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fmod LengthOfFiniteLists is

sorts Nat NatList NatIList .

subsort NatList < NatIList .

op 0 : -> Nat .

op s : Nat -> Nat .

op zeros : -> NatIList .

op nil : -> NatList .

op cons : Nat NatIList -> NatIList [strat (1 0)] .

op cons : Nat NatList -> NatList [strat (1 0)] .

op length : NatList -> Nat .

vars M N : Nat .

var IL : NatIList .

var L : NatList .

eq zeros = cons(0,zeros) .

eq length(nil) = 0 .

eq length(cons(N, L)) = s(length(L)) .

endfm

Fig. 1 A M AUDE program example

1 Introduction

The goal of this work is to study transformational techniques that can help to bridge the gap
between programs in expressive rule-based equational languages such as ASF+SDF [39],
OBJ [19], MAUDE [5], CAFEOBJ [12], HASKELL [21], and modules in suitable equational
subsets of ELAN [1] and CASL [7] on one hand, and termination tools assuming consid-
erably more restrictive specifications (untyped, unconditional term rewriting systems) on
the other. There is a clear tension between the goals of expressiveness and efficiency when
using equational theories asprograms, and the considerably simpler assumptions of stan-
dard reasoning techniques for rewrite systems and their associated tools. For example, many
equational programs do not terminate in the usual sense, butdo so when evaluated with
suitabletypesand/orstrategies.

Example 1Consider the MAUDE specification in Figure 1, where sortsNatList and
NatIList are intended to classify finite and infinite lists of natural numbers, respectively.
The functionzeros generates an infinite list of zeros, andlength computes the length of
a finite list. Note theoverloadedoperatorcons, which can be used for building both finite
and infinite lists of natural numbers and which is declared with evaluationstrategy(1 0).
The interpretation of this strategy annotation is as follows: the evaluation of an expression
cons(h,t) proceeds by first evaluatingh and then trying a reduction step at the top position
(represented by 0). No evaluation is allowed on the second argumentt, because index 2 is
missing in the annotation. Note also thatNatList is a subsort ofNatIList.

This system is terminating (i.e., all reduction sequences,for any initial term, are finite),
but both the evaluationstrategy(1 0) for cons and the use of sorts and subsorts (especially
for length) are crucial to achieve this terminating behavior. In fact,by removing either the
strategy annotation or the sort information we would get a non-terminating program: on the
one hand, if reductions were allowed on the second argument of cons, then the evaluation
of zeros would never terminate. On the other hand, an attempt to evaluatelength(xs)

will not terminate iflength ‘accepts’ infinite listsxs like, e.g.,zeros; this is forbidden by
specifying thatlength only accepts lists of sortNatList, i.e., finite lists.

Current termination tools are not able to deal directly withprograms like that in Exam-
ple 1. This is because the programs make use of either types orstrategies, or because of
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other features such as conditional equations that are not handled by a given tool’s input lan-
guage. As illustrated by Example 1, these features are oftenessential to prove termination.
Expressive features not handled by some current termination tools include:

1. Sorts, subsorts, overloading, and memberships (see [33,3]);
2. Conditions, which may introduce extra variables;
3. Fixed evaluation strategies (e.g., leftmost innermost or leftmost outermost);
4. Programmable evaluation strategies, which permit annotating each function symbol with

local strategy information on what arguments to evaluate ornot (e.g., context sensitive
rewriting strategies [24], E-strategies [19,5], etc.);

5. Rewriting modulo axioms like associativity (A), commutativity (C), identity (I), AC,
ACI, and so on.

For example, APROVE [17] supports some form of conditional equations (2), innermost
rewriting (3), context-sensitive rewriting annotations (4), and AC symbols (5); CiME [8]
directly supports part of (5); andMU-TERM [26] directly supports (4). In all cases (and this
is the main focus of this paper), these tools do not support thecombinationof these features.

1.1 Membership Equational Logic and Operational Termination

Equational languages with expressive features are supported by expressivelogics, that typi-
cally include less expressive ones as sublogics. In this regard, membership equational logic
(MEL) [33,3] has proved to be a very expressivelogical framework, in which a wide range
of partial and total equational logics can be faithfully embedded [33]. This makes it an attrac-
tive framework logic for our main goal, which is developing termination techniques appli-
cable to equational languages with expressive features. Specifically, modules in equational
programming languages such as OBJ, CAFEOBJ, the equational sublanguage of ELAN,
and a suitable executable fragment of CASL can all be faithfully represented as member-
ship equational theories. Similarly, MAUDE’s equational sublanguage, whose modules are
membership equational theories, has itself a trivial, identity representation into this frame-
work. As a consequence, our termination techniques are not only applicable to MAUDE, but
also to all the above-mentioned languages.

In MEL the two basic types of atomic predicates are equalities t = t ′, and memberships
t : s stating that a termt has sorts. The axioms of a MEL theory are then Horn clauses,
whose head can be either an equation or a membership. There isa basic level of typing by
kinds; and a more sophisticated one bysorts, which is achieved by deduction using theory
axioms (the Horn clauses). Typing by sorts provides a general way to deal withpartiality,
in that a term having a kind but lacking a sort is regarded as anundefinedor error element.

Operationally, and assuming good executability properties such as the Church-Rosser
property [3] and admissibility in the sense explained in Section 3, equalitiest = t ′ can be
treated as rewrite rulest −→ t ′. Rewriting with equations as rules can furthermore be made
context-sensitiveby providing a replacement mapµ that indicates which argument positions
of a function symbolf must be reduced before equations forf are applied [23,24]. In this
way we arrive at the notion of acontext-sensitive membership rewrite theory(CS-MRT),
which is the operational form of a membership equational program. Note that in a CS-MRT
rewriting and computation of membershipst : s arerecursively intertwined, because appli-
cation of a conditional equation may require satisfying memberships in its conditions, and
application of a conditional memberships may likewise require satisfying equalities in its
condition. In particular, some useful programs may now onlyinvolve memberships, without
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involving any rewriting. Consider, for example, the following palindrome recognizer pro-
gram PALINDROME, which is a membership equational program expressible in MAUDE as
follows:

fmod PALINDROME is

protecting QID . -- Imports sort Qid (quoted identifiers)
sorts List Pal .

subsorts Qid < Pal < List .

op nil : -> Pal .

op : List List -> List [assoc id: nil] .

var I : Qid .

var P : Pal .

mb I P I : Pal . -- membership axiom
endfm

This program –where list concatenation is expressed with empty syntax and satisfies asso-
ciativity (assoc) and identity (id for nil) axioms– is terminating, that is, given a list of
quoted identifiers the specification can always be used to compute in a finite number of
steps whether it is a palindrome, i.e., has sortPal, or not. But note that no rewriting at all is
involved. Similarly, the program

fmod INF is

protecting NAT .

sort Inf .

subsort Inf < Nat .

var N : Nat .

cmb s(N) : Inf if s(s(N)) : Inf .

-- a conditional membership
endfm

is nonterminating, but again no rewriting is involved in itsnontermination. This means that
the standard theoretical framework of term rewriting, and the termination notions that have
been developed for it, including those for Conditional TermRewriting Systems (CTRSs), are
insufficient for dealing with termination of MEL programs. For this reason, we use in this
paper a proof-theoretic termination notion, calledoperational termination[29]. This notion
is parametricon the logic: it can be defined not just for MEL, but for many other logics, that
may or may not involve rewriting in their computations. Intuitively, an CS-MRT program
is operationally terminating if all its well-formed proof trees are finite. For example, the
nontermination of theINF program is witnessed by the infinite proof tree,

. . .

s(s(s(N))):Inf

s(s(N)):Inf

s(N):Inf

The following MAUDE program, involving both equations and memberships, shows how
the recursive interaction between rewriting and membership computations can lead to subtle
nontermination problems
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fmod INF2 is

sorts S .

op a : -> [S] .

op f : [S] -> [S] [strat (0)] .

ceq a = f(a) if a : S .

endfm

Note that botha andf do not have a sort, and are only defined at thekind level, using the kind
[S] associated to the sortS (see Section 2.2). Note also thatf has a strategy(0), forbidding
reductions in the argument off. MAUDE fails to terminate when trying to reduce the term
a. The problem is that, to compute the sort ofa, MAUDE tries to reducea to canonical form.
This is of course a correct proof attempt in membership rewriting logic that leads to the
infinite proof tree

. . .

a→f(a) f(a):s

a:s

a→f(a)

showing thatINF2 fails to be operationally terminating.
What these examples show, most strikingly thePALINDROME andINF specifications, is

that termination of a declarative program may not involve rewriting at all, or, as in the case of
INF2, may involveboth rewriting and other computational relations. As we furtherexplain
in Section 2.3, one key advantage of the notion of operational termination is that it is para-
metric on the logic underlying the given programming language. In particular, it is useful to
clarify termination issues forconditionalspecifications, even for the special case of rewrit-
ing specifications [29]. Intuitively, and this is for example illustrated byINF2 above, the
problem is that a conditional specification may have a terminating rewriting relation (INF2
does, since it is the empty relation) and still be nonterminating by “looping” in evaluating a
condition. Where some notions of conditional termination run aground, for example that of
”effective termination” (see [29]), is in failing to give a proper account of such looping. In
operational termination terms, any nonterminating behavior, either in the rewrite relation, or
in a condition, or in any other computational relation, is both detected and characterized by
the existence of an infinite proof tree.

