] -> [NatIList] [strat (1)] .
op length : [NatIList] -> [Nat] .
cmb L : NatIList if L : NatList .
mb O : Nat .
cmb s(N) : Nat if N : Nat .
mb zeros : NatIList .
mb nil : NatList .
cmb cons(N,IL) : NatIList if N : Nat /\ IL : NatIList .
cmb cons(N,L) : NatList if N : Nat /\ L : NatList .
cmb length(L) : Nat if L : NatList .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))
if N : Nat /\ L : NatList .
endfm

Fig. 3 CS-MRT (in MAUDE syntax) for the prograrhengthOfFiniteLists

Q, and for each kind in T an operator equalk k— Truth. Zt has the same equational
axiomsAx asT, so that rewriting is performed modulx, and contains rules of the form
equalx,x) — tt for each kindk in T. Furthermore, for each admissible conditional equation
of the form(1) in E the setRr has a conditional rule of the form

t—t if AS...A; 3)

where ifA; is a membership the® = A;, if A is a matching equation = v;, thenA? is the
rewrite conditionv; —* u;, and if A; is an ordinary equation; = v;, thenA; is the rewrite
condition equdlu;,v;) —* tt. Similarly, for each conditional membership Thof the form
(2) we associate a conditional membership of the form,

t:s if AlL... A (4)

with the A? defined exactly as before.

The point of associating to an admissible membership espeittheoryT a correspond-
ing rewrite theoryZy is that we can perform equational reasoning by rewritingc@frse,
unlessZy satisfies additional properties such as confluence, saredsingness [3}Ax
coherence [41], and so on, equational reasoning by regriiiitl only be sound but not
necessarily complete.

Equational reasoning in a membership equational th&dpy rewriting with the rules
in Z1 modulo the axiom#x can be made more expressive by making the rewritmgtext-
sensitiven the sense explained in Section 2.1. Therefore, we defioaxt-sensitive mem-
bership rewrite theorfCS-MRT) as a pai{%r, 1), whereZ7 is a membership rewrite
theory, sayZt = (Q',Ax Rr), and the context information is provided by a replacement
mapu. For instance, the CS-MRT specification (also given inlE-like notation) which
corresponds to the WUDE program in Figure 1 is given in Figure 3. Herfyat] de-
notes the kind of sorfat, and [NatIList] denotes the kind of both sorttList and
NatIList. The profile of the operators is given in terms of these kiliis.omit the oper-
atorequal as no conditional rule includes equations in its conditigrat. Note also the
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(Subject reduction) t:s
AIO' A;O'
(Membership-1) u:s
wheret ;s if A;---Aq  INn Ry andu=axto

tes
(Membership-2) t:s
(Reflexivity) t—=*t if t =paxt’
t _>1 t/ t/ ¥ t//
(Transitivity) t—*t"
u —tu
(Congruence) f(Us,... Ui,...up) =2 f(ug,...,u,... up)

wherei € p(f)

Ao ... Ao
(Replacement) u—tt'o
wheret —t’ if Aj---Aqin Ry andu=axto

Fig. 4 Inference rules for context-sensitive membership rewriting

first conditional membership (with keyworshb) which expresses tha@atList is a subsort

of NatIList. The sort profile for the arguments and result of each opemtine MAUDE
programLengthOfFiniteLists are desugared here as memberships in the CS-MRT speci-
fication. In particular, viewing the sort profile of a funatigymbol as a shorthand for a kind
profile together with a membership, such as éens above, allows us to cleanly handle
operator overloading: to each different sort profile cqumwls a different membership. We
also allowad-hocoverloading, that is, operators with same name and diffédewl profile,
although in that case we require thatfifhas kind profiless - - - kn — k andky -+ - kn — K/,
thenk =K.

We can define the rewriting relation associated to a CS-MRTegans of the infer-
ence rules of Figure 4, whiélgeneralize to rewriting moduldx and adapt to the context-
sensitive case those in Figure 7 in [3]. Note that infererezes now happemodulothe
equational axiom#x in the theory: matching with a conditional equation in thepRee-

3 Strictly speaking, the (Congruence) rule should be geized| as done for (Replacement), to allow
one-step rewrites from any terasuch that =ax f(ug,...,u;,...,un). However, this extra generality can be
avoided by assuming that either: (i) the implementation parékx-matching with extensiofas done, e.g.,
in Maude: see [6], Section 4.8); or (ii) the rules in our CS-MRave been completed to lseherentwith
the axiomsAx (see [41]). Under either of these two assumptions, the sinigierence rules in Figure 4 are
complete.
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ment inference rule, and with a conditional membership exMembership-1 rule, is per-
formed modulo Ax and Reflexivity also includes equality modudo. Note also that the
relationt : s has a subrelatioh:: s, corresponding to the special case of a membership in
which the ternt is not further rewritten before computing its sort. For eatbmA appear-
ing in a condition of a conditional rule or a conditional mesnghip in(Z%r, 1) we extend
our previous meta-notatioA® to memberships as follows: (1) X is of the formx : s with
X a variable, therA®* = x :: s; and if A is of the formw : s with w a nonvariable term, then
A®* = w: s. The obtained inference system is context sensitive in te glgtailed way. The
most obvious case is the restriction on the Congruencewtilieh blocks rewriting in frozen
argument positions; further context sensitivity is ackivhrough thed® conjuncts in the
conditions of the Membership-1 and Replacement rules. et fis that, if unrestricted,
these inference rules could easily undermine contextithatysby evaluating subterms that
are supposed to be frozen, thus easily leading to nontetimmésee [9] for an example).
This is prevented by the case whan= x : s, since therA® = x :: s. This means that ik
matches a subterm of the term whose sort we are computingthétiviembership-1 rule
—or that we are trying to rewrite with the Replacement rulehert that subterm will not be
further rewritten in the process of checking its sort.

We can use the notion of operational termination to explaetiehavior of the non-
terminating examples in Section 1.1. Note that, becauskeeodlistinction between: sand
t :: s, the infinite proof tree for th&NF module has to be expanded, alternating applications
of (Membership-1) and (Membership-2) rules. In this way,imgeed obtain a well-formed
infinite proof tree. Note that this example does not involig eewriting. The given infinite
proof tree for modula@NF2 does not require any modification and is indeed well-formed.

The notion of CS-MRT just defined and its associated infexamtes capture in par-
ticular the case of MUDE functional modules. Indeed, aADE functional module, after
explicitly importing all its submodules and desugaringsittbsort declarations and operator
declarations as explicit conditional memberships (se¢éi@e2.2 and the example in Figure
3), defines a membership equational thebry (X, E UAX) which is required and checked
to be admissible. In MuDE, the axiomsAx are not explicitly declared by equations; they
are instead declared aperator attributeof associativity, commutativity, and identity with
the assoc, comm, andid: keywords. Furthermore, a MUDE functional module defines a
replacement map by means of thetrat operator attribute, where if has been declared
with the strategy(i ...ix) thenu(f) = {i1,...,ix)} — {0}, and if no such strategy has been
declared for am-ary f, thenu(f) = {1,...,n}. By the general transformation defined in this
section, the admissible MEL theofly and the replacement mapdefined by the MUuDE
functional module are then transformed into the CS-MBF, 11). The MAUDE interpreter
then provides a sequential strategy to apply the inferemles in Figure 4 in a specific order.
Therefore, MaUDE's computations for a functional module of the foiff, ) are a subset
of those permitted by the inference system in Figure 4 foQBeMRT (%, 1).

4 Operational termination of CS-MRT programs

To close the gap between MEL programs and current termiméatiols, we define and prove
correct two theory transformations, namely transfornta#do mapping a CS-MRT to a cor-
responding CS-CTRS in such a way that operational terntnaif the CS-CTRS implies
that of the original CS-MRT, and transformation B, mapping-CTRSs to CS-TRSs such
that termination of the CS-TRS implies operational terrtioraof the CS-CTRSs.
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4.1 Transformation A: From CS-MRT modulo to CS-CTRS modulo

Given a CS- MRT(QT,u) say withZr = (K 2,S Ax Rr), we associate to it a CS-CTRS
(%pu) over a signatureZ, modulo axiomsAx as follows: S contains, for each operator
f:w— kwherew =k; ...k, in Z, an operatorf" of arity n. We furthermore add a truth-
value constant tt, plus unary operatasg € > for eachk € K, andiss,is; € > for each
s€ S whereiss(t) encoded :: s andis(t) encodeg : s. The role of operatorsfW is to
disambiguate ad-hoc overloading: for eattiermt, the Z-termt is obtained by making its
variables unsorted, and by replacing edciw — k by . We assume that there is only one
k for eachw, so this operation is well-defined. The axiofesare just the equatioris=t’ for
eacht =t’ in Ax The set of ruleR is given byﬁ: Rk URsUR: URy, whereRk contains
rules of the form

iSk(fW(X]_w..,Xn))—ﬂt if {iSK(Xi)—)tt}lgign (5)

for eachf : w— kin Z, with w = k; ... kn. The setRs contains rewrite rules of the form
isg(X) — iss(x) for each sors € S(to encode the (Membership-2) rule). The Begtcontains
a conditional rule of the form,

Tt if {isg (%) — tthicicm: A,....Aq (6)

for each conditional rulé — t’ if Ag,...,A, in Rr involving variablesx; K1, Xm - Kms
here if Ay is @ membership; : s, then: (i) if u; is a nonvariable term, thed is the rewrite
conditionis (U;) — tt, and (ii) if u = xis a variable, the# is the rewrite conditiorss (x) —
tt; otherwise, ifA; is a rewrite conditioru; — v;, thenﬂ@ is the rewrite conditiorn; — V.
Finally, Ry contains a conditional rule of the form,

iss() — tt if {is (%) — ttha<i<m, A1,...,An. @)

for each conditional memberships if Ag,...,A,in Ry involving variables«s : ki,...Xm:
K-

Regarding the replacement map we definefi(f%) = p(f) for eachf :w— kin
2, and for eactk € K and eacts € Swe definepu(isx) = 0, pu(iss) = 0, andpu(is;) = {1}
(because one may reducin t : sbut notint :: s).

The following theorem connects operational terminatiothemCS-MRT logic, given by
the inference rules in Figure 4, and operational termimatiothe CS-CTRS logic, whose
inference system consists of the inference rules of Reftgxitransitivity, Congruence and
Replacement in Figure 4 above.

Theorem 1 If the CS-CTRS(@Tj) is operationally terminating, then the CS-MRT
(%7, 1) is operationally terminating.