1.2 Proving Termination of CS-MRTs by Program Transformation

In proving termination of a CS-MRT, an important goal is to exploit a wide range of stan-
dard termination tools. We achieve this goal by using a sequence oftheory transformations
that map the original program into increasingly simpler ones —each having the property
that termination of the transformed program at each step ensures termination of the input
program— until we reach a transformed program that we can enter into a tool. A CS-MRT
may exhibit all the features (1)–(5) mentioned above. We transform it by applying two trans-
formation steps eliminating, successively, features (1) and (2). In this paper we ignore (3),
because indeed innermost rewriting with a conditional TRS is not clearly defined at present
(see Section 6 for further discussion).

The endpoint of this transformation process is a TRS (Term Rewriting System) together
with a replacement mapµ (moduloa set of axioms). A substantial amount of research has
already been devoted to the definition and implementation oftechniques for proving termi-
nation of such context-sensitive TRSs (CS-TRSs) [2,10,15,22,27,28,42].
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Context-Sensitive Membership Rewrite Theory

Context-Sensitive Conditional Rewrite System

Context-Sensitive Rewrite System

Direct termination proof

Rewrite System

Termination proof

TRS Termination toolCS-TRS Termination tool

Existing transformations

Transformation B

Transformation A

Fig. 2 Overview of the methodology

The sequence of theory transformations is summarized in Figure 2. Transformation A
eliminates memberships and sorts (feature 1) resulting in an unsorted, context-sensitiveand
conditionalrewrite theory. Transformation B eliminates conditions, possibly with extra vari-
ables (feature 2); it generalizes a known transformation from CTRSs to TRSs [35] in two
ways: (i) by making it aware of context-sensitive rewritinginformation; and (ii) by allowing
rewriting modulo axiomsAx. In this way we obtain anunsortedandunconditional context-
sensitiverewrite theory.

We have implemented transformations A and B in the MAUDE Termination Tool (MTT,
http://www.lcc.uma.es/∼duran/MTT/). At this point, two options are available, lead-
ing to the forking in Figure 2. On the one hand, we can use a termination tool (such as
MU-TERM) that can directly prove termination ofCSR[2,27] (left branch). On the other
hand, we can use several existing theory transformations, including those proposed by Lu-
cas [22], Zantema [42], Ferreira and Ribeiro [10], and Giesland Middeldorp [15] (see also
[28]), to pass from a context-sensitive rewrite theory to anordinary rewrite theory whose
termination ensures that of the context-sensitive theory.These transformations are also im-
plemented inMU-TERM and implicitly used in APROVE. The resulting theory can then be
sent by MTT to a number of termination tools (namely CiME, MU-TERM, and all tools sup-
porting the TPDB syntaxhttp://www.lri.fr/∼marche/termination-competition/:
APROVE, TTT [20], etc.)

This paper is organized as follows: in Section 2, we recall basics of CTRSs, Membership
Equational Logic, and operational termination. Section 3 introduces Membership Rewrite
Theories, and their operational semantics. In Section 4 we describe our theory transforma-
tions and prove their soundness w.r.t termination: transformation A is defined in Section 4.1,
transformation B in Section 4.3. The example in Figure 1 is used as a running example for
these transformations. In Section 5, we discuss implementation issues and experiments. We
conclude with Section 6.
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2 Preliminaries

2.1 Conditional Term Rewriting Systems

We refer the reader to [35] to recall the usual notions and notations regarding term rewriting
and CTRSs. In general, a conditional rule is as follows:

l → r if s1 = t1, · · · ,sn = tn

wherel , r,s1, t1, · · · ,sn, tn are terms.l and r are called the left- and right-hand sides of the
rule, and the sequences1 = t1, · · · ,sn = tn (often denotedc) is theconditional partof the
rule. Rewrite rulesl → r if c are classified according to the distribution of variables among
l , r, andc, as follows: type 1, if Var(r)∪Var(c) ⊆ Var(l); type 2, if Var(r) ⊆ Var(l); type
3, if Var(r) ⊆ Var(l)∪Var(c); type 4, if no restriction is given. Ann-CTRS contains rewrite
rules of type at mostn.

It is well-known that the conditionssi = ti for 1≤ i ≤ n can be interpreted in a number
of different ways.Join CTRSs (often calledstandardCTRSs) interpret the equality symbol
= as joinability (↓R). We are mainly concerned withorientedCTRSs [35], i.e., those whose
(conditional) rules are written as follows:

l → r if s1 → t1, · · · ,sn → tn

indicating that the conditionssi → ti for 1 ≤ i ≤ n are intended to express the reachability,
in arbitrary many steps, of (instances of)ti from (instances of)si . A normal CTRSR is
an oriented CTRS such that everyti is a ground normal form (w.r.t. the unconditional TRS
obtained by removing the conditional part from each conditional rule ofR) for 1≤ i ≤ n. It
is well-known that a join CTRS can be easily simulated by a normal CTRS by introducing
new symbolsequalandtt, adding the ruleequal(x,x) → tt, and encoding a conditions= t
into equal(s, t) → tt [31]. An oriented 3-CTRSR is calleddeterministicif for each l →
r if s1 → t1, . . . ,sn → tn in R and each 1≤ i ≤ n, we have Var(si) ⊆ Var(l)∪

⋃i−1
j=1 Var(t j).

Let R be a CTRS. We inductively define unconditional TRSsRn for n∈ N by R0 = /0
and

Rn+1 = {lσ → rσ | l → r if s1 → t1, . . . ,sn → tn ∈ R ∧∀i,siσ →∗
Rn

tiσ}

The rewrite relation→R associated with a CTRSR is then→R =
⋃

n∈N →Rn.
In what follows we will need two further generalizations of the CTRS notion. First, we

want to allow rewritingmoduloa setAx of equational axioms, so that matching of rules
is performed with anAx-matching algorithm. We therefore view such a CTRS as a triple
R = (Σ ,Ax,R) with Σ the signature of function symbols,Ax the equational axioms we
rewrite modulo, andR the set of conditional rewrite rules. A second generalization is mak-
ing rewriting context-sensitive[23,24] so that only certain function arguments are rewrit-
ten, whereas other arguments remain “frozen”. For example,it is natural to restrict the
evaluation of anif-then-elseoperator so that rewriting is only allowed on the first argu-
ment. In this way, we can express that the evaluation of the conditions only makes sense
after evaluating the guard of the conditional expression. The simplest way of specifying re-
quirements of this kind is to assume that there is areplacement map[23], i.e., a function
µ : Σ −→ P(N) associating to each operatorf of n arguments a set of argument positions
µ( f ) = {i1, . . . , im}, with 1≤ i j ≤ n, which are those under which rewriting is allowed. For
example,µ(if-then-else) = {1}, and in Example 1µ(cons) = {1}. We then arrive at our
most general CTRS notion, namely a context-sensitive CTRS (CS-CTRS) defined as a pair
(R,µ), with R a CTRS that may involve axiomsAx, andµ a replacement map.
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An important advantage of context-sensitive rewriting is that rewrite systems that are
nonterminating if rewriting is allowed on all term positions can often become terminating,
and can also allow one to handle infinite data structures, such as in the example in Figure 1.

2.2 Membership Equational Theories

The simplest typed equational logic is many-sorted equational logic [34], in which function
symbols are typed and each term has a sort. Order-sorted equational logic [18] generalizes
this by allowing a subsort inclusion relations< s′ between sorts, interpreted as subset in-
clusion in the models. In this way, some partial functions, hard to handle in a many-sorted
setting, can become total. Membership equational logic [33,3] further generalizes order-
sorted equational logic, by allowing sorts and subsorts that are not defined just syntactically,
as in the order-sorted setting, but whose domains of definition can be characterized by se-
mantic conditions (see for example the definition of thePal sort in thePALINDROME example
in Section 1.1). This provides a general way of dealing with partial functions in equational
specifications (which become total on appropriate sorts) and yields a logical framework into
which many other equational formalisms, both partial and total, can be faithfully embedded
[33]. As we explain below, by introducing a distinction between kinds and sorts, partiality
can be achieved within a simple total setting.