The proof is as follows: we show that any well-formed infirxjﬂ@urld1 proof tree for
(%1, 1) can be transformed into a well-formed infinite proof tree fefr, 1), using the
following lemma.

Lemma 1 For any WeII-form~ed ground proof tree Q f@#, 1), there exists a well-formed
ground proof treen (Q) for (%7, 1) whose head goal is

4 Since admissible membership equational theories have nondingl; the operational termination of a
CS-MRT is equivalent to the operational termination ofgtsund proofs. This is because, given an infinite
proof treeT, we can always find a ground substituitioryielding an infinite ground proof tree(T) obtained
by applyingo to all terms inT. Therefore, in what follows we reason in terms of ground ptoeés.
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— isi(t) —* tt if the head goal of Q was:ts
— iss(t) — ttif the head goal of Q was:t s
— T —* Uif the head goal of Q wast* u
— T =1 Uif the head goal of Q wast1u

Moreover, if QC Q thena(Q) C a(Q'), so that for any infinite proof tree @ (Q) is
infinite.

So we are left to prove the lemma above. For this, we need aifisaytemma about
substitutions, well-kinded terms, and equality modulooaxs. The first two statements in
this lemma can be proved by straightforward structural @tidum, making use of rules of
type (5). The proof of the last statement follows easily tguiction on the length of proofs
from the first statement, observing that, as pointed out ictiGe 2.2, the axiom#\x are
given at the kind level.

Lemma 2 For any term t, substitutio, and condition ¢, we haves =t & and (co) =
€ 0. Furthermore, if t is a well-kinded ground term of kind k Wt , 1), then(Z%r, ) -
isk(t) —1 tt. Finally, for t,t’ terms t=axt’ impliest = t'.

Proof Obvious.

Transformation A is a mam defined by induction on the structure of well-formed
ground trees. The base case corresponds to ground prosfdpesisting of a single atom,
for which a is defined according to the translation of head goals statedinma 1. We now
have to consider each of the inference rules and defibg cases. Suppose a well-formed
ground proof treeQ where the fist inference step is an application of the Menttyei$
inference rule, then this tree looks as follows:

Tl Tn
AIO' . A;U
u:s

where t:sif A;---A, inRy andu=axto. Therefore, ir(,@T,ﬁ) we have a conditional
rewrite ruleiss(t) — tt if {is () — tt}i<i<m, A,...,An. Then the ground proof trez(Q)
has the following form:

Qu Qm a(T) a(Tn)
s, (x10) =ttt - isg,(xm0) =ttt a(Alo) - a(Ano)
iss(0) —1 1t

where the Replacement rule is correctly applied sise@) =5, iss(to) by Lemma 2, the
Q1,...,Qm are closed proof trees that exist by Lemma 2, and it is easydw ¢hat they are
unique, due to the assumptions making well-kinded termsnliguous.

The case where the first inference step is the applicatioheoReplacement inference
rule is entirely analogous to the above case, except thabttgoalu —1t'g is now trans-
lated into the root godi —1t'G.

When the first inference step is the application of the Memsiipr2 inference rule, we
have a well-formed ground proof trégof the form

T/

t:s

t:s
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and thena (Q) is of the form
a(T’)
iss(f) —1tt tt—"tt

isy(f) —1iss(t) iss(f) —* tt
isg(t) —* tt

where we have applied the Transitivity rule to the root gegt) —* tt, and the Replacement
rule to close the goasy(t) —? iss(t).

When the first inference step is the application of the Sulifeduction inference rule,
we have a well-formed ground proof tr€eof the form

_h T2
t-t t:s
t:s
and thero (Q) is of the form
a(Ta)
[T a(Ty)

isi(f) —Lis(t) isi(t') —* tt
isg(t) —* tt

where we have applied the Transitivity rule to the root gsigt) —* tt, and the Congruence
rule to the goals(f) —1 is,(t').

The translationsr(Q) of a well-formed ground proof tre® where the first inference
step is the application of any of the remaining inferencesuhamely, Reflexivity, Transi-
tivity, or Congruence, all follow a very simple pattern, nal if the proof treeQ is of the
form

T o Ty
G

thena (Q) is of the form
a() -~ a( )
a(G)
Note that in the case of Reflexivity, we use again Lemma 2 ttacepequality modul@x
by equality moduldAx.

It is also easy to check that maps well-formed ground proof trees to well-formed
ones, and that i C T’, thena(T) C a(T’). To check this last property, we may assume
without loss of generality, thak C T’ is the extension of associated to the application of
an inference rule. The result then follows easily by casdyaigon the inference rule used
and the definition of the corresponding tree extensionsigi@ve for each of the inference
rules.