We now explain in detail the syntax, models, and axioms of membership equational
logic. A membership signature is a triple,Ω = (K,Σ ,S), where(K,Σ) is aK-sorted signa-
ture, that is,K is a set, andΣ is an indexed family of setsΣ = {Σw,k}(w,k)∈K∗×K —that we
call “many-kinded” because the elements ofK are calledkindsso as to avoid confusion with
the sortsS that are instead treated as predicates—andS= {Sk}k∈K is a disjoint family of
unary predicates. Eachs∈ Sk is called asort, and is understood as a unary predicate onk,
written : s, so that elements satisfying the predicate determine the extension of the sorts in
k. Intuitively, elements having some sortsare well-defined elements, whereas elements hav-
ing a kindk but no sort are understood as error elements. For example, the termf(a) in the
moduleINF2 in Section 1.1 has kind[S] but has no sort; it should therefore be understood
as an error or undefined element. Similarly, in a number hierarchy including sortsNat, Int,
andRat, if we denote by[Rat] the corresponding kind to which all the above sorts belong,
the term7/0 has kind[Rat], but has no sort and should therefore be understood as an error
or undefined element.

Note that if inΩ = (K,Σ ,S) the setsSk are all empty for each kindk ∈ K, Ω becomes
a standard many-sorted signature, and we obtain many-sorted equational logic as a special,
degenerate case. However, since in this setting we wish to sharply distinguish between kinds
and sorts, instead of calling a(K,Σ)-algebra a “many-sorted” algebra, we will now call it
a many-kinded algebra. A model ofΩ , called a membership algebraB is a (K,Σ)-algebra
B together with an interpretation of each unary predicates∈ Sk as a subsetBs ⊆ Bk. Ω -
sentences are then universally quantified Horn clauses whose atomic predicates are either
equalitiest = t ′ between twoΣ -terms of the same kind, or unary membership predicatest : s
with t a Σ -term of kindk ands∈ Sk. Therefore, such Horn clauses are eitherconditional
equations(1) or conditionalmemberships(2):

t = t ′ if A1, . . . ,An (1)

t : s if A1, . . . ,An (2)

where theAi are atomic equalities or memberships. In other words, membership equa-
tional logic is just the sublogic of many-sorted (although we see it here as “many-kinded”)
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Horn clause logic with equality in which all the predicates other than equality are unary.
A membership equationaltheory is just a pairT = (Ω ,E) with E a set ofΩ -sentences.
T-algebras are thenΩ -algebras satisfying the clauses ofT, according to the usual notion
of satisfaction in many-sorted (again, seen as “many-kinded”) first-order logic with equal-
ity. Given a membership equational theoryT, there are free and initialT-algebras, and
sound and complete inference rules [33]. Order-sorted notation s1 < s2 for subsorts can
be used to abbreviate the conditional membership(∀x : k) x : s2 if x : s1. Similarly, an op-
erator declarationf :s1×·· ·× sn → s corresponds to declaringf at the kind level and giv-
ing the membership axiom(∀x1 : k1, . . . ,xn : kn) f (x1, . . . ,xn) : s if

∧
1≤i≤n xi : si . We write

(∀x1 : s1, . . . ,xn : sn) t = t ′ in place of(∀x1 : k1, . . . ,xn : kn) t = t ′ if
∧

1≤i≤n xi : si . The above
abbreviations make it easy to embed order-sorted specifications as a special case of the more
general membership equational specifications [33]. Specifically, anorder-sorted specifica-
tion is one in which: (1) the only memberships are subsort declarationss1 < s2 and operator
declarationsf :s1×·· ·×sn → s; and (2) the only other clauses inE are conditional equations
of the form(∀x1 : s1, . . . ,xn : sn) t = t ′ if

∧
1≤i≤n ui = vi . The Maude language [5] supports

all the order-sorted abbreviations just mentioned; furthermore, kinds do not have to be de-
clared explicitly by the user: they are inferred by the system, that associates a kind to each
connected component of sorts in the subsort ordering graph.For example, the specification
in Figure 1 is order-sorted and has two kinds, correspondingto the connected components
{Nat} and{NatList,NatIList}. The first kind is denoted[Nat], and the second kind can
be equivalently denoted by either[NatList] or [NatILIst]; that is, we represent kinds as
equivalence classes of their corresponding sorts.

Admissiblemembership equational theories [5] provide a very general class of equa-
tional theories that are executable by equational rewriting. Their sentences are a union
E∪Ax, whereAx is a collection of equational axioms such as, for example, associativity,
commutativity, and identity of some operators inΣ , for which a matching algorithm modulo
Axexists; we furthermore assume that the axiomsAxare unconditional and are definedat the
kind level, that is, the variables in such axioms have kinds and do not involve any restrictions
to sorts. The setE consists of conditional equations (1) and conditional memberships (2),
where in(1) the variables int ′ are among those int or in someAi , and where, in both(1) and
(2) eachAi is either a membershipwi : si , or an equationui = vi such that any new variable
not in t or in someA j with j < i must occur only inui or in someA j with j > i; furthermore,
if ui introduces any new variables, thenui must be a nonvariable term; we then callui = vi a
matching equation. In MAUDE such matching equations are distinguished syntactically with
the notationui := vi .

2.3 Operational termination

We consider a logicL defined by inference rules, parameterized by atheoryS . That is, we
focus on provability, and assume the axiomatic framework ofgeneral logics [32], in which
what we call alogic becomes a particular style of presenting anentailment system. We refer
to [4] for a more detailed account of the axiomatic metalogical background that we assume
in what follows. The notion ofoperational termination[29] is parametricon the inference
system. We briefly recall the notions we need for our purpose.

Definition 1 The set of (finite) proof trees for a theoryS in a logicL and the head of a
proof tree are defined inductively as follows. Aproof treeis

– either anopen goal, simply denoted asϕ, whereϕ is a formula forS ; then, we define
head(ϕ) = ϕ.
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– or anon-atomictree withϕ as its head, denoted as

T1 · · · Tn

ϕ
(∆)

whereϕ is a formula forS , ∆ is an inference rule inL , andT1,. . . ,Tn are proof trees
such that

head(T1) · · · head(Tn)

ϕ
is an instance of∆ for the theoryS .

We say that a proof tree isclosedwhenever it is finite and contains no open goals.1

Notice the difference betweenϕ, an open goal, andϕ , a goal closed by a rule without
premises.

Definition 2 A proof treeT is aproper prefixof a proof treeT ′ if there are one or more open
goalsϕ1, . . . ,ϕn in T such thatT ′ is obtained fromT by replacing eachϕi by a non-atomic
proof treeTi havingϕi as its head. We denote this asT ⊂ T ′.

An infinite proof treeis an infinite increasing chain of finite trees, that is, a sequence
{Ti}i∈N such that for alli, Ti ⊂ Ti+1.

We characterize the proof trees with computational meaning(those which are computed
by aninterpreter[29]), by means of the notion of well-formed proof tree.

Definition 3 We say that a proof treeT is well-formedif it is either an open goal, or a closed
proof tree, or a proof tree of the form

T1 · · · Tn

ϕ
(∆)

where for eachj Tj is itself well-formed, and there isi ≤ n such thatTi is not closed, for any
j < i Tj is closed, and each of theTi+1 ,. . . ,Tn is an open goal. An infinite proof tree iswell-
formedif it is an ascending chain of well-formed finite proof trees.S is calledoperationally
terminatingif no infinite well-formed tree forS exists.

So operational termination intuitively means that, given an initial goal, an interpreter that
solves goals from left to right will either succeed in finite time in producing a closed proof
tree, or will fail in finite time, not being able to close or extend further any of the possible
proof trees, after exhaustively searching all such proof trees.

3 Rewriting with Membership Equational Theories

In the spirit of [3], we can associate to an admissible membership equational theory2 T =
(Ω ,E∪Ax) a corresponding (conditional)membership rewrite theoryRT = (Ω ′,Ax,RT)
defined as follows. The signature ofΩ ′ adds a fresh new kind Truth with a constant tt to

1 Open goals appear at the leaves of a proof tree; but they can beclosedby the application of inference
rules with no premises. For example, an open goalt → t can be closed by applying a Reflexivity inference
rule.

2 As in [3], admissible theoriesT = (Ω ,E∪Ax) will always be assumed to havenon-empty kinds, that is,
for each kindk in Ω there is always a ground term of kindk.
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fmod LengthOfFiniteListsMRT is

kind [Nat].

kind [NatIList] .

op 0 : -> [Nat] .

op s : [Nat] -> [Nat] .

op zeros : -> [NatIList] .

op nil : -> [NatList] .

op cons : [Nat] [NatIList] -> [NatIList] [strat (1)] .

op length : [NatIList] -> [Nat] .

cmb L : NatIList if L : NatList .

mb 0 : Nat .

cmb s(N) : Nat if N : Nat .

mb zeros : NatIList .

mb nil : NatList .

cmb cons(N,IL) : NatIList if N : Nat /\ IL : NatIList .

cmb cons(N,L) : NatList if N : Nat /\ L : NatList .

cmb length(L) : Nat if L : NatList .

eq zeros = cons(0,zeros) .

eq length(nil) = 0 .

ceq length(cons(N,L)) = s(length(L))

if N : Nat /\ L : NatList .

endfm

Fig. 3 CS-MRT (in MAUDE syntax) for the programLengthOfFiniteLists

Ω , and for each kindk in T an operator equal :k k−→ Truth.RT has the same equational
axiomsAx asT, so that rewriting is performed moduloAx, and contains rules of the form
equal(x,x) → tt for each kindk in T. Furthermore, for each admissible conditional equation
of the form(1) in E the setRT has a conditional rule of the form

t → t ′ if A•
1, . . . ,A

•
n (3)

where ifAi is a membership thenA•
i = Ai , if Ai is a matching equationui = vi , thenA•

i is the
rewrite conditionvi →

∗ ui , and if Ai is an ordinary equationui = vi , thenA•
i is the rewrite

condition equal(ui ,vi) →
∗ tt. Similarly, for each conditional membership inT of the form

(2) we associate a conditional membership of the form,

t : s if A•
1, . . . ,A

•
n (4)

with theA•
i defined exactly as before.

The point of associating to an admissible membership equational theoryT a correspond-
ing rewrite theoryRT is that we can perform equational reasoning by rewriting. Ofcourse,
unlessRT satisfies additional properties such as confluence, sort-decreasingness [3],Ax-
coherence [41], and so on, equational reasoning by rewriting will only be sound but not
necessarily complete.

Equational reasoning in a membership equational theoryT by rewriting with the rules
in RT modulo the axiomsAxcan be made more expressive by making the rewritingcontext-
sensitivein the sense explained in Section 2.1. Therefore, we define acontext-sensitive mem-
bership rewrite theory(CS-MRT) as a pair(RT ,µ), whereRT is a membership rewrite
theory, say,RT = (Ω ′,Ax,RT), and the context information is provided by a replacement
mapµ. For instance, the CS-MRT specification (also given in MAUDE-like notation) which
corresponds to the MAUDE program in Figure 1 is given in Figure 3. Here,[Nat] de-
notes the kind of sortNat, and[NatIList] denotes the kind of both sortsNatList and
NatIList. The profile of the operators is given in terms of these kinds.We omit the oper-
ator equal as no conditional rule includes equations in its conditional part. Note also the
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(Subject reduction)

t →1 t ′ t ′ : s

t : s

(Membership-1)

A•
1σ · · · A•

nσ
u :: s

wheret : s if A1 · · ·An in RT andu =Ax tσ

(Membership-2)

t :: s

t : s

(Reflexivity) t →∗ t ′ if t =Ax t ′

(Transitivity)

t →1 t ′ t ′ →∗ t ′′

t →∗ t ′′

(Congruence)

ui →
1 u′i

f (u1, . . . ,ui , . . .un) →
1 f (u1, . . . ,u

′
i , . . . ,un)

wherei ∈ µ( f )

(Replacement)

A•
1σ . . . A•

nσ
u→1 t ′σ

wheret → t ′ if A1 · · ·An in RT andu =Ax tσ

Fig. 4 Inference rules for context-sensitive membership rewriting

first conditional membership (with keywordcmb) which expresses thatNatList is a subsort
of NatIList. The sort profile for the arguments and result of each operator in the MAUDE

programLengthOfFiniteLists are desugared here as memberships in the CS-MRT speci-
fication. In particular, viewing the sort profile of a function symbol as a shorthand for a kind
profile together with a membership, such as forcons above, allows us to cleanly handle
operator overloading: to each different sort profile corresponds a different membership. We
also allowad-hocoverloading, that is, operators with same name and different kind profile,
although in that case we require that iff has kind profilesk1 · · ·kn → k andk1 · · ·kn → k′,
thenk = k′.

We can define the rewriting relation associated to a CS-MRT bymeans of the infer-
ence rules of Figure 4, which3 generalize to rewriting moduloAx and adapt to the context-
sensitive case those in Figure 7 in [3]. Note that inferencescan now happenmodulothe
equational axiomsAx in the theory: matching with a conditional equation in the Replace-

3 Strictly speaking, the (Congruence) rule should be generalized, as done for (Replacement), to allow
one-step rewrites from any termu such thatu =Ax f (u1, . . . ,ui , . . . ,un). However, this extra generality can be
avoided by assuming that either: (i) the implementation performsAx-matching with extension(as done, e.g.,
in Maude: see [6], Section 4.8); or (ii) the rules in our CS-MRT have been completed to becoherentwith
the axiomsAx (see [41]). Under either of these two assumptions, the simplerinference rules in Figure 4 are
complete.
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ment inference rule, and with a conditional membership in the Membership-1 rule, is per-
formed modulo Ax; and Reflexivity also includes equality moduloAx. Note also that the
relationt : s has a subrelationt :: s, corresponding to the special case of a membership in
which the termt is not further rewritten before computing its sort. For eachatomA appear-
ing in a condition of a conditional rule or a conditional membership in(RT ,µ) we extend
our previous meta-notationA• to memberships as follows: (1) ifA is of the formx : s with
x a variable, thenA• = x :: s; and if A is of the formw : s with w a nonvariable term, then
A• = w : s. The obtained inference system is context sensitive in a quite detailed way. The
most obvious case is the restriction on the Congruence rule,which blocks rewriting in frozen
argument positions; further context sensitivity is achieved through theA• conjuncts in the
conditions of the Membership-1 and Replacement rules. The point is that, if unrestricted,
these inference rules could easily undermine context-sensitivity by evaluating subterms that
are supposed to be frozen, thus easily leading to nontermination (see [9] for an example).
This is prevented by the case whenA = x : s, since thenA• = x :: s. This means that ifx
matches a subterm of the term whose sort we are computing withthe Membership-1 rule
—or that we are trying to rewrite with the Replacement rule— then that subterm will not be
further rewritten in the process of checking its sort.

We can use the notion of operational termination to explain the behavior of the non-
terminating examples in Section 1.1. Note that, because of the distinction betweent : s and
t :: s, the infinite proof tree for theINF module has to be expanded, alternating applications
of (Membership-1) and (Membership-2) rules. In this way, weindeed obtain a well-formed
infinite proof tree. Note that this example does not involve any rewriting. The given infinite
proof tree for moduleINF2 does not require any modification and is indeed well-formed.

The notion of CS-MRT just defined and its associated inference rules capture in par-
ticular the case of MAUDE functional modules. Indeed, a MAUDE functional module, after
explicitly importing all its submodules and desugaring itssubsort declarations and operator
declarations as explicit conditional memberships (see Section 2.2 and the example in Figure
3), defines a membership equational theoryT = (Σ ,E∪Ax) which is required and checked
to be admissible. In MAUDE, the axiomsAx are not explicitly declared by equations; they
are instead declared asoperator attributesof associativity, commutativity, and identity with
the assoc, comm, andid: keywords. Furthermore, a MAUDE functional module defines a
replacement mapµ by means of thestrat operator attribute, where iff has been declared
with the strategy(i1 . . . ik) thenµ( f ) = {i1, . . . , ik)}−{0}, and if no such strategy has been
declared for ann-ary f , thenµ( f ) = {1, . . . ,n}. By the general transformation defined in this
section, the admissible MEL theoryT and the replacement mapµ defined by the MAUDE

functional module are then transformed into the CS-MRT(RT ,µ). The MAUDE interpreter
then provides a sequential strategy to apply the inference rules in Figure 4 in a specific order.
Therefore, MAUDE’s computations for a functional module of the form(T,µ) are a subset
of those permitted by the inference system in Figure 4 for theCS-MRT(RT ,µ).

4 Operational termination of CS-MRT programs

To close the gap between MEL programs and current termination tools, we define and prove
correct two theory transformations, namely transformation A, mapping a CS-MRT to a cor-
responding CS-CTRS in such a way that operational termination of the CS-CTRS implies
that of the original CS-MRT, and transformation B, mapping CS-CTRSs to CS-TRSs such
that termination of the CS-TRS implies operational termination of the CS-CTRSs.
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4.1 Transformation A: From CS-MRT modulo to CS-CTRS modulo

Given a CS-MRT(RT ,µ), say withRT = (K,Σ ,S,Ax,RT), we associate to it a CS-CTRS
(R̃T , µ̃) over a signaturẽΣ , modulo axioms̃Ax as follows:Σ̃ contains, for each operator
f : w→ k wherew = k1 . . .kn in Σ , an operatorf w of arity n. We furthermore add a truth-
value constant tt, plus unary operatorsisk ∈ Σ̃ for eachk ∈ K, and iss, is′s ∈ Σ̃ for each
s∈ S, where iss(t) encodest :: s and is′s(t) encodest : s. The role of operatorsf w is to
disambiguate ad-hoc overloading: for eachΣ -termt, theΣ̃ -term t̃ is obtained by making its
variables unsorted, and by replacing eachf : w→ k by f w. We assume that there is only one
k for eachw, so this operation is well-defined. The axioms̃Axare just the equations̃t = t̃ ′ for
eacht = t ′ in Ax. The set of rules̃R is given byR̃= RK ∪RS∪RC∪RM, whereRK contains
rules of the form

isk( f w(x1, . . . ,xn)) → tt if {iski (xi) → tt}1≤i≤n (5)

for each f : w−→ k in Σ , with w = k1 . . .kn. The setRS contains rewrite rules of the form
is′s(x) → iss(x) for each sorts∈ S(to encode the (Membership-2) rule). The setRC contains
a conditional rule of the form,

t̃ → t̃ ′ if {iski (xi) → tt}1≤i≤m, Ã1, . . . , Ãn (6)

for each conditional rulet → t ′ if A1, . . . ,An in RT involving variablesx1 : k1, . . . ,xm : km;
here ifAi is a membershipui : si , then: (i) if ui is a nonvariable term, theñAi is the rewrite
conditionis′si

(ũi)→ tt, and (ii) if ui ≡ x is a variable, theñAi is the rewrite conditionissi (x)→

tt; otherwise, ifAi is a rewrite conditionui → vi , thenÃi is the rewrite conditioñui → ṽi .
Finally, RM contains a conditional rule of the form,

iss(̃t) → tt if {iski (xi) → tt}1≤i≤m, Ã1, . . . , Ãn. (7)

for each conditional membershipt : s if A1, . . . ,An in RT involving variablesx1 : k1, . . .xm :
km.