This ends the proof of Lemma 1 and therefore finishes the mb®heorem 1. O

For purposes of proving termination, the implication in ©rem 1 is all we need. How-
ever, it is natural to ask whether Transformation A@npletethat is, is the implication in
Theorem 1 actually an equivalence? We conjecture that i iscaivalence, and therefore
that Transformation A is complete, but leave a detailed stigation of this problem for
future research.
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fmod LengthOfFiniteListsMRT_TA is
sort S .
op isKNat : S -> S [strat (0)]
op isKNatIList : S -> S [strat (0)]
op isNat : S -> S [strat (0)]
op isNatIList : S -> S [strat (0)]
op isNatList : S -> S [strat (0)]
op tt : -> S .

op O : ->8S.
ops:S->8.
op zeros : -> S .

op nil : -> 8§ .
op cons : S S -> S [strat (1 0)]
op length : S -> S .
vars TM N ILL : S .
eq isKNat(0) = tt .
ceq isKNat(s(N)) = tt if isKNat(N) = tt .
ceq isKNat(length(L)) = tt if isKNatIList(L) = tt .
eq isKNatIList(nil) = tt .
eq isKNatIList(zeros) = tt .
ceq isKNatIList(cons(N,IL)) = tt
if isKNat(N) = tt /\ isKNatIList(IL) = tt .
ceq isNatIList(IL) = tt if isNatList(IL) = tt .
eq isNat(0) = tt .
ceq isNat(s(N)) = tt if isNat(N) = tt .
ceq isNat(length(L)) = tt if isNatList(L) = tt .
eq isNatIList(zeros) = tt .
ceq isNatIList(cons(N,IL)) = tt

if isNat(N) = tt /\ isNatIList(IL) = tt .
eq isNatList(nil) = tt .
ceq isNatList(cons(N,L)) = tt
if isNat(N) = tt /\ isNatList(L) = tt .

eq zeros = cons(0,zeros)
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))
if isKNat(N) = tt /\ isKNatList(L) = tt /\
isNat(N) = tt /\ isNatList(L) = tt .
endfm

Fig. 5 Use of transformation A

Example 2For our running example, we would get the transformed systefigure 5.
We have omitted the disambiguation of operators, since noigty is involved in this
example; also, equal has been omitted.

4.2 Variants of Transformation A

In order to provide the simplest input for the next transfation which removes conditions
from rules (see Section 4.3), we can apply some obvious ggtions on the previous
transformation which do not change the termination behasfisghe program. The benefits
of using these optimizations can be experimentally justifiem the benchmarks discussed
in Section 5.2 below.
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4.2.1 Removal of kinds

In a first variant, thes, predicates for kinds are omitted. This simplifies the résgltheory
with minimal loss in its expressiveness, particularly fpesifications in which, as it is usu-
ally the case, all variables of a conditional equation oe @re required to have a sort in the
condition.

If all operator profiles involve only sorts, and all variablappearing in equations and
memberships have a declared sort, thekig the kind of a sork, theniss(x) — tt implies
isk(x) — tt. Therefore, we can safely usg(x) — tt instead ofis,(x) — tt Aiss(X) — tt in
the conditional part of the rules computed by the transfdiona

4.2.2 Simplifying conditions
A conditional fragmentithout extra variablesike
iSs, (X1) = tEA -+~ Alisg, (X) — tt
in a conditional rule can be collapsed into a single expogssi
and(iss (x1),and(- - - ,isg (%)) - --) — tt

by introducing a binaryand’ operator defined by

opand : S8 -> 8 .

eq and(tt,T) =T .
Moreover, if the right-hand side of the conditional rulétiswve can use the previous expres-
sion withand as the new right hand-side of the rule: the conditional rule

| —tt if iSg, (X1) — tEA -+~ Alsg (Xc) — tt
eventually collapses into the unconditional one

| — and(iss, (x1),and(- - - ,iss (X)) - )

This ends up with less symbols to be processed, and only cedadile instead of
(potentially) several mutually recursive rules, thus egghe task of the termination tool.

For instance, with the two previous variants, the equatmithe system in Figure 3
become the ones shown in Figure 6.

4.2.3 A variant for order-sorted theories

In this section we consider a much simpler variant of thesfamation(%, ut) — (%, jt)
just defined. For order-sorted rewrite theories, which & dpecial case where the only
memberships involved in conditions are variables, and tiilg membership axioms cor-
respond to subsort and operator declarations (see Sec&pntlis variant drops also the
iss predicates for sorts. This variant is correctly for order-sorted theories, for example it
would be invalid for the INF program of Section 1 which conga membership but no rule,
since one would get an empty TRS.
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eq and(tt,T) =T .
eq isNatIList(IL) = isNatList(IL) .
eq isNat(0) = tt .
eq isNat(s(N)) = isNat(N) .
eq isNat(length(L)) = isNatList(L) .
eq isNatIList(zeros) = tt .
eq isNatIList(cons(N,IL)) = and(isNat(N),isNatIList(IL)) .
eq isNatList(nil) = tt .
eq isNatList(cons(N,L)) = and(isNat(N),isNatList(L)) .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))
if and(isNat(N),isNatList(L)))) = tt .