Regarding the replacement map̃µ, we defineµ̃( f w) = µ( f ) for each f : w −→ k in
Σ , and for eachk ∈ K and eachs∈ S we defineµ̃(isk) = /0, µ̃(iss) = /0, andµ̃(is′s) = {1}
(because one may reducet in t : s but not int :: s).

The following theorem connects operational termination inthe CS-MRT logic, given by
the inference rules in Figure 4, and operational termination in the CS-CTRS logic, whose
inference system consists of the inference rules of Reflexivity, Transitivity, Congruence and
Replacement in Figure 4 above.

Theorem 1 If the CS-CTRS(R̃T , µ̃) is operationally terminating, then the CS-MRT
(RT ,µ) is operationally terminating.

The proof is as follows: we show that any well-formed infiniteground4 proof tree for
(RT ,µ) can be transformed into a well-formed infinite proof tree for(R̃T , µ̃), using the
following lemma.

Lemma 1 For any well-formed ground proof tree Q for(RT ,µ), there exists a well-formed
ground proof treeα(Q) for (R̃T , µ̃) whose head goal is

4 Since admissible membership equational theories have nonemptykinds, the operational termination of a
CS-MRT is equivalent to the operational termination of itsgroundproofs. This is because, given an infinite
proof treeT, we can always find a ground substituitionσ yielding an infinite ground proof treeσ(T) obtained
by applyingσ to all terms inT. Therefore, in what follows we reason in terms of ground prooftrees.
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– is′s(̃t) →
∗ tt if the head goal of Q was t: s

– iss(̃t) →1 tt if the head goal of Q was t:: s
– t̃ →∗ ũ if the head goal of Q was t→∗ u
– t̃ →1 ũ if the head goal of Q was t→1 u

Moreover, if Q⊂ Q′ thenα(Q) ⊂ α(Q′), so that for any infinite proof tree Q,α(Q) is
infinite.

So we are left to prove the lemma above. For this, we need an auxiliary lemma about
substitutions, well-kinded terms, and equality modulo axioms. The first two statements in
this lemma can be proved by straightforward structural induction, making use of rules of
type (5). The proof of the last statement follows easily by induction on the length of proofs
from the first statement, observing that, as pointed out in Section 2.2, the axiomsAx are
given at the kind level.

Lemma 2 For any term t, substitutionσ , and condition c, we havẽtσ = t̃ σ̃ and (̃cσ) =

c̃ σ̃ . Furthermore, if t is a well-kinded ground term of kind k w.r.t (RT ,µ), then(R̃T , µ̃) ⊢

isk(̃t) →1 tt. Finally, for t, t ′ terms t=Ax t ′ impliest̃ =Ãx t̃ ′.

Proof Obvious.

Transformation A is a mapα defined by induction on the structure of well-formed
ground trees. The base case corresponds to ground proof trees consisting of a single atom,
for whichα is defined according to the translation of head goals stated in Lemma 1. We now
have to consider each of the inference rules and defineα by cases. Suppose a well-formed
ground proof treeQ where the fist inference step is an application of the Membership-1
inference rule, then this tree looks as follows:

T1

A•
1σ · · ·

Tn

A•
nσ

u :: s

where t : s if A1 · · ·An in RT andu=Ax tσ . Therefore, in(R̃T , µ̃) we have a conditional
rewrite ruleiss(̃t)→ tt if {iski (xi)→ tt}1≤i≤m, Ã1, . . . , Ãn. Then the ground proof treeα(Q)
has the following form:

Q1

isk1(x̃1σ) →1 tt · · ·

Qm

iskm(x̃mσ) →1 tt

α(T1)

α(A•
1σ) · · ·

α(Tn)

α(A•
nσ)

iss(ũ) →1 tt

where the Replacement rule is correctly applied sinceiss(ũ) =Ãx iss(̃tσ̃) by Lemma 2, the
Q1, . . . ,Qm are closed proof trees that exist by Lemma 2, and it is easy to show that they are
unique, due to the assumptions making well-kinded terms unambiguous.

The case where the first inference step is the application of the Replacement inference
rule is entirely analogous to the above case, except that theroot goalu→1 t ′σ is now trans-
lated into the root goal̃u→1 t̃ ′σ̃ .

When the first inference step is the application of the Membership-2 inference rule, we
have a well-formed ground proof treeQ of the form

T ′

t :: s

t : s
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and thenα(Q) is of the form

is′s(̃t) →
1 iss(̃t)

α(T ′)

iss(̃t) →
1 tt tt →∗ tt

iss(̃t) →
∗ tt

is′s(̃t) →
∗ tt

where we have applied the Transitivity rule to the root goaliss(̃t)→∗ tt, and the Replacement
rule to close the goalis′s(̃t) →

1 iss(̃t).
When the first inference step is the application of the Subject Reduction inference rule,

we have a well-formed ground proof treeQ of the form

T1

t →1 t ′
T2

t ′ : s

t : s

and thenα(Q) is of the form

α(T1)

t̃ →1 t̃ ′

is′s(̃t) →
1 is′s(t̃ ′)

α(T2)

is′s(t̃ ′) →
∗ tt

is′s(̃t) →
∗ tt

where we have applied the Transitivity rule to the root goalis′s(̃t)→
∗ tt, and the Congruence

rule to the goalis′s(̃t) →
1 is′s(t̃ ′).

The translationsα(Q) of a well-formed ground proof treeQ where the first inference
step is the application of any of the remaining inference rules, namely, Reflexivity, Transi-
tivity, or Congruence, all follow a very simple pattern, namely, if the proof treeQ is of the
form

T1 · · · Tn

G

thenα(Q) is of the form
α(T1) · · · α(Tn)

α(G)

Note that in the case of Reflexivity, we use again Lemma 2 to replace equality moduloAx
by equality modulõAx.

It is also easy to check thatα maps well-formed ground proof trees to well-formed
ones, and that ifT ⊂ T ′, thenα(T) ⊂ α(T ′). To check this last property, we may assume
without loss of generality, thatT ⊆ T ′ is the extension ofT associated to the application of
an inference rule. The result then follows easily by case analysis on the inference rule used
and the definition of the corresponding tree extensions given above for each of the inference
rules.

This ends the proof of Lemma 1 and therefore finishes the proofof Theorem 1. ⊓⊔
For purposes of proving termination, the implication in Theorem 1 is all we need. How-

ever, it is natural to ask whether Transformation A iscomplete, that is, is the implication in
Theorem 1 actually an equivalence? We conjecture that it is an equivalence, and therefore
that Transformation A is complete, but leave a detailed investigation of this problem for
future research.
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fmod LengthOfFiniteListsMRT_TA is

sort S .

op isKNat : S -> S [strat (0)] .

op isKNatIList : S -> S [strat (0)] .

op isNat : S -> S [strat (0)] .

op isNatIList : S -> S [strat (0)] .

op isNatList : S -> S [strat (0)] .

op tt : -> S .

op 0 : -> S .

op s : S -> S .

op zeros : -> S .

op nil : -> S .

op cons : S S -> S [strat (1 0)] .

op length : S -> S .

vars T M N IL L : S .

eq isKNat(0) = tt .

ceq isKNat(s(N)) = tt if isKNat(N) = tt .

ceq isKNat(length(L)) = tt if isKNatIList(L) = tt .

eq isKNatIList(nil) = tt .

eq isKNatIList(zeros) = tt .

ceq isKNatIList(cons(N,IL)) = tt

if isKNat(N) = tt /\ isKNatIList(IL) = tt .

ceq isNatIList(IL) = tt if isNatList(IL) = tt .

eq isNat(0) = tt .

ceq isNat(s(N)) = tt if isNat(N) = tt .

ceq isNat(length(L)) = tt if isNatList(L) = tt .

eq isNatIList(zeros) = tt .

ceq isNatIList(cons(N,IL)) = tt

if isNat(N) = tt /\ isNatIList(IL) = tt .

eq isNatList(nil) = tt .

ceq isNatList(cons(N,L)) = tt

if isNat(N) = tt /\ isNatList(L) = tt .

eq zeros = cons(0,zeros) .

eq length(nil) = 0 .

ceq length(cons(N,L)) = s(length(L))

if isKNat(N) = tt /\ isKNatList(L) = tt /\

isNat(N) = tt /\ isNatList(L) = tt .

endfm

Fig. 5 Use of transformation A

Example 2For our running example, we would get the transformed systemin Figure 5.
We have omitted the disambiguation of operators, since no ambiguity is involved in this
example; also, equal has been omitted.

4.2 Variants of Transformation A

In order to provide the simplest input for the next transformation which removes conditions
from rules (see Section 4.3), we can apply some obvious optimizations on the previous
transformation which do not change the termination behavior of the program. The benefits
of using these optimizations can be experimentally justified from the benchmarks discussed
in Section 5.2 below.
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4.2.1 Removal of kinds

In a first variant, theisk predicates for kinds are omitted. This simplifies the resulting theory
with minimal loss in its expressiveness, particularly for specifications in which, as it is usu-
ally the case, all variables of a conditional equation or rule are required to have a sort in the
condition.

If all operator profiles involve only sorts, and all variables appearing in equations and
memberships have a declared sort, then ifk is the kind of a sorts, theniss(x) → tt implies
isk(x) → tt. Therefore, we can safely useiss(x) → tt instead ofisk(x) → tt ∧ iss(x) → tt in
the conditional part of the rules computed by the transformation.

4.2.2 Simplifying conditions

A conditional fragmentwithout extra variableslike

iss1(x1) → tt ∧·· ·∧ issk(xk) → tt

in a conditional rule can be collapsed into a single expression

and(iss1(x1),and(· · · , issk(xk)) · · ·) → tt

by introducing a binary ‘and’ operator defined by
op and : S S -> S .

eq and(tt,T) = T .

Moreover, if the right-hand side of the conditional rule istt, we can use the previous expres-
sion withand as the new right hand-side of the rule: the conditional rule

l → tt if iss1(x1) → tt ∧·· ·∧ issk(xk) → tt

eventually collapses into the unconditional one

l → and(iss1(x1),and(· · · , issk(xk)) · · ·)

This ends up with less symbols to be processed, and only one added rule instead of
(potentially) several mutually recursive rules, thus easing the task of the termination tool.

For instance, with the two previous variants, the equationsof the system in Figure 3
become the ones shown in Figure 6.

4.2.3 A variant for order-sorted theories

In this section we consider a much simpler variant of the transformation(R,µ) 7→ (R̃, µ̃)
just defined. For order-sorted rewrite theories, which are the special case where the only
memberships involved in conditions are variables, and the only membership axioms cor-
respond to subsort and operator declarations (see Section 2.2), this variant drops also the
iss predicates for sorts. This variant is correctonly for order-sorted theories, for example it
would be invalid for the INF program of Section 1 which contains a membership but no rule,
since one would get an empty TRS.
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eq and(tt,T) = T .

eq isNatIList(IL) = isNatList(IL) .

eq isNat(0) = tt .

eq isNat(s(N)) = isNat(N) .

eq isNat(length(L)) = isNatList(L) .

eq isNatIList(zeros) = tt .

eq isNatIList(cons(N,IL)) = and(isNat(N),isNatIList(IL)) .

eq isNatList(nil) = tt .

eq isNatList(cons(N,L)) = and(isNat(N),isNatList(L)) .

eq zeros = cons(0,zeros) .

eq length(nil) = 0 .

ceq length(cons(N,L)) = s(length(L))

if and(isNat(N),isNatList(L)))) = tt .

Fig. 6 Optimized transformation A

4.2.4 Incompleteness

Obviously, since these simpler variants yield less restrictive conditions in the translated rules
in R̃, these variants allow more rewrites and therefore our results apply to these simpler
transformations, in the sense that a proof of operational termination for the transformed the-
ory ensures operational termination of the original theory. But of course, these variants are
incomplete. For instance, it is not possible to use variant 3to prove termination of program
LengthOfFiniteLists in Figure 1. In fact, the obtained CS-TRS:

zeros → cons(0,zeros)

length(nil) → 0

length(cons(N,L)) → s(length(L))

with µ(cons) = {1} is not (operationally) terminating

length(zeros)→ length(cons(0,zeros))→ s(length(zeros))→ ·· ·

4.3 Transformation B: From CS-CTRS modulo to CS-TRS modulo

To check operational termination with respect to the CS-CTRS logic, we propose a trans-
formation associating to a CS-CTRS(R,µ) an unconditional CS-TRS(U (R),U (µ)). We
generalize the classical transformation for proving operational termination of a 3-CTRSR
as termination of a TRSU (R) [35, Definition 7.2.48], so as to handle both rewriting mod-
ulo axiomsAx, and the context-sensitive restrictions imposed by the replacement mapµ.
The classical transformation for proving termination of a deterministic 3-CTRSR yields a
TRSU (R) given as follows: each conditional rule

l → r if s1 → t1, . . . ,sn → tn

is transformed into then+1 unconditional rules

l → U1(s1,x1) (8)

Ui−1(ti−1,xi−1) → Ui(si ,xi) 2≤ i ≤ n (9)

Un(tn,xn) → r (10)

where theUi are fresh new symbols added to the signature. Thexi are vectors of variables
defined as follows: assume a given ordering on the set of variablesX . Then,xi contains the
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ordered sequence of the variables in the set Var(l)∪Var(t1)∪ ·· · ∪Var(ti−1) for 1 ≤ i ≤ n,
which, by determinism, ensures that in the above rules each right-hand side variable occurs
in the left-hand side; or, in a clever way so as to avoid keeping track of unused variables:

xi = (Var(l)∪Var(t1)∪·· ·∪Var(ti−1))

∩ (Var(ti)∪Var(si+1)∪Var(ti+1)∪·· ·

∪ Var(sn)∪Var(tn)∪Var(r))

In our approach, we allow rewriting moduloAxand also transform the replacement map
into a new replacement mapU (µ) as follows:U (µ)(U) = {1} for all new symbolsU that
are introduced to deal with the equations in the conditionalpart of each rule inR (that is,
only the first argument ofU can be evaluated), andU (µ)( f ) = µ( f ) for all symbolsf ∈F .

Example 3For our running example (in the optimized version given in Figure 6), the corre-
sponding unconditional translation of the only conditional rule consists of the rules:

length(cons(N,L)) -> uLength(and(isNat(N),isNatList(L)),L)

uLength(tt,L) -> s(length(L))

where we also haveU (µ)(uLength) = {1}.

Theorem 2 If U (R) is U (µ)-terminating modulo Ax, then(R,µ) is operationally termi-
nating modulo Ax.

Note that in [29], we showed that for CTRSs, operational termination is equivalent to the
so-calledquasi-decreasingnessproperty; and it is already known that for a standard CTRS
R, termination ofU (R) implies quasi-decreasingness ofR [35, Proposition 7.2.50 and
Lemma 7.2.40]. So our theorem above is a generalization of this result to the case of context-
sensitive rewriting moduloAx. However, the proof we give below is completely different:
the reason is that, although the proof of the result based on the quasi-decreasingness property
can be extended to the context-sensitive case, it is howevernot clear how to further extend
it to the moduloAx case, because it would require the subterm moduloAx relation to be
well-founded, which is not necessarily the case, for example modulo identity.

SinceU (R) is unconditional,U (µ)-termination moduloAx of U (R) is equivalent to
its operational termination. So, as for Theorem 1, our proofof Theorem 2 is done by proving
that any infinite well-formed proof tree for(R,µ) can be transformed into an infinite, well-
formed proof tree for(U (R),U (µ)). This is a consequence of the following lemma.

Lemma 3 For any well-formed proof tree T for(R,µ) whose head goal is either t→∗ u or
t →1 u, there exists a well-formed proof treeβ (T) for (U (R),U (µ)) whose head goal is
t →∗ u. Moreover, if T⊂ T ′ thenβ (T) ⊂ β (T ′).

Proof We start by two preliminary remarks. If a proof treeT for (R,µ) has a head goal of
the formt →1 u, thenT has the shape

T1

v1 →
∗ w1 . . .

Tk

vk →
∗ wk

(Repl)
tn →

1 un
(Congr)

...
(Congr)

t1 →
1 u1

(Congr)
t →1 u

(11)
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If the head goal ist →∗ u, thenT has the shape

T1

t0 →
1 t1

T2

t1 →
1 t2

Tn

tn−1 →
1 tn

(Refl)
tn →

∗ u
(Trans)

...
(Trans)

t1 →
∗ u

(Trans)
t →∗ u

(12)

wheret0 = t andtn =Ax u. So globally, a proof tree is made by alternation of the previous
two shapes.