Fig. 6 Optimized transformation A

4.2.4 Incompleteness

Obviously, since these simpler variants yield less retdtgconditions in the translated rules
in Z, these variants allow more rewrites and therefore our tesaapply to these simpler
transformations, in the sense that a proof of operatiomaliteation for the transformed the-
ory ensures operational termination of the original the8ut of course, these variants are
incomplete. For instance, it is not possible to use variaot{@ove termination of program
LengthOfFiniteLists in Figure 1. In fact, the obtained CS-TRS:

zeros — cons(0,zeros)
length(nil) — 0
length(cons(N,L)) — s(length(L))

with p1(cons) = {1} is not (operationally) terminating

length(zeros) — length(cons(0,zeros)) — s(length(zeros)) — ---

4.3 Transformation B: From CS-CTRS modulo to CS-TRS modulo

To check operational termination with respect to the CS-8Téyic, we propose a trans-
formation associating to a CS-CTR%, 1) an unconditional CS-TR8% (%), % (u)). We
generalize the classical transformation for proving opieral termination of a 3-CTR%?

as termination of a TR% (%) [35, Definition 7.2.48], so as to handle both rewriting mod-
ulo axiomsAx, and the context-sensitive restrictions imposed by théaogment magu.
The classical transformation for proving termination ofedeiministic 3-CTRSZ yields a
TRS% (%) given as follows: each conditional rule

| -rif sg—ty,...,5n — tq

is transformed into tha+ 1 unconditional rules

I — Ug(st,x1) (8
Ui_1(ti—1,Xi—1) — Ui(s,xi))  2<i<n )
Un(tn,Xn) — 1 (10)

where thelJ; are fresh new symbols added to the signature. Xjtare vectors of variables
defined as follows: assume a given ordering on the set ofbl@g&”. Then,x; contains the
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ordered sequence of the variables in the seflYarVar(t;) U---UVar(ti_1) for 1 <i <n,
which, by determinism, ensures that in the above rules dgbhand side variable occurs
in the left-hand side; or, in a clever way so as to avoid kegpiack of unused variables:

xj = (Var(l)UVar(ty) U---UVar(ti—1))
N (Var(t) UVar(s1) UVar(tipg)U---
U Var(sy) UVar(ty) UVar(r))

In our approach, we allow rewriting modukx and also transform the replacement map
into a new replacement mag (u) as follows: % (u)(U) = {1} for all new symboldJ that
are introduced to deal with the equations in the conditiquaait of each rule inZ (that is,
only the first argument df can be evaluated), ar#f (1) (f) = u(f) for all symbolsf € .#.

Example 3For our running example (in the optimized version given igufe 6), the corre-
sponding unconditional translation of the only conditilbm#e consists of the rules:
length(cons(N,L)) -> uLength(and(isNat(N),isNatList(L)),L)
uLength(tt,L) -> s(length(L))

where we also havé/ () (uLength) = {1}.

Theorem 2 If % (%) is % (u)-terminating modulo AX, thef#, 1) is operationally termi-
nating modulo Ax.

Note that in [29], we showed that for CTRSs, operational teation is equivalent to the
so-calledquasi-decreasingnegsoperty; and it is already known that for a standard CTRS
Z, termination of% (%) implies quasi-decreasingness %f[35, Proposition 7.2.50 and
Lemma 7.2.40]. So our theorem above is a generalizatiori®féBult to the case of context-
sensitive rewriting modulédx. However, the proof we give below is completely different:
the reason is that, although the proof of the result basedequasi-decreasingness property
can be extended to the context-sensitive case, it is howmtarlear how to further extend
it to the moduloAx case, because it would require the subterm modwaeelation to be
well-founded, which is not necessarily the case, for exampbdulo identity.

Since% (%) is unconditional Z (u)-termination moduldAx of % () is equivalent to
its operational termination. So, as for Theorem 1, our poddtheorem 2 is done by proving
that any infinite well-formed proof tree fqZ, ) can be transformed into an infinite, well-
formed proof tree fok% (#),% (L)). This is a consequence of the following lemma.

Lemma 3 For any well-formed proof tree T fdi%, 1) whose head goal is eithert* u or
t —1 u, there exists a well-formed proof tr@dT) for (% (%#),% (1)) whose head goal is
t —* u. Moreover, if TC T’ thenf(T) C B(T’).

Proof We start by two preliminary remarks. If a proof tréefor (%, 1) has a head goal of
the formt —* u, thenT has the shape

Ty Tk
V1 —" W 1 Vk — Wk (Rep))
tn —7 Un
(Congr) (11)
T (Congr)
b= (Congr)

t—tu
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If the head goal i$ —* u, thenT has the shape

Tn

. — (Refi)
To h1—"th th—u (Trans)
1 : (12)
Tll Ehma”: - ’ (Trans)
="t h—u (Trans)

t—"u

wherety =t andt, =ax U. So globally, a proof tree is made by alternation of the presi
two shapes.

Second remark: if we have a proof trEavhose head goal ts—* u, then for any context
C admissible foru (that is the path to the hole follows only allowed positioi$3 possible

to build a proof tree for goaC[t] —* C[u] by “pushing” the context into the transitivity and
reflexivity steps:

_ T
th—1 -1 th
To )
T1 t -1 to : (Congr) (Refl)
foot —4 * (Congr) Cltn-] —"Cltn] _ Cltn] ~" Clt] (Trans)
:(Congn)  Clty] -1 Clty] : (Trans)
Clto] -1 Clty] Clta] =" C[u] (Trans)
C[t] =" C[u]

To prove the lemma, for each proof tr€eve construct a correspondifiy T) by induc-

tion on tree structure. We have two cases, depending on wihtitb head goal of has the
formt —*uort -1 u.

Case 1: the head goaltis=* u

ThenT has the shape (12). By structural induction on trees, we rssyrae that each subtree

Ti
U=
Lot oty
has a transformed trg&U;) of the form
ki
qulTi e e
Tiz ti - ti ti — (Trans)
i
: 1 t-l t-l T (Trans)
i1 ! ! ! (Trans)

ti_1 ="
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thenB(T) is built as follows.