Second remark: if we have a proof treeT whose head goal ist →∗ u, then for any context
C admissible forµ (that is the path to the hole follows only allowed positions)it is possible
to build a proof tree for goalC[t] →∗ C[u] by “pushing” the context into the transitivity and
reflexivity steps:

T1

t0 →
1 t1

... (Congr)

C[t0] →
1 C[t1]

T2

t1 →
1 t2

... (Congr)

C[t1] →
1 C[t2]

Tn

tn−1 →
1 tn

... (Congr)

C[tn−1] →
1 C[tn]

(Refl)
C[tn] →

∗ C[u]
(Trans)

...
(Trans)

C[t1] →
∗ C[u]

(Trans)
C[t] →∗ C[u]

To prove the lemma, for each proof treeT we construct a correspondingβ (T) by induc-
tion on tree structure. We have two cases, depending on whether the head goal ofT has the
form t →∗ u or t →1 u.

Case 1: the head goal ist →∗ u

ThenT has the shape (12). By structural induction on trees, we may assume that each subtree

Ui =
Ti

ti−1 →1 ti

has a transformed treeβ (Ui) of the form

T1
i

ti−1 →
1 t1

i

T2
i

t1
i →1 t2

i

Tki
i

tki−1
i →1 tki

i

(Refl)
tki
i →∗ ti

(Trans)
...

(Trans)
t1
i →∗ ti

(Trans)
ti−1 →

∗ ti
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thenβ (T) is built as follows.

T1
1

t0 →
1 t1

1

T2
1

t1
1 →1 t2

1

Tk1
1

tk1−1
1 →1 t1

T1
2

t1 →
1 t1

2

T1
n

tn−1 →
1 t1

n

T2
n

t1
n →1 t2

n

Tkn
n

tkn−1
n →1 tn

(Refl)
tn →

∗ u
(Trans)

tkn−1
n →∗ u

...

...
(Trans)

t1
n →∗ u

(Trans)
tn−1 →

∗ u
...
...

(Trans)
t1 →

∗ u
(Trans)

tk1−1
1 →∗ u

...
(Trans)

t1
1 →∗ u

(Trans)
t0 →

∗ u

The transformed tree above assumes thatT is closed. IfT is not closed, because some
leftmostT j

i is not closed, thenβ (T) has to be “cut” at the level ofT j
i . In both cases,β (T)

is a well-formed tree ifT is well-formed.

Case 2: the head goal ist →1 u

ThenT has the shape (11).

Case 2.1: if there is at least one (Congruence) step

ThenT has the shape

T ′

(Congr)
t →1 u

By induction on tree structure, we have a transformed treeβ (T ′) for T ′, so we can build
β (T) by “pushing” the congruence step intoβ (T ′), as described above.

Case 2.2: if there is no congruence step

thenT has the shape

T1

s1σ →∗ t1σ . . .

Tn

snσ →∗ tnσ
(Repl)

u→1 rσ

for some conditional rulel → r if s1 → t1, . . . ,sn → tn with u =Ax lσ . In the transformed
TRS, we have the rules (8), (9), (10), from which we are now going to build successively
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trees for goals

Un(tn,xn)σ →∗ rσ (Gn)

Un(sn,xn)σ →∗ rσ (Hn)

Un−1(tn−1,xn−1)σ →∗ rσ (Gn−1)

Un−1(sn−1,xn−1)σ →∗ rσ (Hn−1)

...

U1(t1,x1)σ →∗ rσ (G1)

U1(s1,x1)σ →∗ rσ (H1)

u →∗ rσ (K)

Indeed, we need to be slightly more general, in order to take care of the axiomsAx: goals
(Gk) arev→∗ rσ for anyv =Ax Uk(tk,xk)σ .

1. Tree for goal(Gn): in the transformed TRS, we have the proof tree

(Repl)
v→1 rσ

(Refl)
rσ →∗ rσ

(Trans)
v→∗ rσ

for any termv such thatv =Ax Un(tn,xn)σ , using rule (10).
2. Tree for goal(Hk) from tree for goal(Gk): if we assume that, for 1≤ k ≤ n we have a

proof treeTk for any goalv→∗ rσ with v=AxUk(tk,xk)σ . By induction, we may assume
that the subtree

T ′

skσ →∗ tkσ

has a transformed tree, of the form

T ′
0

u0 →
1 u1

T ′
1

u1 →
1 u2

T ′
i−1

ui−1 →
1 ui

(Refl)
ui →

∗ tkσ
(Trans)

...
(Trans)

u1 →
∗ tkσ

(Trans)
u0 →

∗ tkσ

with u0 = skσ andui =Ax tkσ . Then we build a proof tree for the goalUk(skσ ,xkσ) →∗

rσ as:

T ′
1

u0 →
1 u1 (Congr)

Uk(u0,xkσ) →1 Uk(u1,xkσ)

T ′
2

u1 →
1 u2 (Congr)

Uk(u1,xkσ) →1 Uk(u2,xkσ)

Tk

U(ui ,xkσ) → rσ
...
...

(Trans)
Uk(u1,xkσ) →∗ rσ

(Trans)
Uk(u0,xkσ) →∗ rσ

where the proof treeTk exists sinceU(ui ,xkσ) =Ax Uk(tk,xk)σ . Note that the congru-
ence steps above are valid with respect to the replacement map µ(Uk) = {1}.
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3. Tree for goal(Gk−1) from tree for goal(Hk): if we assume that, for 2≤ k ≤ n we have
a proof treeT ′

k for the goalUk(sk,xk)σ →∗ rσ , then we build a proof tree for any goal
v→∗ rσ with v =Ax Uk−1(tk−1,xk−1)σ as:

(Repl)
v→1 Uk(skσ ,xkσ) T ′

k (Trans)
v→∗ rσ

using rule (9) in the application of (Replacement), and the fact that v =Ax

Uk−1(tk−1,xk−1)σ .
4. Tree for goal(K) from tree for goal(H1): we have a proof treeT ′

1 for the goal
U(s1σ ,x1σ) →∗ rσ , and then we build the proof tree

(Repl)
u→1 U1(s1,x1)σ T ′

1 (Trans)
u→∗ rσ

using rule (8) in the application of (Replacement), and the fact thatu =Ax lσ .

As for case 1, if the original proof tree is not closed, then some cut must be done in the
transformed tree. In either cases,β (T) is well-formed ifT is so. In all cases,β (T) ⊂ β (T ′)
if T ⊂ T ′. ⊓⊔

Example 4According to Theorems 2 and 1, termination of programLengthOfFiniteLists

in Example 1 can be guaranteed by proving theµ-termination of the following TRS:
and(tt,T) -> T

isNatIList(IL) -> isNatList(IL)

isNat(0) -> tt

isNat(s(N)) -> isNat(N)

isNat(length(L)) -> isNatList(L)

isNatIList(zeros) -> tt

isNatIList(cons(N,IL)) -> and(isNat(N),isNatIList(IL))

isNatList(nil) -> tt

isNatList(cons(N,L)) -> and(isNat(N),isNatList(L))

zeros -> cons(0,zeros)

length(nil) -> 0

length(cons(N,L)) -> uLength(and(isNat(N),isNatList(L)),L)

uLength(tt,L) -> s(length(L))

where µ(isNat) = µ(isNatList) = µ(isNatIList) = /0, µ(and) = µ(cons) =
µ(uLength) = {1} andµ( f ) = {1, . . . ,ar( f )} for all other symbolsf .

Theµ-termination of this system can be automatically proved with APROVE, see Sec-
tion 5.2 below for further details about the proof.

4.4 Improvements on the classical transformation

The following example shows that the use of replacement restrictions makes our transfor-
mation simulate more faithfully the original CTRS than the classical transformation does.
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Example 5Consider the following CTRSR in [13, Section 3]:

a→ b f(a) → b g(X) → g(a) if f (X) → X

As noticed by Giesl and Arts [13], this CTRS is quasi-decreasing, hence operationally ter-
minating ([29, Theorem 2]). However, the classical transformation yields a TRSU (R):

a→ b f(a) → b g(X) →U( f (X),X) U(X,X) → g(a)

which isnot terminating:

g(a) →U( f (a),a) →U(b,a) →U(b,b) → g(a) → ·· ·

In our version of the transformation, we considerR given with thetop replacement map
µ⊤( f ) = {1, . . . ,k} for all k-ary symbolsf ∈ F . In this case,CSRand ordinary rewriting
coincide. In our version of the classical transformation,U (µ⊤)(U) = {1}. It is not difficult
to see thatU (R) is U (µ⊤)-terminating. By Theorem 2,(R,µ⊤) (equivalently the CTRS
R) is operationally terminating.

Unfortunately, the use of replacement maps for the auxiliary symbolsU improves but does
not make the classical transformation complete for proving operational termination of de-
terministic 3-CTRS. The following example illustrates this point:

Example 6Consider the following CTRSR [35, Example 7.2.51]:

h(d) → c(a)

h(d) → c(b)

f (k(a),k(b),X) → f (X,X,X)

g(X) → k(Y) if h(X) → d,h(X) → c(Y)

As shown by Ohlebusch, this CTRS is quasi-decreasing hence operationally terminating.
However, the transformed TRSU (R):

g(X) → U1(h(X),X) f (k(a),k(b),X) → f (X,X,X)

U1(d,X) → U2(h(X),X) h(d) → c(a)

U2(c(Y),X) → k(Y) h(d) → c(b)

is notµ-terminating (whereµ(U1) = µ(U2) = {1} andµ( f ) = {1, . . . ,ar( f )} for any other
symbolsf ):

f (k(a),k(b),U2(h(d),d)) → f (U2(h(d),d),U2(h(d),d),U2(h(d),d))

→+ f (U2(c(a),d),U2(c(b),d),U2(h(d),d))

→+ f (k(a),k(b),U2(h(d),d))

It is interesting to note that the counter-example given above is notCollapse-Extended-
terminating, that is, its termination is lost whenever one adds projection rulesπ(x,y) →
x andπ(x,y) → y for some new symbolπ. CE-termination is known to be a nice notion
of termination, because in practice terminating systems are indeed CE-terminating, and in
contrast to standard termination it enjoys better modularity properties [38]. So an interesting
open question is whether theU transformation is complete for CE-termination.

Further note that, regarding the classical transformationand innermosttermination,
Ohlebusch proved that quasi-decreasingness of a 3-CTRS implied innermost termination of
the transformed unconditional TRS [35, Definition 7.2.52].We conjecture that this holds for
innermost-CS-termination, where innermost-CS-rewriting is the relation allowing rewriting
steps only when the subterms at non-frozen positions are inµ-innermost normal form.
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5 From theory to practice

As remarked in the introduction, once we have obtained a CS-TRS (i.e., a TRSR together
with a replacement mapµ), we can just try a proof ofµ-termination ofR (i.e., termina-
tion of CSRfor R and the replacement mapµ). Fortunately, several methods have been
developed for this purpose. In the following section, we describe a tool which is able to deal
automatically with CS-MRT specifications given as MAUDE programs.

5.1 MTT: A Prototype Implementation

Our current MAUDE Termination Tool (MTT) prototype is freely available for experimenta-
tion athttp://www.lcc.uma.es/∼duran/MTT/). It has a graphical interface which allows
the user to input membership equational programs in the MAUDE syntax. The user may
select different variants of transformations A and B, ask for the transformed program, and
finally try to prove its termination by calling existing termination tools. Currently, it in-
teracts with CiME, MU-TERM and APROVE, but indeed it supports the TPDB syntax as
output (http://www.lri.fr/∼marche/termination-competition) and therefore hence
any other tool supporting this syntax could be used as well. In the future, we plan to develop
translations from other equational languages into MTT making these techniques available
for those languages as well.

The tool implementation clearly distinguishes two parts: (1) a reflective MAUDE speci-
fication implements the theory transformations A and B (including optimized variants) de-
scribed in Section 4, and (2) a Java application connects MAUDE, CiME, MU-TERM and
APROVE; and provides a graphical user interface. The Java application is in charge of
sending the MAUDE specification introduced by the user to MAUDE to perform transfor-
mations; depending on the selections made by the user, one transformation or another will
be accomplished. The resulting unsorted unconditional rewriting system may be proved ter-
minating by using either CiME, APROVE or MU-TERM. It is also possible to askMU-TERM

to perform a transformation from a CS-TRS to a TRS, and ask fora termination proof of the
resulting TRS to the other back-end tools, as explained in Figure 2.

5.2 Experiments

In order to validate our approach in practice, we have used our implementation to (try to)
prove termination of a number of (small) MAUDE programs. For these experiments we per-
formed a fully automated proof search, attempting all possible transformations on each ex-
ample, and all possible back-end tools. The results are presented on the web page:

http://www.lri.fr/∼marche/MTT/.

which is currently under continuous development as part of the development of the MTT
tool itself. We have observed that:

1. For a majority of the programs we have tried (around 80%), there is at least one back-
end tool that leads to a termination proof on the CS-TRS obtained by some combination
of the transformations described in Sections 4.1 and 4.3 above (possibly involving the
refinements in Section 4.2).
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2. The ‘and’ optimization of Section 4.2.2 is clearly helpful: the proofalwaystakes less
time when the optimization is activated; furthermore, it often avoids timeouts (e.g., when
dealing withbagsof natural numbers orbooleans, in the setting of AC theories).

3. As expected, dealing with large programs is difficult. This clearly shows that there is
a scaling-up issue in proving termination of programs. Thismeans that modular tech-
niques should be investigated further (see below).

6 Conclusions and further work

Proving termination of equational programs having expressive features such as conditions,
typing, memberships, and evaluation strategies is important but nontrivial, because some of
those features may not be supported by standard terminationmethods and tools. Yet, use of
such features may be essential to ensure termination.

Sometimes a crucial issue may even be how to define the reduction relation. For exam-
ple, with the two rulesf (a) → f (b) anda→ b if f (a) → f (b), do we havef (a) →∗ f (b)
with innermost strategy? In an interpreter like MAUDE, asking normalization ofa loops for-
ever, because it tries to apply the second rule, hence tries to reducef (a) with innermost
strategy, hence tries to normalizea again. Therefore, we have focused on the recently intro-
duced notion of operational termination [29] which closelycorresponds to the termination of
an interpreter. In fact, in this paper we have shown that, as claimed in [29], such a notion is
flexible enough to provide a suitable notion of termination for languages and systems whose
operational semantics is described by means of inference systems involving a variety of re-
lations which are not necessarily rewrite relations (e.g.,the memberships in the CS-MRT
logic). In this sense, this paper provides a more satisfactory termination framework than the
earlier version [9].

We have presented theory transformations that can be used tobridge the gap between
equational programs and termination tools, have proved their correctness, and have dis-
cussed a prototype implementation in a tool taking MAUDE functional modules as in-
puts, performing the transformations, and mapping the resulting transformed theories to
MU-TERM and from there to CiME, APROVE, and other termination tools. Moreover, we
have proposed variants and optimizations of our theory transformations that are also well
suited for proving operational termination of MAUDE programs. Much work remains ahead,
both in theoretical aspects and in experimentation. Theoretical issues that need to be further
investigated include the following.

Firstly, our methods could be extended to prove terminationof equational programs with
innermostcontext-sensitive rewriting in the case ofunconditional rules. For unconditional
specifications, methods for such termination already existand have been shown useful for
proving termination of programs with elementary E-strategies in the OBJ sense [25]. There
are also tools like APROVE or TERMPTATION which permit proving termination of inner-
most rewriting; and there are also tools like CARIBOO [11] which are specialized to deal
with termination of rewriting under strategies (in particular, a class of innermost context-
sensitive strategies for unconditional systems).

Secondly, our methods should be extended to take advantage of existing modu-
lar/incremental termination proof techniques [14,30,35–38] in our setting. Since MAUDE

programs are built by composition of modules, termination should be proven incremen-
tally: each time a new module is added, a proof of terminationshould be obtained by using
the knowledge of termination of previous ones. However, further investigation is required,
since MAUDE module hierarchies do not necessarily respect the usual hierarchical property
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required for hierarchical TRSs, namely that for each rule added, the left-hand side’s root
symbol is a new symbol. Furthermore, even if this were to holdfor some MAUDE programs,
the transformations we have defined do not preserve that property, in particular because of
sort elimination: if a new symbolf declares an old sortSas its codomain, then a new rule
isS( f (. . .)) → . . . has to be added, whereasisS is an old symbol. A closely related topic is
the development of techniques for proving termination ofparameterized modules, as those
definable in Full MAUDE and in MAUDE 2.2. This is the first-order analogue of termination
techniques for polymorphic higher-order functions [16]. This problem is closely related to
modularity, because one wants to investigate conditions under which a terminating parame-
terized module, when instantiated by a view to a terminatingtarget instance module, results
in an instantiation that can be guaranteed to be terminating.

Thirdly, completeness issues should be further investigated. We have shown in Sec-
tion 4.4 that transformation B is not complete. We conjecture that transformation A is com-
plete, and that transformation B is also complete if the transformed theory is evaluated with
an innermost context-sensitive strategy. Completeness oftransformation B when termination
of the transformed theory is replaced by CE-termination should also be investigated.

Fourthly, intrinsic proof methodsdirectly based on operational termination, and not re-
quiring transformational approaches such as those presented in this work, should be inves-
tigated. In this regard, a future investigation of how operational termination and ordering-
based termination approaches can be combined together, leading to intrinsic proof methods,
for example for CS-MRTs, seems very worthwhile. The relationship between operational
termination and quasi-decreasingness studied in detail in[29] can serve as a basis for a
more general investigation of this kind.

More experimentation is needed to further extend and refine our methods. The current
prototype provides a first basis for such experimentation; it should be extended and im-
proved in several directions, including adding interfacesto other equational languages and
termination tools, and adding support for the theoretical extensions mentioned above.
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