Thn
(Refl)
T Tt t,—tu
— (Trans)
th-1 _xy
2
Ty )
T 12
" n T n r{l — (Trans)
_
n-1 n ”* (Trans)
th-1—"U
T3
k: 1.1 .
T? t] =t :
klfll T 2 _ (Trans)
tl — 11 L —"u
T (Trans)
t117 —*u
i
Ti T_1.2 :
: lltl il P (Trans)
Y . 1 :)uu (Trans)
OH

The transformed tree above assumes Thé closed. IfT is not closed, because some
leftmostT, is not closed, thef(T) has to be “cut” at the level dF;. In both cases3(T)
is a well-formed tree ifl is well-formed.

Case 2: the head goaltis»! u

ThenT has the shape (11).

Case 2.1: if there is at least one (Congruence) step

ThenT has the shape
!
(Congr)

t—1

u

By induction on tree structure, we have a transformed B€E') for T’, so we can build
B(T) by “pushing” the congruence step inBdT’), as described above.

Case 2.2: if there is no congruence step

thenT has the shape
Tl Tn
S0 =" 110 ... $0-—-"tho
u—iro

(Repl)

for some conditional rulé — r if 55 —t1,...,5 — th with u=ax|0. In the transformed
TRS, we have the rules (8), (9), (10), from which we are nowngdb build successively
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trees for goals

Un(th,Xn)o —* ro (Gn)
Un(Sn,Xn)0 —* ro (Hn)
Un-1(th-1,Xn-1)0 =" 1@ (Gn-1)
Un-1($h-1,Xn-1)0 =" 1o (Hn-1)
Ui(ty,x1)0 —* ro (G1)
Ui(s1,x1)0 =" ro (H1)
u—*rag (K)

Indeed, we need to be slightly more general, in order to take of the axiom#&x goals
(Gk) arev —* ro for anyv =ax Uk (t, Xk ) 0.

1. Tree for goalGp): in the transformed TRS, we have the proof tree
71(Repl) ——(Refl)

V—"Tro ro—"ro
(Trans)

for any termv such thaw =ay Un(th, Xn) 0, using rule (10).

2. Tree for goalHy) from tree for goal(Gy): if we assume that, for ¥ k < nwe have a
proof treeTy for any goalv —* r o with v =a Uk (tk, Xk ) 0. By induction, we may assume
that the subtree

T/
SO —* o
has a transformed tree, of the form
!
THl —(Refl)
T U-1—="W U= %O (Trans)
/ il .
T01 th— b - (Trans)
Yo —" U U —" &o (Trans)

Ug —* tya

with up = sco andu; =axtxa. Then we build a proof tree for the gdai(sco, xko) —*
ro as:

Tk
U(ui,xx0) —ro
T
T up —t up (Congr)
uo —tuy (Congn)  Uy(u1,xc0) =1 Uy (U, X 0) (Trans)
Uk (U, Xk @) —1 Uy (ug, x¢ o) Uk(ug,xk0) —*ro

- (Trans)
Uk(UO,XkU) — o

where the proof tredy exists sincaJ (U, Xk 0) =ax Uk(tk, Xk) 0. Note that the congru-
ence steps above are valid with respect to the replacemenjuiul) = {1}.
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3. Tree for goalGk_1) from tree for goal(Hy): if we assume that, for 2 k < nwe have
a proof treeT, for the goalUy (s, xx)o —* ro, then we build a proof tree for any goal
v —*ro with v=axUyx_1(tk_1,Xk_1) 0 as:

(Repl) ,

1
v =" U0, %k0) K (Trans)

v—"ro

using rule (9) in the application of (Replacement), and tlaet fthat v =ax
Uk-1(tk—1,Xk-1)0-

4. Tree for goal(K) from tree for goal(H1): we have a proof tred; for the goal
U(s10,x10) —* ra, and then we build the proof tree

(Rep) ,

1
u—"Ua(s1,x1)0 1 (Trans)

u—"ro
using rule (8) in the application of (Replacement), and #et thatu =ax 1 0.

As for case 1, if the original proof tree is not closed, themsocut must be done in the
transformed tree. In either cas¢XT) is well-formed if T is so. In all case3(T) c B(T)
fTCT. O

Example 4According to Theorems 2 and 1, termination of progiiasngthOfFiniteLists
in Example 1 can be guaranteed by proving thtermination of the following TRS:

and(tt,T) -> T

isNatIList(IL) -> isNatList(IL)

isNat(0) -> tt

isNat(s(N)) -> isNat(N)

isNat (length(L)) -> isNatList(L)

isNatIList(zeros) -> tt

isNatIList(cons(N,IL)) -> and(isNat(N),isNatIList(IL))

isNatList(nil) -> tt

isNatList (cons(N,L)) -> and(isNat(N),isNatList(L))

zeros —> cons(0,zeros)

length(nil) -> 0

length(cons(N,L)) -> uLength(and(isNat(N),isNatList(L)),L)

uLength(tt,L) -> s(length(L))

where p(isNat) = p(isNatList) = p(isNatIList) = 0, p(and) = U(cons) =
U (uLength) = {1} andu(f) ={1,...,ar(f)} for all other symbolsf.

The u-termination of this system can be automatically provedwPROVE, see Sec-
tion 5.2 below for further details about the proof.

4.4 Improvements on the classical transformation

The following example shows that the use of replacementicdshs makes our transfor-
mation simulate more faithfully the original CTRS than tha&ssical transformation does.
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Example 5Consider the following CTR$? in [13, Section 3]:
a—b f(a) —b gX)—oga) if f(X)—X
As noticed by Giesl and Arts [13], this CTRS is quasi-dedreggshence operationally ter-
minating ([29, Theorem 2]). However, the classical transfation yields a TR/ (%):
a—b fag—b g(X) — U(f(X),X) U(X,X) —g(a)
which isnotterminating:
g(a) ~U(f(a),a) »U(b,a) = U(b,b) —g(@) — -

In our version of the transformation, we consid&rgiven with thetop replacement map
pr(f) ={1,...,k} for all k-ary symbolsf € .Z. In this caseCSRand ordinary rewriting
coincide. In our version of the classical transformatién(u+)(U) = {1}. Itis not difficult
to see thatZ (%) is % (i )-terminating. By Theorem 2%, ur) (equivalently the CTRS
Z) is operationally terminating.

Unfortunately, the use of replacement maps for the auyikymbolsU improves but does
not make the classical transformation complete for provingragenal termination of de-
terministic 3-CTRS. The following example illustratesstipioint:

Example 6 Consider the following CTR%? [35, Example 7.2.51]:
h(d) — c(a)
h(d) — c(b)
f(k(a),k(b),X) — f(X,X,X)
g(X) — k(Y) if h(X) —d,h(X) — c(Y)

As shown by Ohlebusch, this CTRS is quasi-decreasing hepestionally terminating.
However, the transformed TR (%):

9(X) — U1(h(X),X) f(k(a),k(b),X) — f(X,X,X)
Ui (d, X) — Uz(h(X),X) h(d) — c(a)
Uz(c(Y),X) — k(Y) h(d) — c(b)

is not u-terminating (whergu(U;) = p(Uz) = {1} andu(f) ={1,...,ar(f)} for any other
symbolsf):

f(k(2),k(b),U2(h(d),d)) — f(Uz(h(d),d),

Uz )
— " f(Uz(c(a),d),Uz(c(b), d),Uz(h(d), d))
—* f(k(a),k(b),Uz(h(d),d))

It is interesting to note that the counter-example givervabe notCollapse-Extended

terminating, that is, its termination is lost whenever onlelsaprojection rulesi(x,y) —
x and ri(x,y) — y for some new symbott. CE-termination is known to be a nice notion
of termination, because in practice terminating systerasrateed CE-terminating, and in
contrast to standard termination it enjoys better modiylarioperties [38]. So an interesting
open question is whether tk# transformation is complete for CE-termination.

Further note that, regarding the classical transformatind innermosttermination,
Ohlebusch proved that quasi-decreasingness of a 3-CTR&hipnermost termination of
the transformed unconditional TRS [35, Definition 7.2.32 conjecture that this holds for
innermost-CS-termination, where innermost-CS-rewgiisithe relation allowing rewriting
steps only when the subterms at non-frozen positions gmeilmermost normal form.

(h(d),d),Uz2(h(d),d))
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5 From theory to practice

As remarked in the introduction, once we have obtained a S-{i.e., a TRSZ together
with a replacement map), we can just try a proof ofi-termination ofZ (i.e., termina-
tion of CSRfor # and the replacement magp). Fortunately, several methods have been
developed for this purpose. In the following section, wectiee a tool which is able to deal
automatically with CS-MRT specifications given as\bE programs.

5.1 MTT: A Prototype Implementation

Our current MauDE Termination Tool (MTT) prototype is freely available forgarimenta-
tion athttp://www.lcc.uma.es/~duran/MTT/). It has a graphical interface which allows
the user to input membership equational programs in thresdE syntax. The user may
select different variants of transformations A and B, agktifie transformed program, and
finally try to prove its termination by calling existing teimation tools. Currently, it in-
teracts with GME, Mmu-TERM and ARROVE, but indeed it supports the TPDB syntax as
output Gttp://www.lri.fr/~marche/termination-competition) and therefore hence
any other tool supporting this syntax could be used as wethé future, we plan to develop
translations from other equational languages into MTT mg@khese techniques available
for those languages as well.

The tool implementation clearly distinguishes two par3:g reflective M\UDE speci-
fication implements the theory transformations A and B (idahg optimized variants) de-
scribed in Section 4, and (2) a Java application connects, CiIME, MU-TERM and
APROVE; and provides a graphical user interface. The Java ait is in charge of
sending the MuUDE specification introduced by the user toAMDE to perform transfor-
mations; depending on the selections made by the user, amgfdrmation or another will
be accomplished. The resulting unsorted unconditionalitieqy system may be proved ter-
minating by using either ME, APROVE or MmU-TERM. Itis also possible to asku-TERM
to perform a transformation from a CS-TRS to a TRS, and as& fermination proof of the
resulting TRS to the other back-end tools, as explainedgnrei 2.

5.2 Experiments

In order to validate our approach in practice, we have usednoplementation to (try to)
prove termination of a number of (small) MDE programs. For these experiments we per-
formed a fully automated proof search, attempting all gaediransformations on each ex-
ample, and all possible back-end tools. The results arepted on the web page:

http://wuw.lri.fr/~marche/MTT/.

which is currently under continuous development as parhefdevelopment of the MTT
tool itself. We have observed that:

1. For a majority of the programs we have tried (around 80%yeths at least one back-
end tool that leads to a termination proof on the CS-TRS obthby some combination
of the transformations described in Sections 4.1 and 4.8afjossibly involving the
refinements in Section 4.2).
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2. The ‘and’ optimization of Section 4.2.2 is clearly helpfihe proofalwaystakes less
time when the optimization is activated; furthermore, teofavoids timeouts (e.g., when
dealing withbagsof natural numbers doooleansin the setting of AC theories).

3. As expected, dealing with large programs is difficult. sThiearly shows that there is
a scaling-up issue in proving termination of programs. Thiesans that modular tech-
nigues should be investigated further (see below).

6 Conclusions and further work

Proving termination of equational programs having expvesteatures such as conditions,
typing, memberships, and evaluation strategies is impbttat nontrivial, because some of
those features may not be supported by standard terminaigbinods and tools. Yet, use of
such features may be essential to ensure termination.

Sometimes a crucial issue may even be how to define the reduetiation. For exam-
ple, with the two rulesf (a) — f(b) anda— b if f(a) — f(b), do we havef(a) —* f(b)
with innermost strategy? In an interpreter likeaMDE, asking normalization cd loops for-
ever, because it tries to apply the second rule, hence tiesducef (a) with innermost
strategy, hence tries to normaliaegain. Therefore, we have focused on the recently intro-
duced notion of operational termination [29] which closedyresponds to the termination of
an interpreter. In fact, in this paper we have shown thatlamed in [29], such a notion is
flexible enough to provide a suitable notion of terminationlanguages and systems whose
operational semantics is described by means of infereratersyg involving a variety of re-
lations which are not necessarily rewrite relations (etlge, memberships in the CS-MRT
logic). In this sense, this paper provides a more satisfa¢gwmination framework than the
earlier version [9].

We have presented theory transformations that can be udertige the gap between
equational programs and termination tools, have proveit twerectness, and have dis-
cussed a prototype implementation in a tool takingU®e functional modules as in-
puts, performing the transformations, and mapping theltiegutransformed theories to
MU-TERM and from there to @ME, APROVE, and other termination tools. Moreover, we
have proposed variants and optimizations of our theorysfaamations that are also well
suited for proving operational termination ofA/dDE programs. Much work remains ahead,
both in theoretical aspects and in experimentation. Thealéssues that need to be further
investigated include the following.

Firstly, our methods could be extended to prove terminatiguational programs with
innermostcontext-sensitive rewriting in the case wficonditional rulesFor unconditional
specifications, methods for such termination already eist have been shown useful for
proving termination of programs with elementary E-stréedn the OBJ sense [25]. There
are also tools like AROVE or TERMPTATION which permit proving termination of inner-
most rewriting; and there are also tools likeRBoo [11] which are specialized to deal
with termination of rewriting under strategies (in parl&y a class of innermost context-
sensitive strategies for unconditional systems).

Secondly, our methods should be extended to take advanthgeisiing modu-
lar/incremental termination proof techniques [14,30,38-n our setting. Since MUDE
programs are built by composition of modules, terminatibowd be proven incremen-
tally: each time a new module is added, a proof of terminagioould be obtained by using
the knowledge of termination of previous ones. Howevethterr investigation is required,
since MAUDE module hierarchies do not necessarily respect the usuarhrécal property
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required for hierarchical TRSs, namely that for each ruldeat] the left-hand side’s root
symbol is a new symbol. Furthermore, even if this were to fioidome MAUDE programs,
the transformations we have defined do not preserve thaepson particular because of
sort elimination: if a new symbal declares an old sof as its codomain, then a new rule
iss(f(...)) — ... has to be added, whereiss is an old symbol. A closely related topic is
the development of techniques for proving terminatiopafameterized modulgas those
definable in Full MauDE and in MAUDE 2.2. This is the first-order analogue of termination
techniques for polymorphic higher-order functions [16hig problem is closely related to
modularity, because one wants to investigate conditiongwhich a terminating parame-
terized module, when instantiated by a view to a terminatimget instance module, results
in an instantiation that can be guaranteed to be terminating

Thirdly, completeness issues should be further investijatVe have shown in Sec-
tion 4.4 that transformation B is not complete. We conjezthiat transformation A is com-
plete, and that transformation B is also complete if thedfamed theory is evaluated with
an innermost context-sensitive strategy. Completendsargformation B when termination
of the transformed theory is replaced by CE-terminatioruthalso be investigated.

Fourthly,intrinsic proof methodslirectly based on operational termination, and not re-
quiring transformational approaches such as those pregémthis work, should be inves-
tigated. In this regard, a future investigation of how opieraal termination and ordering-
based termination approaches can be combined togethdinde@a intrinsic proof methods,
for example for CS-MRTs, seems very worthwhile. The relelip between operational
termination and quasi-decreasingness studied in detg#?dhcan serve as a basis for a
more general investigation of this kind.

More experimentation is needed to further extend and refimereethods. The current
prototype provides a first basis for such experimentatioshould be extended and im-
proved in several directions, including adding interfatesther equational languages and
termination tools, and adding support for the theoretigé&tesions mentioned above.
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